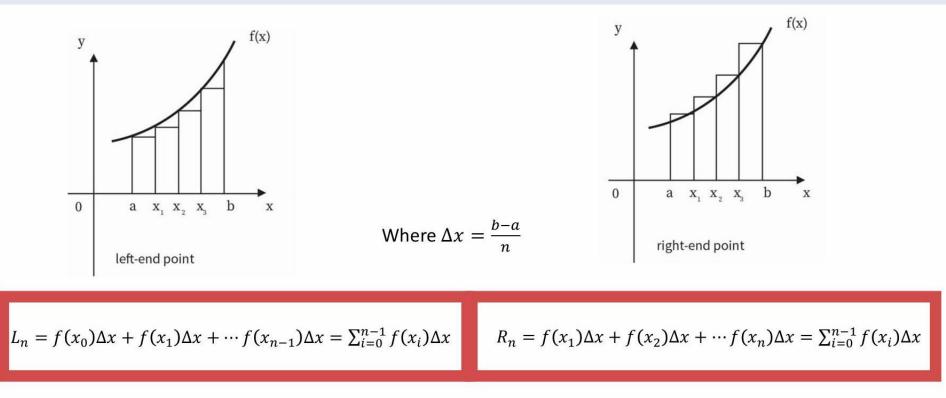
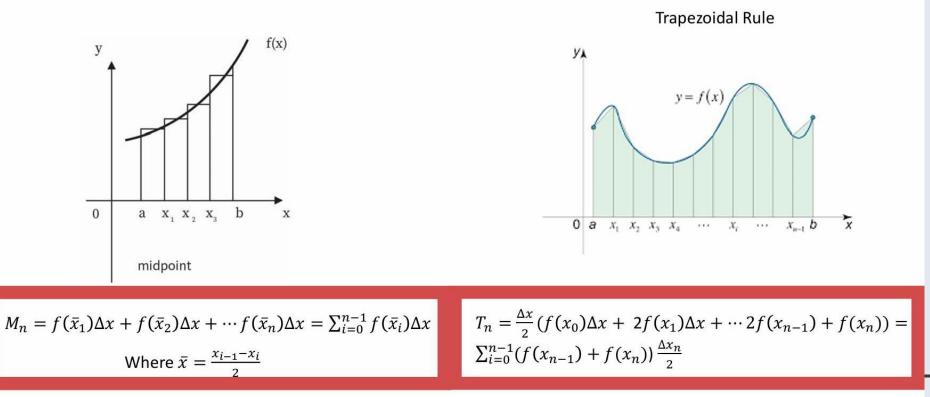
MATH 231 Exam Review

Midterm 02

Approximate Integration/Riemann Sum



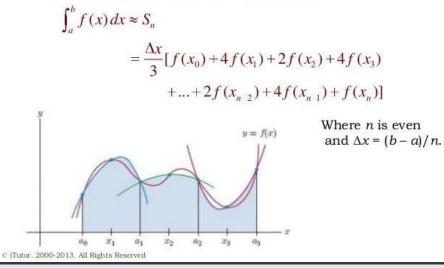
Approximate Integration/Riemann Sum



Simpson's Rule

$$S_n = \frac{\Delta x}{3} \left(f(x_0) \Delta x + 4f(x_1) \Delta x + 2f(x_2) \Delta x + \dots + f(x_n) \right) \approx \int_0^n f(x)$$

□ Rather than using straight lines to approximate the curve, Simpson's Rule uses parabolas.



Improper Integrals:

There are two types:

1) Dealing with infinity

Example:

 $\int_0^{\,\infty} rac{1}{x^4+1} \, dx$

2) Dealing with a discontinuity

$$\int_{-1}^1 \frac{1}{x} \, dx = 0$$

Convergent:

• Means that there is a finite answer

Divergent:

• Means that the integral does not exist or is infinite

1.
$$\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx$$

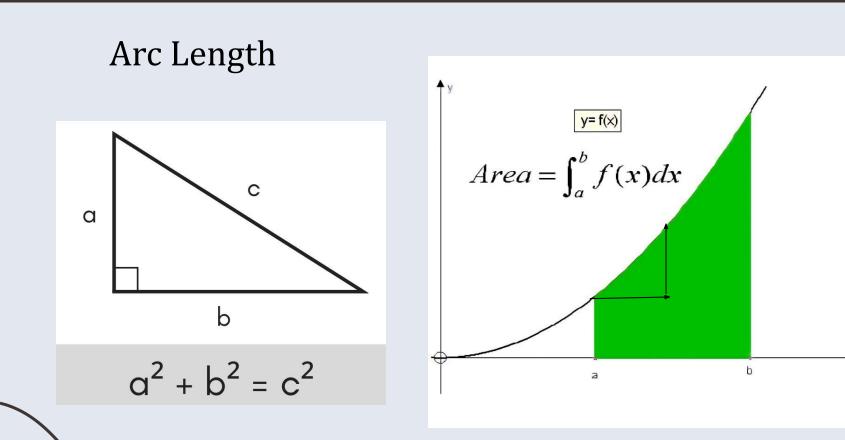
over the interval $[a, \infty)$

$$\mathbf{2.} \ \int_{-\infty}^{b} f(x) \ dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) \ dx$$

,

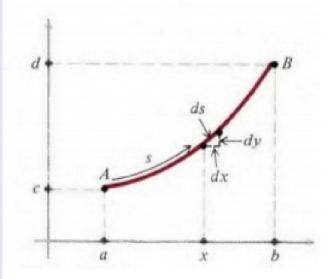
over the interval $(-\infty, b]$

3.
$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{c} f(x) \, dx + \int_{c}^{\infty} f(x) \, dx$$
 over the interval $(-\infty, \infty)$



×

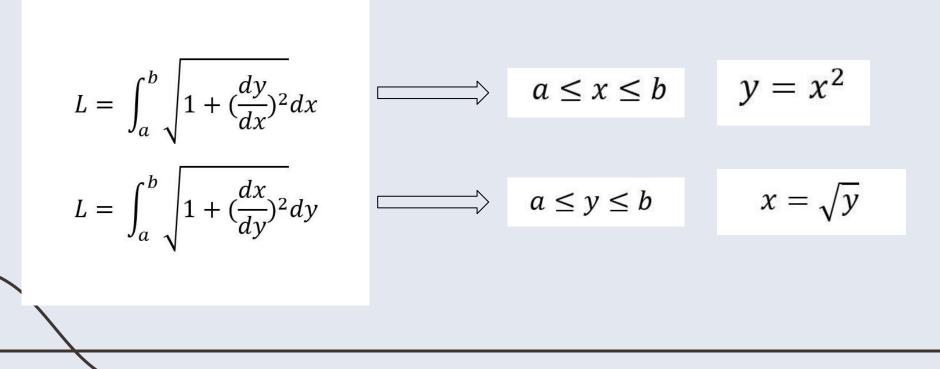
Arc Length

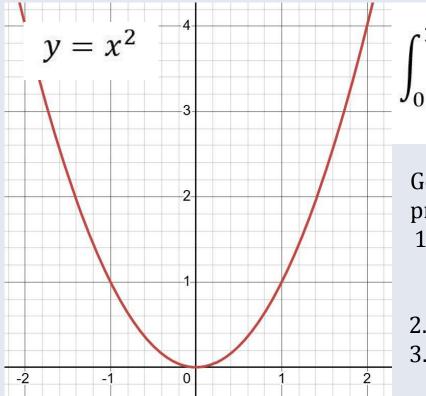


$$ds^{2} = dx^{2} + dy^{2}$$
$$ds = \sqrt{dx^{2} + dy^{2}}$$
$$= \sqrt{\left(1 + \frac{dy^{2}}{dx^{2}}\right)dx^{2}} = \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx.$$

length of arc
$$AB = \int ds = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
,

When to use which formula... and how to go about each one





$$\sqrt[2]{1+(2x)^2}dx = \int_0^4 \sqrt{1+(\frac{1}{2\sqrt{y}})^2}dy$$

General steps for solving arc length problems:

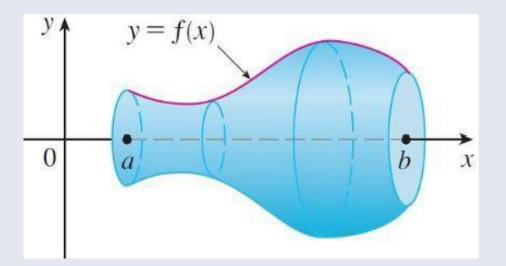
- 1. Write down formula that makes the most sense based on what you are given in the problem
- 2. Find the derivative
- 3. Set up the integrand and solve

Surface Area of a Revolution

 $A = 2\pi r \times h$

Surface Area of Revolution

We apply the same knowledge to more complex shapes, the arc length will be the 'h' and then the given function will be your circumference.



Surface Area of Revolution

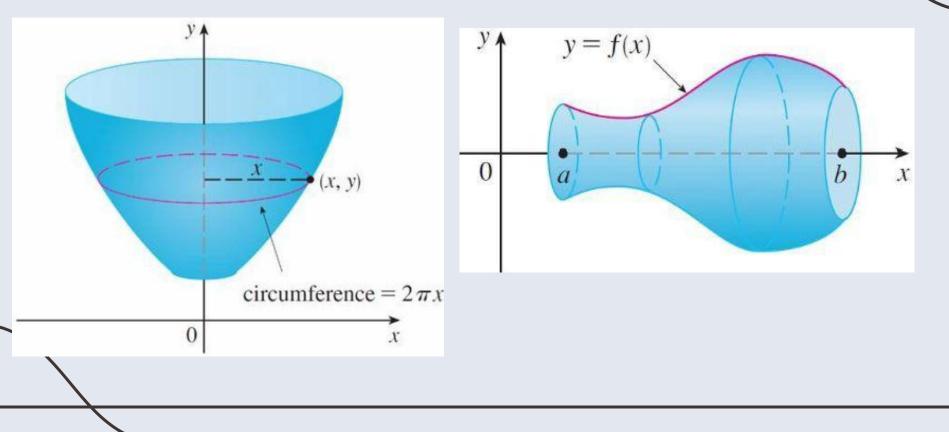
$$S = \int 2\pi y \, ds \qquad \Longrightarrow$$
$$S = \int 2\pi x \, ds \qquad \Longrightarrow$$

Around x-axis

 \implies Around y-axis

$$ds = \int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^2} dx$$
$$ds = \int_{a}^{b} \sqrt{1 + (\frac{dx}{dy})^2} dy$$

Visualizing what is going on



Moments and Center of Mass

Center of mass:

Moments about axis:

Center of mass coordinates:

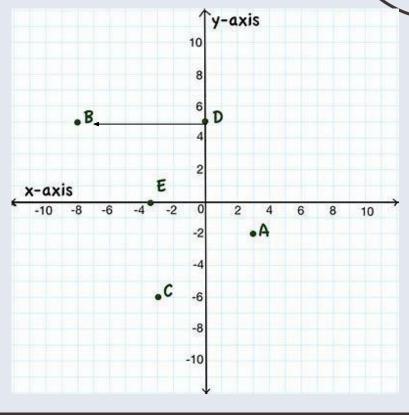
$$\bar{x} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$
$$M_y = \sum m_i x_i$$
$$M_x = \sum m_i y_i$$

m

 M_{x}

т

 \overline{x} :



Uniform density

$$\bar{x} = \frac{1}{A} \int_{a}^{b} xf(x)dx$$
$$\bar{y} = \frac{1}{A} \int_{a}^{b} \frac{1}{2} (f(x))^{2} dx$$

If the region \mathcal{R} lies between two curves y = f(x) and y = g(x), where $f(x) \ge g(x)$, the centroid of \mathcal{R} is (\bar{x}, \bar{y}) , where

$$\bar{x} = \frac{1}{A} \int_{a}^{b} x [f(x) - g(x)] dx \qquad \bar{y} = \frac{1}{A} \int_{a}^{b} \frac{1}{2} \{ [f(x)]^{2} - [g(x)]^{2} \} dx$$

Sequences

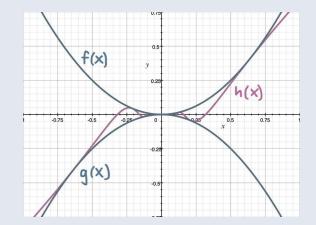
Sequence: Just a list of the numbers

- Pattern Recognition!
- To test whether convergent or divergent take the limit, if the limit exists: convergent, if not! It is divergent.
 - If the sequence is a function, take the limit of the function
 - If cannot take limit, Squeeze Theorem!

Useful Squeeze Theorem

$$\lim_{x \to 0} \left(\frac{\sin(ax)}{x} \right) = \mathbf{a}$$
$$\lim_{x \to 0} \left(\frac{\cos(x) - 1}{x} \right) = \mathbf{0}$$

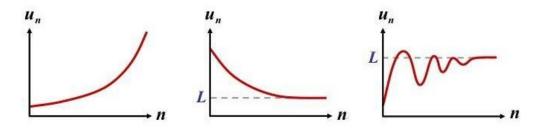
If $f(x) \le h(x) \le g(x)$ and $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = L$ then $\lim_{x \to c} h(x) = L$



Sequences

Convergence and Divergence.

Some sequences never stop increasing, while others eventually settle at a particular number.



If the numbers in a sequence continue to get further and further apart, the sequence diverges.

If a sequence tends towards a limit, it is described as convergent.

Sequence Convergence

- Convergence:
 - Increasing
 - ▶ if all $a_n < a_{n+1}$
 - Decreasing
 - ▶ if all $a_n > a_{n+1}$
 - Bounded from Below
 - ▶ If there existed a number m such that $m \le a_{n+1}$
 - Bounded from Above
 - ▶ If there existed a number M such that $M \ge a_{n+1}$
 - If a sequence is bounded (from above and below) and monotonic (increasing or decreasing only), then it is convergent
 - If is not both of these, does not necessarily mean it is divergent

Series

- Series: The sum of a sequence.
 - ▶ If a series converges, then the sequence must converge as well.
 - **However:** If sequence converges, then the series may or may not converge.
 - Σa_n converges if the limit of the series converges.
- Geometric series:
 - $\triangleright \quad \Sigma ar^{k-1} = a + ar + ar^2 + ar^3 \dots$
 - Will converge if |r| < 1</p>
- Other techniques:
 - Evaluate the partial sums (first bit of sums) of a series and see how the series behaves

► If
$$\Sigma a_k$$
 converges, then $\lim_{x\to\infty} a_n = 0$