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Executive Summary 
 
Bridge owners face difficult decisions on whether a bridge should be posted, repaired or 
replaced when prestressed concrete (PC) members have shear related cracks due to 
overloading. The decisions are currently made based on engineering judgment, costly load- 
testing or time consuming and complex modeling. Guidance is needed to interpret cracks and 
their impact on shear capacity to avoid overly conservative load ratings and to keep bridges 
operational, without compromising safety and economy. This project developed a reliable and 
efficient tool through machine learning (ML) to relate cracking to load history of bridge members. 
Shear strength was also predicted through ML as a reference point for load history. 
A database of 806 shear test results for PC beams is compiled and filtered from the literature to 
predict shear strength. A second database with 79 beams, which is a subset of the larger 
database, is compiled for load history predictions. The beams in this second database have 373 
data points with shear crack width measurements and corresponding loads (load history). The 
predictive features for shear strength were the product of prestressing steel area and its 
effective prestress (Aps fse), product of longitudinal tensile reinforcement area and its yield 
strength (Asl fyl), bottom flange width (bfb), prestressing depth (dp), ratio of the product of the 
shear reinforcement area and its yield strength to shear reinforcement spacing (Asv fyv /s), shear 
span to prestressing depth ratio (a/dp), web width (bw), square root of the compressive strength 
of concrete (√f′c), product of draped area of prestressing steel and sine angle of draping (Adraped 
sinα). Load history predictions had crack width (Wcr) as an additional predictive feature. Target 
features were shear strength or shear load history normalized by shear strength. 
Three algorithms have been trained using these datasets: Ordinary Linear Regression, Support 
Vector Regression, and Gaussian Process Regression (GPR). The GRP algorithm is selected 
after a k-fold cross-validation showed that the error in shear strength predictions was 
consistently smaller (15% with nine predictive features) with GPR compared to the errors with 
the other algorithms (19% to 25% with nine predictive features). The most influential predictive 
features were dp, Aps fse, Asv fyv / s, a/dp, and √f'c for shear strength predictions. These features 
were Wcr, and Asl fyl for load history predictions. 
Shear strength was also predicted using ACI 318-19 and the 9th edition of the AASHTO LRFD 
Bridge Design Specifications (BDS) as a comparison. The mean absolute percentage error of 
the ACI 318-19 and AASHTO LRFD BDS was 27%-40% and 39%, respectively, as compared to 
the 15% error for GPR. The higher errors in ACI 318-19 and AASHTO LRFD BDS predictions 
are partially explained by the intentional conservatism of design specifications. 
The application of GRP for evaluating beams was demonstrated on four beams that were 
excluded from the training dataset. The prediction error ranged between 2% and 35% for shear 
strength. The normalized load history prediction error ranged between 3% and 24% for these 
beams. The error was generally larger for beams for which the training dataset size was 
smaller, indicating that predictions can be improved with additional data. Finite element 
modeling was used to demonstrate how analyses can supplement ML predictions by providing 
information such as reinforcement strains that correspond to a given load. A web application 
was created for evaluating beams for given geometric properties, material properties, 
reinforcement details and crack width. 
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TRANS-IPIC Final Report: 

1. Statement of the Problem 
Bridge owners face difficult decisions on whether a bridge should be posted, repaired or 
replaced when prestressed concrete (PC) members have shear related cracks due to 
overloading. The decisions are currently made based on engineering judgment, costly 
load-testing or time consuming and complex modeling. Guidance is needed to interpret 
cracks and their impact on shear capacity to avoid overly conservative load ratings and 
to keep bridges operational, without compromising safety and economy. This project 
developed a reliable and efficient tool through machine learning (ML) to relate cracking 
to load history of bridge members. 

 
2. Research Plan 

The project is composed of the following tasks: 
 

Task 1. Compile and filter test data: Existing data in the literature on the shear behavior 
of PC beams is compiled and curated to create a comprehensive dataset. Existing 
databases are reviewed to obtain crack and design information. Any gaps in data are 
documented to plan for additional tests as needed. 

 
Task 2. Investigate ML algorithms: ML is used to train a supervised learning model. The 
model determines relationships between structural design parameters and shear 
capacity from historical data presented in a training dataset. Linear and non-linear ML 
models are explored. 

Task 3. Predict load history and capacity: Using a suitable ML algorithm, shear capacity 
and loading that corresponds to given crack widths are predicted. The input is geometric 
properties, material properties, reinforcement details and crack widths under increasing 
loading for PC beams for which test data is available. The models are fine-tuned using a 
cross-validation analysis. 

Task 4. Verify predictions: The predictions of ML are tested on four beams that will be 
selected from the existing databases but are not part of the ML training. Shear load 
history and capacity of the beams predicted with ML are compared to the ones obtained 
from testing. Two of these beams are also modeled using finite element analysis to 
further examine the condition of the beams at a given load. 

 
Task 5. Develop software for implementation: To facilitate the use of the evaluation 
method, a web application with a simple user interface is developed. 

 
Task 6: Write a final report: A report that documents project goals, methods and results 
is prepared. 

 
3. Research Progress and Results 

Task 1 [100% completed]: 
A database of 806 shear test results for PC beams is compiled as summarized in Table 
1. The majority of the data comes from the shear dataset collected by Nakamura, 
Avendaño et al. (2013). Additional filtering is applied to Nakamura, Avendaño et al. 
(2013) such that the filtered dataset only includes slender, normal-weight concrete, 
simply supported beams prestressed with bonded strands. Slender PC beams are 
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defined as those with an a/dp ≥ 2, where a is the shear span, and dp is the distance 
between the extreme compression fiber and centroid of the strands at midspan. This 
filtered dataset is further supplemented with recent experimental studies published since 
the compilation of the Nakamura, Avendaño et al. (2013) dataset as listed in Table 1. It 
should be noted that most of the shear test results published after 2013 focus on 
unconventional materials (e.g., concrete with steel or synthetic fibers) and are not 
included in our study. 

Table 1. Experimental dataset of PC beams collected to train ML algorithms. 
Reference Number of tests 

Shear dataset by Nakamura, Avendaño 
et al. (2013) with additional filtering 796 

De Wilder, Lava et al. (2015) 7 
Joshi, Thammishetti et al. (2018) 1 
Perumalla, Yogeendra et al. (2022) 2 
Total 806 

Each experimental sample consists of up to 9 predictive features that relate to geometry, 
material properties, reinforcement details and one target feature (experimental shear 
strength). These predictive features are: product of prestressing steel area and its 
effective prestress (Aps fse), product of longitudinal tensile reinforcement area and its yield 
strength (Asl fyl), bottom flange width (bfb), prestressing depth (dp), ratio of the product of 
the shear reinforcement area and its yield strength to shear reinforcement spacing (Asv 
fyv /s), shear span to prestressing depth ratio (a/dp), web width (bw), square root of the 
compressive strength of concrete (√𝑓′𝑐), product of draped area of prestressing steel 
and sine angle of draping (Adraped sinα). The experimental shear strength reported by the 
studies is assumed to include the self-weight of the beam unless stated otherwise by the 
studies. 

Figure 1 presents the relative frequency distributions for different parameters, and 
includes the minimum, mean, maximum, and standard deviation for each parameter. 
Relative frequency distribution provides a visual representation of the data’s spread and 
statistics and is also an indicator of the applicability range of the ML algorithms. For 
example, most beams in the dataset have dp and bw less than 20 inches and 6 inches, 
respectively. These values are small compared to bridge beams. Although this may 
hinder the accuracy of the ML algorithms to make predictions for larger members, the 
accuracy can be improved by retraining ML algorithms when new test data becomes 
available. 
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Figure 1. Relative frequency distribution of parameters for shear strength database. 
 

A second database with 79 beams, which is a subset of the larger database, is compiled 
for load history predictions. The beams in this second database have crack width 
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measurements (373 data points) and corresponding shear load, in addition to 
information on geometric properties, material properties, and reinforcement details. Each 
experimental sample consists of up to 10 predictive features and one target feature 
(measured shear load corresponding to a crack width normalized by the measured shear 
strength). These predictive features are Aps fse, Asl fyl, bfb, dp, Asv fyv /s, a/dp, bw, √𝑓′𝑐, 
Adraped sinα, and crack width (Wcr). Figure 2 presents the relative frequency distributions 
for different parameters of this smaller database. 

 

   

 

  

 

  

   

Figure 2. Relative frequency distribution of parameters for load history database. 
 

The crack width (Wcr) measurements with their corresponding shear that is normalized 
by the measured shear capacity (Vapplied/Vmax) are visualized in Figure 3. Although 
several trends could potentially fit this data, the results exhibit significant scatter, 
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indicating that crack width alone is insufficient as an indicator of the normalized shear. 
Therefore, beam material and geometric properties are considered as predictive features 
in addition to crack width to improve the prediction of normalized shear. 

 

Figure 3. Experimental crack width versus normalized shear in the collected database. 

Task 2 [100% completed]: 
The literature is reviewed for ML algorithms suitable for the objectives of this project. 
Ordinary linear regression (OLR), support vector regression (SVR) and Gaussian 
process regression (GPR) algorithms are selected to be investigated because they can 
be applied to relatively small datasets such as the ones available for PC beams and do 
not require high computational power to be trained. 

A k-fold cross-validation is performed, which shuffles the samples randomly, and divides 
the dataset into k subgroups with one subgroup selected for validation and the remaining 
subgroups for training. This process is repeated k times so that each subgroup is 
selected for validation. The mean absolute percentage error (MAPE), defined in 
Equation (1), is selected as the performance metric to evaluate the prediction accuracy. 
MAPEs obtained from the three algorithms predicting the shear strength were compared 
to determine the most suitable algorithm. 

 

∑|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒| 

MAPE =  𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

(1) 

The algorithms are trained to predict the shear strength of PC beams considering all 
possible combinations of the following features: Aps fse, Asl fyl, bfb, dp, Asv fyv /s, a/dp, bw, 
√𝑓′𝑐, and Adraped sinα. Figure 4 compares the shear strength prediction errors of the 
three algorithms for a given number of features included in a prediction. The reported 
errors are from the specific feature(s) that led to the lowest prediction errors. This error is 
calculated as the average of the errors from k-fold cross-validations for these specific 
features. The lowest MAPE of OLR, SVR, and GPR are 35%, 19%, and 15%, 
respectively, when 9 features are considered. Except for the prediction with only 1 
predictive feature (which is not realistic), GPR consistently had smaller MAPEs 
compared to the other algorithms. Therefore, GPR is selected as the most suitable 
algorithm for further analysis. 
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Figure 4. Comparison of shear strength prediction errors for the three algorithms considering 

specific number of features. 
 

Task 3 [100% completed]: 
The GPR algorithm is used to predict the shear strength given beam properties, and 
then to predict the normalized shear given beam properties and crack widths. MAPE is 
calculated for all possible combinations of features to identify the most influential 
features on shear strength of normalized shear. 

Features influential for shear strength predictions 
Figure 5 shows the feature(s) that yield the lowest shear strength error considering a 
specific number of features. The lowest MAPE of the shear strength prediction is also 
shown in the figure. For example, when the prediction is based on a single feature, dp 

yields the lowest error, 43%, compared to other combinations with a single feature, 
indicating that dp is the most influential feature. Figure 5 shows that MAPE does not 
decrease considerably (≤1%) when five or more features are included in the predictions. 
This indicates that adding features beyond dp, Aps fse, Asv fyv / s, a/dp, and √f'c provides no 
significant benefit to the predictions and the remaining features (bfb, bw, Asl fyl, and Adraped 

sinα) have minimal influence on reducing the error. The low predictive power of Asl fyl 

and Adraped sinα may be due to the fact that over 50% of the beams in the training dataset 
had no longitudinal reinforcement or draped strands. 
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* For no. of features between 2-6, there were other combinations of features that led to virtually identical 
error to the ones presented here. For example, when 2 features were considered, dp and bw led to nearly the 
same MAPE as dp and Aps fse. 

Figure 5. Features with the least shear strength prediction error using the GPR algorithm for a 
specific number of features. 

Even though the results presented in this section show that some features may have 
insignificant predictive power, training the GPR algorithm using all features does not 
require high computational power. Therefore, all nine features are considered for training 
the GPR algorithm. 

Features influential for load history predictions 
Figure 6 shows the feature(s) that yield the lowest normalized MAPE considering a 
specific number of features. Figure 6 shows that MAPE does not decrease considerably 
(≤1%) when two or more features are used in the predictions. This indicates that adding 
features beyond Wcr, and Asl fyl does not improve predictive performance. The remaining 
features (Aps fse, bfb, dp, Asv fyv / s, bw, √f'c, a/dp, and Adraped sinα) do not have a significant 
influence on the error. This can be explained due to the limited number of data points for 
beams with crack width measurements, which inadvertently allows the GPR algorithm to 
fit the small dataset effectively with a few predictive features. Since GPR predictions are 
prone to overfitting, all ten features are considered for training the GPR algorithm. 
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Figure 6. Features with the least normalized shear error using the GPR algorithm for a specific 

number of features. 

Comparison of ML and design code predictions for shear strength 
The shear strength of the beams in the dataset is also calculated per ACI 318-19 (ACI, 
2019) and AASHTO LRFD Bridge Design Specifications (BDS) (AASHTO, 2020) to 
compare the prediction error of the specifications to the ones obtained from the GPR 
algorithm. For ACI 318-19, the shear strength is calculated at a distance equal to (a – d) 
and (h/2) from the nearest support for beams under concentrated and distributed loads, 
respectively, where a is the shear span, d is the distance of reinforcement from the 
compression face, and h is the beam height. For AASHTO LRFD BDS 2020, the shear 
strength is calculated at a distance equal to (a – dv) and (dv) from the nearest support for 
beams under concentrated and distributed loads, respectively, where dv is the effective 
shear depth as defined by AASHTO LRFD BDS. 
The MAPE for the shear strength predictions by ACI 318-19’s simplified approach, ACI 
318-19’s detailed approach, and AASHTO LRFD BDS 2020 are 40%, 27%, and 39%, 
respectively. As previously shown in Figure 5 MAPE for the GRP algorithm is 15%. 
Although the GPR algorithm has a smaller error compared to the design codes, the 
higher error of the design specifications is partially due to their intentional conservatism 
to serve design purposes. 

Task 4 [100% completion]: 
Four beams were excluded from the training dataset for additional validation of the GPR 
algorithm. ML algorithms are used to predict the shear strength and normalized shear for 
these beams to demonstrate error for beams that were not seen by the algorithms and 
the use of the ML algorithms. Some of these beams were also modeled using finite 
element analysis to obtain supplementary information that ML predictions cannot provide 
(e.g., reinforcement strains). 

ML predictions for unseen beams 
The four beams were selected from the studies of De Wilder, Lava et al. (2015), Hanson 
and Hulsbos (1971), Lee, Cho et al. (2010), Maruyama and Rizkalla (1988) denoted as 
G3-1, PS1-0, C80P2S10, and B105, respectively. Of these four beams, two had shear 
reinforcement less than the minimum required by ACI 318-19. These types of beams 
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composed a very small part of the training dataset. The other two beams had more than 
the minimum required shear reinforcement. These types of beams composed a larger 
portion of the training dataset. Therefore, beams with well or poorly represented features 
could be identified. Of these two beams with more than the minimum required shear 
reinforcement, one had features well represented by the training dataset and the other 
had features poorly represented by the training dataset. A well-represented beam is 
defined as a beam that has half or more of its relevant features within the 25th and 75th 
percentiles of the dataset distribution. Values of the features for these beams are 
marked on Figure 1 and 2. 

Shear strength and normalized shear were predicted for these four beams using GPR. 
The results are summarized in Figure 7. It should be noted that Beam PS1-0 failed due 
to loss of bond between strands and concrete. Therefore, the measured shear strength 
of this beam was considered unavailable, and the shear strength was not predicted by 
ML. Overall, the ML had 3% to 35% error in shear strength predictions. The error was 
higher for beams with less than the minimum required shear reinforcement, possibly due 
to the much smaller number of beams in this group. 

ML predicted normalized shear corresponding to crack widths with an average error 
between 2% and 24%. The predictions for three out of four beams are within 11% and 
follow the measured data. The largest error (24%) is observed for a beam with less than 
the minimum required shear reinforcement, likely due to the limited number of similar 
samples in the dataset. For this beam, the ML captured the trend reasonably well but did 
not capture the magnitudes of normalized shear accurately. 
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Figure 7. Shear strength and normalized shear error for four sample beams excluded from the 

training dataset. 

Finite element analysis 
Once ML algorithms predict the normalized shear for a given crack width, finite element 
analysis (FEA) can be used to evaluate the condition of the beam (e.g., stresses and 
strains in steel and concrete) under the corresponding load. To illustrate the concept, 
beam “B105” was modeled using VecTor2 (Wong, Vecchio et al., 2013). VecTor2 utilizes 
modified compression field theory for nonlinear FEA of concrete membrane structures. 

Figure 8 shows the results of the FEA model for load-displacement response compared 
with the experimental results. The model is considered validated as the shear strength, 
the load at the onset of flexural cracking, and the load at the onset of web shear cracking 
are predicted within 5%, 6%, and 2% of the test results, respectively. In addition, similar 
crack patterns at the ultimate load from FEA and testing provided additional qualitative 
validation as also shown in Figure 8. 

The validated model is used to obtain additional information on beam condition. Figure 8 
shows the load at which the onset of stirrup yielding occurs and the extent of stirrup 
yielding at the ultimate load. For example, at a crack width of 0.7 mm, the normalized 
shear predicted using the GPR algorithm for beam “B105” is 80%. This corresponds to 

Asv < Asvmin 

Beam “G3-1” 
Error in shear strength = 35% 
Error in normalized shear = 5% 

Beam “PS1-0” 
Shear strength not predicted due to 
bond failure in testing. 
Error in normalized shear = 24% 

Asv ≥ Asvmin 

Beam “C80P2S10” Poorly represented 
Error in shear strength = 3% 
Error in normalized shear = 11% 

Beam “B105” Well represented 
Error in shear strength = 4% 
Error in normalized shear = 2% 
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190 kN of shear obtained from FEA. At this shear level, the FEA results show that 
stirrups do not yield. Therefore, the beam is considered repairable. 

 

Figure 8. Comparison of crack patterns and shear-displacement relationship from observations 
and FEA. 

 
Task 5 [100% completion]: 
A MATLAB user interface tool that facilitates the use of the ML algorithm in shear 
capacity predictions has been developed. Considering that MATLAB is a licensed 
software, a second web application tool has been created using Python, an open-source 
programming software. This web application provides free access to the tool without the 
need for a license and enables users to predict shear strength and normalized shear for 
PC beams. The link to the developed web application is the following: 
https://hassan-lasheen.onrender.com/. The research team will migrate this website to a 
buffalo.edu domain in the coming weeks before disseminating the link. 

Task 6 [100% completion]: 
This report documents project goals, methods, and results. 
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(b) 

4. Educational Outreach and Workforce Development 
• The research team hosted 30 high school students from across Western New York for 

Science Exploration Day on March 20, 2024 as shown in Figure 9a. Students were 
introduced to concrete bridges, potential uses of machine learning in bridge engineering 
and bridge evaluation during their visit. 

 

Figure 9. (a) Science Exploration Day, (b) An outreach event for high school 
students. 

 
• A presentation was delivered to the advisory board of the Institute of Bridge Engineering 

on April 30, 2024 virtually. There were 19 attendees at the meeting, which included 
engineers from transportation agencies, engineers from the industry, as well as faculty at 
the University at Buffalo. 

• The project results were presented at the Northeastern Peer Exchange for Resilient and 
Sustainable Bridges that took place in Buffalo, NY on August 7, 2024. The event was 
attended by engineers from departments of transportation, industry, consultants and 
material producers, as well as academics and students. 

• An outreach event with Women in Science and Technology was scheduled on August 
27, demonstrations were prepared to introduce female freshmen level students to bridge 
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engineering. Although no students chose to attend this event, the prepared 
demonstrations were used in other outreach activities. 

• A presentation was delivered September 24, 2024, in the graduate-level course 
“CIE580: Emerging Technologies in Bridge Engineering” at the Department of Civil, 
Structural and Environmental Engineering at UB. This course focuses on emerging 
technologies intended to enhance the analysis, design, construction, performance, and 
asset management of bridges and highway infrastructure. 

• An outreach event for high school students was held on November 12, 2024 as shown in 
Figure 9b. Demonstrations were held to introduce the students to bridge engineering, 
condition assessment, machine learning, behavior of concrete structures, and shear 
failure. 

• An undergraduate student was recruited and worked on the project during summer 
2024. She was exposed to concepts related to machine learning, shear behavior of 
reinforced concrete and PC beams, data analysis, user interfaces for web applications. 

 
5. Technology Transfer 

An online tool has been developed to facilitate technology transfer, as outlined in Task 5. 
 

6. Papers 
The following are the papers that acknowledge TRANS-IPIC in the acknowledgments section: 
• Hassan Lasheen, M., Okumus, P., Elhami-Khorasani, N. (2025). “Evaluation of structural 

cracking in reinforced and prestressed concrete bridges: A review and a machine 
learning-based framework.” Transportation Research Board (TRB) Annual Meeting, 
January 5-9, Washington, DC. 

• Two journal papers are under preparation: 
Hassan Lasheen, M., Okumus, P., Elhami-Khorasani, N., Chandola, V. “Predicting shear 
strength of prestressed concrete beams using machine learning.” In preparation. 
Hassan Lasheen, M., Okumus, P., Elhami-Khorasani, N., Chandola, V. “Data-driven 
prediction of shear crack-inducing loads for evaluating prestressed concrete beams” In 
preparation. 

 
7. Presentations and Posters 
• Hassan Lasheen, M., Okumus, P., Elhami Khorasani, N. (2024). “Predicting shear 

strength of prestressed concrete beams using machine learning”, poster presentation, 
TRB Annual Meeting, presented at the reception by Institute of Bridge Engineering, 
University at Buffalo, January 8. 

• Hassan Lasheen, M., Okumus, P., Elhami Khorasani, N. (2024) “Evaluating prestressed 
concrete beams with cracks using machine learning.”, presentation, TRANS-IPIC 
workshop, Rosemont, IL, April 22. 

• Okumus, P., Elhami Khorasani, N., Hassan Lasheen, M. (2024) “Evaluating prestressed 
concrete beams with cracks using machine learning.”, presentation, External Advisory 
Board Meeting of Institute of Bridge Engineering, University at Buffalo, the State 
University of New York, virtual, April 30. 

• Okumus, P., Elhami Khorasani, N. (2024), “Bridge engineering research at University at 
Buffalo.”, presentation, New York City DOT and University at Buffalo Meeting, New York 
City, NY, June 12. 
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• Hassan Lasheen, M., Okumus, P., Elhami Khorasani, N. (2024). “Machine learning for 
evaluating in-service concrete bridges.”, presentation, Northeastern Peer Exchange 
Resilient and Sustainable Bridges, Buffalo, NY, August 7. 

• Hassan Lasheen, M., Okumus, P., Elhami Khorasani, N. (2024) “Evaluating prestressed 
concrete beams with cracks using machine learning.”, presentation, TRANS-IPIC 
monthly webinar, August 22. 

8. Other Events 
Please see the list above in Sections 5 and 6. 
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