

PHYS 213 Python Workshop

C.A.R.E. Tutoring

Please sign into the Queue

Workshop Objectives

1. Basics of Python and SymPy

2. Solving equations symbolically

3. Performing derivatives and integrals

4. Applying these skills to PHYS 213 problems

Python Basics - Variables and Data Types

• Integers: x = 5

• Floats: y = 3.14

• Strings: course = "Thermal Physics"

• Booleans: is_warm = True

x = 5 y = 3.14 course = "Thermal Physics" is warm = True

print('Integer: x =', x)
print('Float: y =', x)
print('String:', course)
print('Boolean: is_warm =', is_warm)

```
Integer: x = 5
Float: y = 5
String: Thermal Physics
Boolean: is warm = True
```

Python Basics - Math Operations

a = 5 b = 3	
<pre>print('a + b =', a + b) #addition</pre>	a + b = 8
<pre>print('a - b =', a - b) #subtraction</pre>	a - b = 2
<pre>print('a * b =', a * b) #multiplication</pre>	a * b = 15
<pre>print('a / b =', a / b) #division</pre>	a / b = 1.66666666666666666666666666666666666
<pre>print('a^b =', a**b) #exponentiation</pre>	a^b = 125

7

Introduction to SymPy

• A Python Library for symbolic math

from sympy import *

• Can handle algebra, calculus, logarithms, and more

Defining Symbols and Expressions

• Create an expression that represents:

 \circ 2x⁴ + 3y + 7

x, y = symbols('x, y')
expr =
$$2*x**4 + 3*y + 7$$

expr
 $2x^4 + 3y + 7$

- Create an expression that represents:
 - $\circ \quad x^3 + y^2 + 4x + 5y^8 + 2$

x, y = symbols('x, y')
expr2 = x**3 + y**2 + 4*x + 5*y**8 + 2
expr2

$$x^3 + 4x + 5y^8 + y^2 + 2$$

Specific Symbols and Functions in SymPy

Symbol/Function	SymPy Representation	
π	pi	
e ^x	exp(x)	
sin(x)	sin(x)	
cos(x)	cos(x)	
tan(x)	tan(x)	
ln(x)	ln(x)	
√x	sqrt(x)	
∞	00	
x!	factorial(x)	

Solving Equations

• Let's say we want to solve x² - 4 = 0:

 $eq1 = Eq(x^{*} + 2 - 4, 0)$ The comma (,) acts as the equal sign [-2, 2]print(soln) print('First Solution: x =', soln[0])
First Solution: x = -2 print('Second Solution: x =', soln[1]) Second Solution: x = 2

Solving Simultaneous Equations

- Let's say we have a system of equations that we want to solve:
 - \circ 2x + 3y = 10 and -9x 7y = 2

```
x, y = symbols('x, y')
eq1 = Eq(2*x + 3*y, 10)
eq2 = Eq(-9*x - 7*y, 2)
```

soln = solve((eq1, eq2), (x, y))
print(soln)

{x: -76/13, y: 94/13}

Solving Simultaneous Equations (Cont.)

- x, y = symbols('x, y')
- eq1 = Eq(2*x + 3*y, 10)
- eq2 = Eq(-9*x 7*y, 2)

soln = solve((eq1, eq2), (x, y))

x = soln[x] y = soln[y]

print('x and y manipulation:', 2x = 2x, 2x, 'and', y/3 = y/3)

x and y manipulation: 2x = -152/13 and y/3 = 94/39

Common Errors

- Undefined Symbols:
 - NameError

eq = Eq(2*x + 3*y, 10)

NameError

Traceback (most recent call last)

<ipython-input-3-a5175d72df30> in <cell line: 0>()
----> 1 eq = Eq(2*x + 3*y, 10)

NameError: name 'x' is not defined

- Fix:
 - Define symbols first

x, y = symbols('x y')
eq = Eq(2*x + 3*y, 10)

Common Errors (Cont.)

- No solution exists:
 - SymPy returns []

eq1 = Eq(x + y, 3)eq2 = Eq(2*x + 2*y, 7)

```
soln = solve((eq1, eq2), (x, y))
print("Solution:", soln)
```

Solution: []

- Many possible fixes:
 - Analyze the format and syntax of each equation
 - Think about whether it makes sense for there to be no solution []

Calculus in SymPy

Symbol	SymPy Representation	Description
$\frac{d}{dx}$	diff(expr, x)	Derivative with respect to x
$\int dx$	integrate(expr, x)	Indefinite integral
$\int_{a}^{b} dx$	integrate(expr, (x, a, b))	Definite integral

Derivatives in SymPy (Cont.)

diff(expression, variable, nth derivative)

• Determine the 1^{st} derivative of $x^3 + 2y^2 + 8xy$

x, y = symbols('x, y')
diff(x**3 + 2*y**2 + 8*x*y, x)
$$3x^2 + 8y$$

Derivatives in SymPy

diff(expression, variable, nth derivative)

• Determine the 2nd derivative of e^{-2x}

$$4e^{-2x}$$

Indefinite Integrals in SymPy - Example

integrate(expression, variable)

• Determine the integral of x²:

```
x = symbols('x')
answer = integrate(x**2)
answer

\frac{x^3}{3}
```

Definite Integrals in SymPy - Example

integrate(expression, (variable, lwr bound, upr bound))

• Determine the integral of $2x + e^{-6x}$ from 0 to π :

```
x = symbols('x')
answer = integrate(2*x + exp(-6*x), (x, 0, pi))
answer
```

 $-rac{1}{6e^{6\pi}}+rac{1}{6}+\pi^2$

```
x = symbols('x')
answer = integrate(2*x + exp(-6*x), (x, 0, pi))
answer.evalf()
```

10.0362710666706

Application to PHYS 213

- Calculating microstates and entropy for flipping coins:
 - factorial(x) and ln(x)

- Calculating equilibrium temperature and entropy for 2 blocks in thermal contact:
 - Symbols, Eq(,), integrate

- Determine the work done for isothermal and adiabatic processes
 - integrate(expr, (x, lwr bound, upr bound))

Feedback Form

