Midterm 3 Welcome to Math 231 Exam Review!

CARE

QR Code to Queue and Worksheet:

Sequences

- A list of numbers in a certain order
 - \circ $a_1, a_2, a_3, a_4, a_5, \dots, a_n, \dots$
- Taking the Limit of Sequences:
 - Limit as n approaches infinity
 - If it exists, the sequence is convergent
 - DNE, sequence is divergent
 - If the limit is infinity, a_n diverges to infinity

Ex: 1/5, -2/25, 3/125, -4/625, ..., (-1)⁽ⁿ⁻¹⁾n/5ⁿ

Series

- Similar to sequences, but now add the terms together!
 - $\circ \quad a_1 + a_2 + a_3 + a_4 + a_5 + \dots + a_n + \dots$
- Convergent if a₁ + a₂ + ... + a_n + ... = s
 Oivergent if the sum diverges
- Geometric Series:

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}; |r| < 1 \qquad \text{What about } |r| \ge 1? \quad \text{It diverges!}$$

- Test for Divergence
 - If the limit of an does not exists or does not equal o
 - The series is divergent

Integral Test

Suppose a_n = f(n)
If converges ∫₁[∞] f(x)dx then Σ_{n=1}[∞] a_n converges
If diverges ∫₁[∞] f(x)dx then Σ_{n=1}[∞] a_n diverges

P-Test

When does this series converge?

 $\sum_{n=1}^{\infty} \frac{1}{n^p}$

When p > 1!

Comparison Test

- If given two series and know the convergence or divergence of one:
- If $\sum_{n=1}^{\infty} b_n$ is convergent and $b_n \ge a_n$ then $\sum_{n=1}^{\infty} a_n$ converges
- If $\sum_{n=1}^{\infty} b_n$ is divergent and $b_n \leq a_n$ then $\sum_{n=1}^{\infty} a_n$ diverges
 - Limit Comparison Test:

If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and c is finite and > 0: Either both series converge or both series diverge

Alternating Series

- The series alternates between positive and negative!
- Convergence:
 - Terms are decreasing, $b_n >= b_{n+1}$
 - $\circ \quad \lim_{n \to \infty} b_n = 0$
- Absolute and Conditional Convergence
 - Absolute Convergence: The absolute value of a series is convergent
 - Conditional Convergence: The absolute value of a series is convergent, but the original series diverges
 - If a series is absolutely convergent, then it is convergent

Ex:
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 Conditional or Absolute convergence?
Conditionally Convergent!

Ratio Test

• Take the limit of absolute value of the ratio of the nth term and the nth+1 term

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

- If L < 1: Absolutely Convergent
- If L > 1 or $L = \infty$: Divergent
- If L = 1: Inconclusive

Root Test

• Take the limit of n^{th} root of the absolute value of the n^{th} term

$$\lim_{n\to\infty}\sqrt[n]{|a_n|} = L$$

- If L < 1: Absolutely Convergent
- If L > 1 or $L = \infty$: Divergent
- If L = 1: Inconclusive

Putting It All Together

A general order for how you might want to go by solving problems:

- 1. Test for Divergence
- 2. p-Series Test
- 3. Geometric Series Test
- 4. Comparison Test
- 5. Alternating Series Test
- 6. Ratio Test
- 7. Root Test
- 8. Integral Test

Putting It All Together

-

CEDIEC

- 1. Check divergence with limit
- 2. Look for easy P-Test/Geometric

3. Inspection

IESI	SERIES	CONVERGES IF	DIVERGES IF	COMINIENTS
<i>n</i> th Term Test for Divergence	$\sum_{n=1}^{\infty} a_n$	n/a	$\lim_{n\to\infty}\neq 0$	should be first test used. Inconclusive if limit = 0.
Geometric Series Test	$\sum_{n=1}^{\infty} a_n r^{n-1}$	<i>r</i> < 1	$ r \ge 1$	use if there is a "common ratio" $S_n = \frac{a}{1-r}$
P-Series Test	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	<i>p</i> > 1	<i>p</i> ≤ 1	harmonic series when p=1. Useful for comparison tests.
Integral Test	$\sum_{\substack{n=1\\a_n=f(x)}}^{\infty} a_n$	$\int_1^\infty f(x)dx$ converges	$\int_1^\infty f(x)dx$ diverges	f(x) must be continuous, positive, and decreasing
Direct Comparison Test	$\sum_{n=1}^{\infty} a_n$	$0 \leq a_n \leq b_n,$ $\sum_{n=1}^{\infty} b_n$ converges	$0 \le b_n \le a_n,$ $\sum_{\substack{n=1\\ \text{diverges}}}^{\infty} b_n$	to show convergence, find a larger series. to show divergence, find a smaller series.
Limit Comparison Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} > 0,$ $\sum_{n=1}^{\infty} b_n$ converges	$\lim_{n \to \infty} \frac{a_n}{b_n} > 0,$ $\sum_{\substack{n=1 \\ \text{diverges}}}^{\infty} b_n$	apply l'hospital's rule if necessary; inconclusive if limit equals 0 or ∞
Alternating Series Test	$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$	$a_{n+1} \le a_n, \\ \lim_{n \to \infty} a_n = 0$	$\lim_{n\to\infty}a_n\neq 0$	must prove that the limit equals 0 and that terms are decreasing
Ratio Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right < 1$	$\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right > 1$	test fails if : $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1$
Root Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty}\sqrt[n]{ a_n }<1$	$\lim_{n\to\infty}\sqrt[n]{ a_n } > 1$	test fails if: $\lim_{n \to \infty} \sqrt[n]{ a_n } = 1$

CONVERSE IF

CORARATAITC