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Executive Summary (1-page max): 
 
Composite reinforcement has been increasingly applied in the precast concrete structure 
components because of its high strength, lightweight, high fracture toughness, long-term 
corrosion, and crack resistance. The behavior of composite reinforcement plays an important role 
in the precast concrete infrastructure. It is important to monitor the material system and provide 
real-time situational awareness under different scenarios. Physical testing with trial-and-error 
approaches on composite reinforced PC components require substantial time, labor, and material 
resources to monitor the structural and materials conditions and detect failure or anomalies under 
service.  
 
This study aims to develop a smart composite reinforcement in precast concrete for real-time 
health condition monitoring using embedded sensors on the composite. The monitoring system 
can provide the health condition and risk information of the composite reinforcement and 
investigate the load transfer effectiveness between layers of the reinforcement and the precast 
concrete. The self-sensed composite reinforcement experimental data will be paired with 
computational models of composite-concrete system and data-driven machine learning 
algorithms to predict the risk of the composite reinforcement for a better reinforced precast 
concrete system. The research integrates smart sensor technology, computational mechanics of 
materials, and data-driven machine learning algorithms to detect the structural and materials 
failure and anomaly mechanism and predict the associated risk in a wide range of applications. 
Three consecutive tasks are as follows:  
 
Task 1. Development and testing of embedded smart sensors for self-sensing composite 
reinforcement in precast concrete. This task focuses on the smart composite reinforcement 
development and experimental testing of the smart composite reinforcement in PC. The sensor 
data and image data from the experiment will be used to validate numerical models in Task 2 and 
generate database of composite reinforced-concrete system for AI-based condition assessment 
model in Task 3. 
 
Task 2. Multi-scale multi-physics modeling with finite element analysis for the composite 
reinforcement mechanical and bonding performance. The task focuses on the development of 
three-dimensional (3D) finite element analysis models to simulate the mechanical and bonding 
performance of composite reinforcement and precast concrete. Multiple influencing factors will be 
considered including type of composite reinforcement, type of concrete materials, and geometry 
of the structure. The numerical analysis results will be compared and validated by the 
experimental data in Task 1. As the complement of the sensor data in Task 1, the numerical data 
will be integrated with sensor data and image data in Task 1 to establish a comprehensive 
physics-informed database for training AI algorithms in Task 3.  
 
Task 3. AI-Driven Condition Assessment for Composite Reinforced Concrete. This task focuses 
on the machine learning-based condition assessment and risk analysis using sensor data, image 
data, and numerical model data from Tasks 1 and 2 to assess and predict the condition and risk 
level of composite reinforced concrete system. 
 
In addition to the research tasks, the research team also conducted educational and industrial 
outreach activities including the smart reinforced concrete beam testing day, K-12 education video 
development, and site visit to concrete materials labs and plants.  
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TRANS-IPIC Final Report: 
 
1. Statement of problem 
Composite reinforcement has been increasingly applied in the precast concrete (PC) area [1], 
because of its high strength, lightweight, high fracture toughness, long-term corrosion, and crack 
resistance. The behavior of composite reinforcement plays an important role in the precast 
concrete infrastructure. It is important to monitor the material system and provide real-time 
situational awareness under different scenarios. Physical testing with trial-and-error approaches 
on composite reinforced PC components require substantial time, labor, and material resources 
to monitor the structural and materials conditions and detect failure or anomalies under service. 
There is a lack of an efficient and precise way to monitor and predict the risk of the composite 
reinforcement for PC components.  
The proposed research aims to develop a smart composite reinforcement in precast concrete for 
real-time health condition monitoring using embedded sensors on the composite. The monitoring 
system can provide the health condition and risk information of the composite reinforcement and 
investigate the load transfer effectiveness between layers of the reinforcement and the precast 
concrete. The self-sensed composite reinforcement experimental data will be paired with 
computational models of composite-concrete system and data-driven machine learning 
algorithms to predict the risk of the composite reinforcement for a better reinforced precast 
concrete system. The research will integrate smart sensor technology, computational mechanics 
of materials, and data-driven machine learning algorithms to detect the structural and materials 
failure and anomaly mechanism, and predict the associated risk in a wide range of applications. 
 
2. Research Plan / Tasks 
2.1 Task 1: Development and testing of embedded smart sensors for self-sensing 
composite reinforcement in precast concrete 
2.1.1 Experiment Setup 
Figure 1 shows the schematic of the testbed for smart composite reinforcement in concrete beam. 
The composite reinforced concrete beam is subjected to testing using the Forney FHS-400-VFD 
automatic compression test machine. The span length is set to be 18 in, in accordance with the 
specified requirements of the ASTMC293 standard. The top anvil is positioned at the center, and 
two bottom rigid supports are placed 1 in from each edge. To develop smart composite 
reinforcement, we embed LUNA high-definition fiber optic strain sensors and Vishay micro-
measurement strain gauges in this task. The fiber optic sensors have the advantages of being 
small in size (125 μm in diameter without additional coating), high flexibility (allowing them to wrap 
around reinforcement), long sensing range (up to 2 km per optic fiber), water-resistance, and 
affordable cost. Fiber optic sensors provide real-time strain monitoring along the entire length of 
the fiber. In this study, we embed the fiber optic sensor along the bottom of the composite rebars, 
with two strain gauges positioned at the ends and the midspan of the rebar, next to the fiber optic 
sensors. We apply Vishay micro-measurement strain gauges on the rebar at various points next 
to the fiber optic sensor for comparison and validation between two types of smart sensors. In 
addition to the embedded fiber optic sensors and strain gauges for the composite rebar, as well 
as linear strain gauges for the concrete. We also equip four image data collection devices, 
including cell phones, digital image correlation (DIC) cameras, GoPro, and drones. Two phones 
(iPhone 15 and iPhone 15 ProMax) are placed at the sides to capture deformations of the RC 
beam. A GoPro camera is attached at the side edge of the beam to observe the propagation of 
the bending crack. The Intel RealSense digital image correlation cameras face the front and back 
surfaces of the beam after failure. The DJI drone flies in the diagonally upward direction, filming 
the experiment and observing the top of beam. 
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Figure 1. The schematic of the experimental setup of the smart composite reinforced concrete system. 

 
Since the fiber optic sensor is very fragile and vulnerable, we create a groove on the composite 
rebar to embed the fiber optic sensor, using the method suggested by Bado et al. [2]. Figure 2(a) 
shows the groove on the rebar for fiber optic sensor embedment. Given the slim and delicate 
property of fiber optic sensors, we protect them with the coating of 3M DP460 two-component 
epoxy, which also serves as a glue to ensure strong bonding between the sensor and rebar, as 
depicted in Figure 2(b). A thin silica tube is used to provide extra protection near the rebar ends, 
mitigating the risk of fiber fracture. The same two-component epoxy is employed to attach two 
strain gauges at the midspan and end of the rebar next to the fiber optic sensor. Due to the high 
curvature of the rebar surface, as shown in Figure 2(b), a vacuum vise and rubber pad are used 
to secure the strain gauge firmly to the rebar. Once the epoxy has fully cured, the strain gauge 
functionality is tested using a micro-measurement data analyzer to verify that all gauges are 
operating correctly, as shown in Figure 2(c).  

 

 

 

(a) (b) (c) 
Figure 2. Smart sensor embedment into composite reinforcement: (a) creating a groove on the composite rebar for 
fiber optic sensor installation and protection; (b) applying two-component epoxy on fiber optic sensor; (c) testing the 

workability of rebar strain gauge. 
 
For the development of a smart sensor-based testbed for composite reinforcement in concrete, 
we conduct a three-point flexural test for a smart composite reinforced concrete beam, following 
the ASTM C293 and ACI 440.1R standards to evaluate the performance of sensors. The RC 
beam is configured with cross-sectional dimensions of 6 x 6 inches and a length of 20 inches. 
Two #3 rebars are positioned with a bottom cover depth of 1 inch, evenly spaced on the rebar 
chairs. A silica tube is utilized to protect the fiber optic sensor within the concrete, and a PVC tube 
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for the protection in the external parts. We select commercially available ready-mix concrete with 
a compressive strength of 5000 psi and pour it into a stainless-steel mold for curing. In addition 
to the fiber optic sensor and strain gauge on rebar, this study incorporates the Omega extra-long 
linear strain gauge for concrete. We select two measurement locations: one at the bottom center 
of the beam to capture tensile strain data during the experiment, and another at the corresponding 
position of the rebars on the front surface, which will provide strain measurements close to the 
rebars. During the flexural test, we use the fiber optic sensor interrogator and National Instrument 
data acquisition system (NI-9235) with LabView software to collect and monitor strain data along 
the rebars from fiber optic sensors and strain gauges in real-time, as shown in Figure 3(a). The 
distributed fiber optic sensors use the principle of light scatterings to measure strain distributions 
along with the composite reinforcement. The backscattering is an intrinsic property of optical 
media and is caused by the natural impurities and imperfections in the optical fiber core when a 
short laser pulse is beamed from one end and propagates along with the fiber. The interrogator 
can capture the changes in light properties and convert them to strain data. Due to the design of 
the Forney compression test machine, the middle section of the beam is obstructed. 
Consequently, Figure 3(b) displays the grid lines drawn on the beam surface to assist with 
cameras positioning and alignment, facilitating image preprocessing. After completing the grid 
lines, Figure 3(c) shows the composite reinforced concrete beam being moved to the Forney 
compression test machine. We also manually check the positions of the beam and the top anvil 
to ensure compliance with the standard, placing an additional leather compression shim between 
the top anvil and the beam top surface to eliminate any gap. In addition to the smart sensors, we 
utilize four types of cameras for this experiment: smart phones, digital image correlation cameras, 
drone and GoPro. Figure 3(d) exhibits a GoPro installed on the edge of beam for recording the 
entire experiment. Another two cables are connected to the strain gauge interrogator (NI-9235) 
for collecting and transmitting the data from strain gauges. Figure 3(e) shows the placement of a 
DIC camera at the front, together with two cellphone cameras on the sides. The cables are 
reorganized carefully to avoid shear rupture of the delicate fiber optic sensors. Figure 3(f) shows 
the final crack pattern on the beam, with a thin bending crack detected at the midspan and a wide 
shear crack near the bottom support. 
 

   

(a) (b) (c) 

   

(d) (e) (f) 
Figure 3. Three-point flexural testbed for composite reinforced concrete beam: (a) fiber optic sensor interrogator; (b) 
grid lines for image preprocessing; (c) transport test sample to test machine; (d) GoPro camara for video recording; 

(e) sensor and image data collection; (f) final crack propagation pattern. 
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2.1.2 Results from Smart Sensors 
We create two sample beams for the test, Beam 1 is equipped with four strain gauges positioned 
at the midspan and ends of the rebars, together with two embedded fiber optic sensors along the 
rebars. Beam 2 also features two fiber optic sensors embedded along the rebars, and two rebar 
strain gauges at the midspans. For the data collected from the fiber optic sensors, only a portion 
of the fiber optic sensor data reflect the strain of the composite rebars. Thus, it is essential to 
determine the appropriate range of data first. As shown in Figure 4, the strain data from the first 
0.8 m remains stable, indicating that only the data points after 0.8 m are useful, as highlighted in 
the red frame. Consequently, we consider the strain data from 0.8 m to 1.25 m as effective strain 
data for composite rebars, used for further analysis. 

    

(a) (b) (c) (d) 
Figure 4. Raw data from fiber optic sensors: (a) Composite rebar 1 in Beam 1; (b) Composite rebar 2 in Beam 1; (c) 

Composite rebar 1 in Beam 2; (d) Composite rebar 2 in Beam 2. 
 
We compare the strain gauge results of composite rebars at the midspan and both ends. Since 
the sensors usually work at relatively high frequencies to capture more data points within a given 
time, facilitating real-time monitoring, this high frequency can increase noise sensitivity and 
degrade data quality. To address this, we apply a Butterworth low-pass filter to smooth the signal 
data and attenuate high-frequency noise, ensuring a gradual transition but keep the important 
turning points. The sampling rate of the strain gauge is 100 Hz, hence the cutoff frequency is set 
to be 0.05 Hz. As the two composite rebars are symmetrically placed at the bottom of the 
composite reinforced concrete beam, the sensors on both rebars should yield similar results. 
Figure 5(a) displays a plot of the filtered strain gauge results of composite rebars at the midspan. 
The results from the two rebars are greatly matched, reflecting the bending cracks at 300 s and 
the shear crack at 620 s. Figure 5(b) – (d) presents the plots that split the entire experiment into 
three phases: from the beginning to the first crack, from the first crack to the second crack, and 
from the second crack to the end. The results confirm that the strain gauges function effectively, 
capturing the occurrence of cracks simultaneously. 

    

(a) (b) (c) (d) 
Figure 5. Strain gauge results of composite rebars at the midspan. (a) Entire experiment time; (b) From the beginning 
to the time of first crack; (c) From the time of the first crack to the second crack; (d) From the time of the second crack 

to the end. 
 
Additionally, we conduct a tensile test on the composite reinforcement solely to have a better 
understanding of its material properties and facilitate the numerical study of the effect of fiber-
reinforced polymers in composite rebar. The #3 rebar sample has a length of 8 in, is equipped 
with a strain gauge at the midspan to measure the tensile strain. The experiment is conducted 
using an INSTRON universal testing machine, which has a maximum load capacity of 50 kN. 
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From the tensile test results, the composite reinforcement exhibits linear material property, 
consistent with the rebar product specifications. 
We also test the compressive strength of concrete samples to use as input for finite element 
analysis (FEA), following the ASTM C39/C39M-21 standard. Three 4 in × 8 in cylindrical 
specimens are prepared and tested for their 8-day compressive strength, aligning with the curing 
age of 8 days for three-point flexural testing of smart composite reinforced beams. The applied 
loading rate during the tests was 0.27 MPa/s. Figure 6(a) illustrates a cylindrical concrete sample 
positions in a Forney automatic compression test machine. The pad cap system used in the tests 
consists of reusable pads housed within steel retainer rings, ensuring uniform load distribution on 
the ends of the concrete cylinders during compression testing. Figure 6(b) shows a fractured 
cylindrical concrete sample after compression. The measured compressive strengths of the 
samples are 35.52 MPa, 35.73 MPa, and 36.06 MPa, respectively. The variance among the 
results was 0.8%, which is within the acceptable range, confirming the reliability of the 
experimental data. Based on the test results, the average compressive strength of 35.77 MPa is 
selected for use in numerical studies. 
 

  
(a) (b) 

Figure 6. (a) The cylindrical concrete sample ready for test. (b) The fractured cylindrical concrete sample after 
compression. 

 
Overall, in Task 1, we successfully develop smart composite reinforcement in concrete beams 
and demonstrate the real-time monitoring of composite reinforcement. The results from two types 
of smart sensors align well with each other. And the strain data is validated by images and videos, 
recorded by different types of cameras, showing the accuracy and reliability of our smart sensor-
based testbed. The experiment results are integrated with the numerical results from Task 2, and 
used as input to train machine learning algorithms in Task 3. 
 
2.2 Task 2: Multi-scale multi-physics modeling with finite element analysis for the 
composite reinforcement mechanical and bonding performance 
In this task, we conduct three-dimensional (3D) finite element analysis (FEA) to simulate 
mechanical and bonding performance of composite reinforced concrete. The numerical modeling 
results in this task are used as complementary of the experimental and sensor data in Task 1 to 
establish a physics-informed database for machine learning algorithms in Task 2. After 
numerically validate the accuracy of our FEA with experimental results, we simulate the flexural 
test and pull-out test of the reinforcement-concrete system by considering various factors such 
as types of composite rebars, strength of concrete materials, and rebar configurations. We apply 
Abaqus for the numerical modeling of both flexural strength test and pull-out test. 
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2.2.1 Numerical Validation 
In this task, we computationally investigate the mechanical behaviors of smart composite 
reinforced concrete and validate our numerical models with sensor data in Task 1. To enhance 
computational efficiency, a quarter finite element model (FEM) is constructed in ABAQUS 
software, representing the experimental setup symmetrically. This approach reduces 
computational demand while maintaining the integrity of the analysis. All other configurations, 
including material properties, boundary conditions, and loading rate, are kept identical to those in 
the laboratory experiment to ensure consistency between experimental and numerical studies. 
For material property simulation, the concrete damage plasticity (CDP) model is employed for 
concrete, and the elasto-plasticity model is used for the composite reinforcement in nonlinear 
static analysis. Based on the compressive strength of concrete, which is tested to be 35.77 MPa, 
the elastic Young's modulus is calculated as 30,010.2 MPa using ACI 318-19 specifications, and 
the Poisson’s ratio is set to 0.2. The plasticity behavior of concrete is defined using the following 
parameters: a dilation angle of 30°, eccentricity of 0.1, a biaxial-to-uniaxial compressive strength 
ratio of 1.16, a tensile meridian ratio of 0.66, and a viscosity parameter of 0.001 [3]. Concrete 
compression and tensile behavior, as well as associated damage parameters, are calculated 
based on [4].  
For the numerical validation, the strain data in the composite reinforcement FEA are critical. To 
ensure accuracy, the mesh around the circumferential direction is refined to capture more precise 
results. Figures 7 shows the strain comparison between the distributed fiber optic sensor (DFOS), 
strain gauge, and FEA results. It should be noted that the noise in sensors make them difficult to 
directly compare with FEA results. A butterworth filter is employed to denoise the sensor data. 
Due to the significant different sampling rates of two sensors, customized filters are designed and 
applied to process their data separately. A notable observation is that the strain spike in FEA 
appears approximately 30 seconds earlier than the sensors capture it, suggesting that the initial 
flexural crack is detected earlier in the numerical model compared to the experiment. Despite this 
timing discrepancy, the FEA results show high overall agreement with the DFOS and strain gauge 
data before the flexural crack initiates in FEA and after the experimental flexural crack occurrence. 
This validation underscores the reliability of the FEA model in simulating the mechanical behavior 
of the composite reinforcement under flexural load. 
 

   
(a) (b) (c) 

Figure 7. Longitudinal strain at the midspan of reinforcement. (A) Whole phase – 600s, (b) First phase - 0 - 350 s, and 
(c) Second phase – 350 - 600s. 

 
Additionally, the distributed strain measurement capability of DFOS allows for real-time monitoring 
of longitudinal strain along the composite reinforcement. To further validate the numerical model, 
the strain distribution along the reinforcement is compared with FEA results at six time slots, as 
illustrated in Figure 8. During the uncracked state of the concrete, the strain in the composite 
reinforcement can be estimated theoretically [5]. Figure 8(a) and (b), which represent strain along 
the reinforcement at 100 seconds and 200 seconds, demonstrate that the numerical results are 
well-aligned with the DFOS experimental data and theoretical predictions. Once the flexural crack 
initiates, the theoretical method becomes inapplicable. Across all these time slots, the numerical 



TRANS-IPIC Final Report – Page# 
 

11 

results exhibit excellent agreement with the experimental data, further validating the accuracy and 
reliability of the FEA model in simulating composite reinforced concrete structure under varying 
conditions. 

  
(a) (b) 

Figure 8. The longitudinal strains on composite reinforcement. (a) 100s; (b) 200s. 
 

2.2.2 Flexural Test Analysis 
After validating numerical models, the FEA models are used to establish a comprehensive 
physics-informed database together with experimental results by considering different scenarios 
and factors in composite reinforced concrete systems. The database is utilized to train machine 
learning-based condition assessment algorithms in Task 3. In this task, we consider four concrete 
grades, including normal concrete with a compressive strength of 5,000 psi, concrete aligned with 
the experimental value of 5,188 psi (35.77 MPa), high-performance concrete (HPC) with a 
compressive strength of 10,000 psi, and ultra-high-performance concrete (UHPC) with a 
compressive strength of 22,000 psi. In addition to concrete grades, we also broaden the selection 
of composite rebar materials. We simulate four types of most widely used FRPs in the composite 
rebars: aramid FRP (AFRP), basalt FRP (BFRP), carbon FRP (CFRP), and glass FRP (GFRP) in 
our study. All simulated composite rebars have a uniform diameter of 3/8 inches and a length of 
18 inches. Furthermore, we investigate the effect of rebar ribs on the performance of composite 
reinforced concrete systems. The bond strength of ribbed GFRP rebar is primarily influenced by 
the mechanical interaction between the ribs and the surrounding concrete. As a result, the bond-
slip behavior of GFRP ribbed rebars can vary depending on the geometries of the ribs [6]. The 
geometries of the composite rebars are established according to the reference [7].  Figure 9 
provides detailed schematics of the specific geometries for AFRP, BFRP, CFRP, and GFRP 
rebars, along with FRPs without ribs. 

   
(a) (b) (c) 

  

 

(d) (f)  
Figure 9. Simulation details for different types of FRP: (a) AFRP, (b) BFRP, (c) CFRP, (d) GFRP, and (f) No ribs rebar. 
 
We model 36 cases evaluating the effects of concrete strength, rebar geometry, FRP material 
properties, and bonding conditions (embedded and cohesive) among four different types of FRP 
rebars: AFRP, BFRP, CFRP, and GFRP. The concrete strength ranges from 5,000 psi to 22,000 
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psi. This combination model is designed to predict how variations in these parameters influence 
the structural performance of composite reinforced concrete systems, offering a comprehensive 
understanding of their mechanical behavior. The comparison of different contact interaction 
models reveals distinct outcomes in simulating the rebar strain distribution and concrete crack 
behavior in composite reinforced concrete systems. Figure 10(b)-(e) illustrate that FEA prediction 
of the concrete damage pattern aligns closely with experimental crack propagation shown in 
Figure 10(a). 
 

 
(a) 

  
(b) (c) 

  
(d) (e) 

Figure 10. Comparison of numerical simulation results for composite reinforced concrete systems. (a) experimental 
crack propagation; (b) DAMAGET using embedded contact interactions; (c) Rebar strain distribution using embedded 

contact; (d) DAMAGET using cohesive behavior; (f) Rebar strain distribution using cohesive behavior. 
 
2.2.3 Pullout Test Analysis 
In this section, we focus on the numerical modeling of the bonding performance of composite 
reinforced concrete through the simulation of a pull-out test. For the pull-out test of the 
reinforcement-concrete system, simulations are conducted using SIMULIA-ABAQUS [8]. The 
pull-out simulation is conducted based on the specified composite rebar bonding strength test 
standard ASTM-D7913M [9]. We apply the same GFRP rebars as previous section with the 
material properties: Young's modulus of 46.88 GPa, Poisson's ratio of 0.3, and ultimate strength 
of 1,003 MPa. The plasticity parameters for the CDP model are specified as follows: a dilation 
angle of 30 degrees, eccentricity of 0.1, a ratio of biaxial compressive strength to uniaxial 
compressive strength of 1.16, and a ratio of the second stress invariant on the tensile meridian of 
0.66 [3]. Accurately representing rib geometry is essential, as optimal rib geometries can enhance 
bond performance [10]. The rib geometry is based on the actual measurements of the physical 
PINKBAR rebars. We calibrate our FEA model for the pull-out test by comparing the crack pattern 
using DAMAGET and bonding stress-displacement curve with the reference. As shown in Figure 
11(a), the FEA model exhibits splitting cracks, which is aligned with the experimental results 
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reported by Metelli & Plizzari [11]. Figure 11(b) shows a comparison of bonding stress-
displacement curve from our FEA and results from Seok et al. [12].  
 

 
 

(a) (b) 
Figure 11. Pull-out simulation results: (a) external cracking pattern; (b) comparison of bonding stress results. 

 
2.3 Task 3: AI-Driven condition assessment for composite reinforced concrete 
In this task, our main research objective is to develop a condition assessment framework for 
composite reinforced concrete. Sufficient data from FEA simulations and experiments from Tasks 
1 and 2 are employed to train machine learning and neural network models. We use two methods 
for condition assessment: the DAMAGET and the crack size. 
2.3.1 Condition Assessment using DAMAGET Data 
In this section, we train the machine learning (ML)-based condition assessment algorithms using 
the finite element results of the three-point flexural test. We define the condition based on the 
crack propagation data during the flexural test. DAMAGET stands for "Tensile Damage Initiation" 
which is used to describe a level at which a material starts to be damaged in tension [15]. 
Specifically, when the tensile stress of the material reaches the threshold defined by DAMAGET, 
Abaqus starts to calculate the damage variables and simulate the damage behavior of the 
material. Higher DAMAGET values indicate greater tensile damage in the elements. In this way, 
DAMAGET could be a metric for the condition prediction of composite beams. Thus, we train the 
DAMAGET data at different time steps generated from the FEA results in Task 2. 
For the three-point flexural test, the DAMAGET values at the surface of the beam across varying 
loading conditions are compiled into a dataset to train the machine learning model. We applied 
seven machine learning algorithms to train (80%) and test (20%) the FEA dataset. Figure 12. 
compare the performance of each ML algorithms. 
 

 
Figure 12. Performance of different machine learning algorithms in condition assessment from DAMAGET data 
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As shown in Figure 12, linear algorithms, for example, Ridge Regression, have poor performance 
in DAMAGET predictions. However, tree-like algorithms show a better effect, their goodness of fit 
is almost all above 0.9. Therefore, we choose random forest regression algorithm for condition 
assessment from DAMAGET data. Figure 13 shows the ML prediction results on crack patterns 
of the composite reinforced concrete system by comparing the DAMAGET distribution at t = 0.6 
s (or displacement = 3 mm) predicted by FEA and random forest regression algorithm. The 
condition index is obtained by normalizing the value of DAMAGET into 0 to 1. According to the 
comparison result, random forest regression provides a prediction with R2 = 0.96, MSE = 0.004, 
and MAE = 0.012. To some extent, R2 can be considered as the proportion of accuracy predicted 
by regression. R2 = 0.96 indicates the accuracy of the prediction.  
 

 
(a) 

 
(b) 

Figure 13. Comparison between FEA (a) and ML (b) results at t=0.6s. 
 
Similarly, we train machine learning-based condition assessment models using DAMAGET from 
FEA of the pull-out test. For the pull-out test, the DAMAGET values at different surfaces are 
compiled into a dataset to train the condition model. We applied five machine learning algorithms 
to train (80%) and test (20%) the FEA dataset of the bottom surface. Similar to the training from 
FEA of flexural test, random forest regression algorithm has the best performance on condition 
prediction since it has the highest R! and lowest MSE and MAE. After the random forest model is 
fully trained, it can be used to predict the condition index at different time steps. To illustrate crack 
propagation from the inner surface to the outer surface, we analyze a quarter of the pull-out model. 
The condition index is obtained by normalizing the value of DAMAGET into 0 to 1. To some extent, 
R2 can be considered as the proportion of accuracy predicted by regression. The lowest R2 still 
reaches 0.89, indicating the prediction is accurate. Figure 14 shows comparisons between the 
DAMAGET distribution from FEA and condition distribution from ML at the final time step.  
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(a) (b) 
Figure 14. Comparison between FEA simulation and ML prediction in 3D views of the pull-out test results: (a) 

machine learning prediction; (b) FEA simulation. 
 
2.3.2 Condition Assessment using Image Data 
In this task, we develop a rapid prediction method was proposed in the research which is based 
on convolutional neural network (CNN). The DAMAGET images obtained from FEM simulation is 
RGB format which means they are colorful. However, most of time, the actual crack images 
collected from the experiments are in gray and treated as binary images. Hence, we also test the 
performance of the model by training with binary DAMAGET images. Comparing with the FEM 
simulation, the CNN method only needs 0.61 second by using Intel® Core™ i7-10700 processor, 
which demonstrate a great potential for practical applications. We obtain the simulation and 
experiment results of smart composite reinforcement-concrete system. In this task, we develop a 
rapid prediction method was proposed in the research which is based on convolutional neural 
network (CNN). Figure 15 shows the basic steps of the proposed method. At this stage, we utilized 
the DAMAGET images as the input, and the output is the maximum strain of the rebar, which are 
collected from our FEA model. The DAMAGET images have same patten as the cracks in the 
experiment.  
 

 
Figure 15. Schematic of strain Prediction by CNN. 

Comparing with regression which uses all the data for training, prediction tasks divide data sets 
into training and test parts which are strictly disjoint. Hence, using this method, the model we 
obtain can demonstrate the ability to perform calculations by using unknown data (Generalization 
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Ability). In the study, we use 70% of data for model training and 30% data for performance test. 
Hence, the model we trained would be more practical and stronger. In this task, we adopt 
ResNet34 as the basic model because of its flexibility on large number of parameters and the 
special residual structure to better extract features from images. An essential requirement of 
prediction tasks is sufficient amount of data. Therefore, in the research, we generate a more 
precise FEA model which has a smaller time step. The amount of data used in the study expand 
tenfold, from 64 to 640 data points. We transform the colorful DANAGET images into binary 
images, shown in Figure 16. 
 

 
 

 Figure 16. Colorful DAMAGET and binary DAMAGT. 

After training, the rest 30% dataset is used to demonstrate the ability of model prediction. We also 
use the same setting to train a LeNet5 as a comparison. The prediction performance of ResNet34 
and LeNet5 is shown in Figure 17. The 𝑅! values of ResNet34 and LeNet5 are 0.99 and 0.90. 
ResNet34 shows superior performance in the conduction assessment from image data.  
 

 
     (a)                                                                                               (b) 

Figure 17. (a) prediction results of ResNet34; (b) prediction results of LeNet5. 
 
3. Educational outreach activities 
The PIs organized their research teams for the composite reinforced concrete beam testing day 
on September 13, 2024, shown in Figure 18. 
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Figure 18. Concrete beam test day, Sep 13, 2024. 

 
In addition, as shown in Figure 19, the PI and her graduate and undergraduate students have 
recently filmed a series of K-12 educational videos about sustainable construction materials and 
resilient infrastructure posted on YouTube as part of Purdue’s Superheroes of Science Series. 
 

 
Figure 19. K-12 education videos filmed by PI’s group 

 
4. Workforce development activities 
N/A 
 
5. Technology transfer actions 
N/A 
 
6. Papers that include TRANS-IPIC UTC in the acknowledgments section 
Our team submitted one journal paper “Computational Investigation and Spatial-Temporal Risk 
Assessment of Reinforced Concrete Failure with Metallic and Composite Reinforcements 
Transportation Research Board” to Buildings and is still under review. 
 
7. Presentations and posters of TRANS-IPIC funded research 

• Tao, C., & Junyi Duan, “Data-driven smart composite reinforcement for precast concrete”, 
TRANS-IPIC Monthly Research Webinar, September 23, 2024. 

• Tao, C., Guan, S, Duan, J., Lin, Y., & Yan, H. (2024). Data-Driven Smart Composite 
Reinforcement for Precast Concrete, U.S. Department of Transportation (USDOT) - 
University Transportation Center (UTC), Transportation Infrastructure Precast Innovation 
Center (TRANS-IPIC) Workshop, Chicago, IL, April 22, 2024.  
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8. Any other events or activities that highlights the work of TRANS-IPIC research that 
occurred at your university 
N/A 
 
9. Any mentions/references to TRANS-IPIC in the news or interviews from your research 

• Purdue Polytechnic News:  
https://polytechnic.purdue.edu/newsroom/polytechnic-research-awards-february-2024  

• Twitter of Purdue Institute for a Sustainable Future, shown in Figure 20. 

 
Figure 20. News on the twitter of Purdue Institute for a Sustainable Future 
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