PHYS 212 Review 1

Exam 1 Queue

Exam 1 Overview

1) Coulomb's Law

2) Electric Field

3) Electric Flux

4) Gauss's Law

5) Electric Potential

6) Capacitance

Coulomb's Law

Electrostatic force between 2 charges

Newton's Third Law: $F_1 = -F_2$

Coulomb's Law (1785)

$$\vec{F}_{12} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

Gravity

Electric Charge

Mass

m

Superposition

The total electric force on a charge

is the sum of all the forces exerted

by "n" charges on that one charge

Electric Fields

3 main sources of electric fields:

Point Charges, Infinite Lines of Charge, and Infinite Sheets of Charge

Point Charge

3D symmetry - magnitude depends on r²

 $E = k \frac{q}{r^2}$

Important Sphere Geometries

Infinite Line of Charge

2D symmetry - magnitude depends on r

charge density - $\lambda = Q/L$ (units: C/m)

Integral Setup Questions:

- Bounds are the **length** of the line of charge
- Inside the integral is of form **k(q/r²)**
- $dQ = \lambda dx$

$$E_{y} = \int_{x=-\infty}^{x=\infty} dE_{y} \qquad E_{y} = \int_{x=-\infty}^{x=\infty} k \frac{dq}{s^{2}} \cos \theta = \int_{x=-\infty}^{x=\infty} k \frac{\lambda dx}{s^{2}} \cos \theta$$

Infinite Sheet of Charge

1D symmetry - magnitude has no dependance on r

charge density - $\sigma = Q/A$ (units: C/m²)

Electric Field Lines and Flux

Density of field lines indicates electric field strength

- More dense lines => stronger electric field
- Less dense lines => weaker electric field
- # of field lines is proportional to charge's magnitude

Flux is the number of field lines that pass through a surface

- Positive flux points outwards
- Negative flux points inwards
- Pay close attention to Φ_{net} vs Φ_{left} or Φ_{right}

Gauss's Law

 $\Phi_{Net} = \oint \vec{E} \cdot d\vec{A} = \frac{q_{enclosed}}{\varepsilon_0}$ surface (q) $\Phi = \frac{q_1}{\varepsilon_0} + \frac{q_2}{\varepsilon_0}$

3 shapes have enough symmetry for easy

integration, so that we can get $\mathbf{E} \cdot \mathbf{A} = \mathbf{Q}_{enc}$

- Sphere (Point Charge)
- Cylinder (Infinite Line of Charge)
- Plane (Infinite Sheet of Charge)

Generally, a cylinder will be used but any symmetrical object would suffice (cube, sphere, etc.)

Gauss's Law says the number of field lines out of a surface is directly related to the charge(s) enclosed

Gauss's Law cont.

- A is the surface area of the **chosen Gaussian surface** (sphere, cylinder, cube, etc.)
- Charge denstitions (λ , σ , P) come from the **given physical object** we are working with
- We can use charge densities to find q_{enc}
 - $\lambda = q_{enc} / L$ (L is length m)

•
$$\boldsymbol{\sigma} = \boldsymbol{q}_{enc} / \boldsymbol{A}$$
 (A is area - m²)

•
$$\mathbf{P} = \mathbf{q}_{enc} / \mathbf{V} (V \text{ is volume - m}^3)$$

$$\Phi_{Net} = \oint_{surface} \vec{E} \cdot d\vec{A} = \frac{q_{enclosed}}{\mathcal{E}_o}$$

Electric field inside a conductor is **ALWAYS 0**, since all the charge goes the surface

For charges inside a conducting shell:

- **Q**_{inner} = opposite value of the center charge
- Q_{outer} = value of the charge on the surface + value of the center charge

$$Q_{inner} = -q_o$$
$$Q_{outer} = Q + q_o$$

Charge is uniformly (equally) distributed throughout the entire insulator

The net charge inside an insulator behaves differently than outside the insulator

Outside - behaves like a point charge

Inside - behaves linearly

- Memorize second equation
- Saves you time from deriving it

Electric Potential Energy (Units: J)

Solving Systems of Particle Problems

- 1. $U_1 = 0$, for whatever particle you chose first
- 2. $U_2 = kq_2q_1 / (d_{21})$
- 3. $U_3 = kq_3q_1 / (d_{31}) + kq_3q_2 / (d_{32})$
- 4. Repeat process for all additional charge pairs and sum them up (U₁ + U₂ + U₃ +... U_n) to get U_{sys}
- 5. Remember that W = U

$$U_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}}$$

Electric Potential (Voltage - Units: V=J/C)

Energy required to move a positive test charge through a constant electric field

• V_{point charge} = U / q (where little q is the test charge) Electric Potential Difference

Equipotential Lines:

$$\Delta V_{A \to B} = -\int_{A}^{B} \vec{E} \cdot d\vec{l}$$

- Perpendicular to electric field lines
- Electric field lines always point from higher to lower electric potential
- More dense lines => Stronger electric potential
- Equal electric potential along on the same equipotential lines

Capacitance (Units: Farads - F)

Capacitance primarily depends on the **geometry**

```
Units - Farads (F)
```

```
Energy of a capacitor: U = 0.5CV<sup>2</sup>
```

 $C = \frac{\kappa \epsilon_0 A}{d}$

Dielectric - adding a dielectric to a capacitor increases its capacitance

Capacitors in Series/Parallel

Series - $1/C_1 + 1/C_2 + 1/C_3 + \dots 1/C_n = 1/C_{total}$

*Shortcut (Product over Sum): only works with 2 capacitors at a time, repeat process for all capacitors until C_{total}

 $(C_1 \times C_2) / (C_1 + C_2) = C_{1,2} = Multiply C_1 and C_2 (product) and divide by their sum$

Parallel - just add them up

 $C_1 + C_2 + C_3 + \dots C_n = C_{total}$

Don't forget to sign in to the queue

