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Executive Summary: 
The federal government has enacted in 2021 a $1 trillion infrastructure bill that includes $110 
billion in additional funding for repairing and rebuilding aging and deteriorating US bridges 
and roadways. To maximize the cost-effectiveness of these investments, state DOTs are 
often confronted with a number of challenges including how to (a) select the most cost- 
effective construction method from a set of feasible alternatives including conventional cast- 
in-place, precast bridge elements, precast lateral slide, and precast self-propelled modular 
transporter; (b) accurately estimate bridge construction cost in the early design phase with 
limited data; (c) efficiently plan the transportation and installation of precast bridge 
components; and (d) optimize the impact of important construction decisions on multiple 
objectives including safety and construction cost. To address these challenges, a research 
project funded by the Transportation Infrastructure Precast Innovation Center (TRANS-IPIC) 
was conducted to develop machine learning and multi-objective optimization models to 
provide state DOTs with much-needed support to accurately estimate and compare 
construction costs of alternative bridge construction methods during the early design phase 
with limited data available and optimize the planning of these alternative bridge construction 
methods during the pre-construction phase to maximize safety of the traveling public and 
construction workers while minimizing the total cost of planned projects. This report presents 
the preliminary findings of this research project. 
The main tasks of this project include: (1) developing and comparing the performance of six 
novel machine learning models for predicting the construction cost of conventional and 
precast accelerated bridge construction methods during the early design phase; and (2) 
creating a novel multi-objective optimization model to optimize the planning of alternative 
bridge construction methods during the pre-construction phase to maximize safety of the 
traveling public and construction workers while minimizing the total cost of planned projects. 
The educational outreach activities of this project included training a PhD student and 
sharpening her skills in data analysis, machine learning, and optimization modeling; 
developing educational modules for construction engineering courses with over 120 annual 
students; and presenting preliminary research findings at the TRANS-IPIC first workshop and 
monthly webinar in 2024. The workforce development activities included attending the 
Transportation Infrastructure Precast Day (TIP Day) at UIUC on November 1, 2024, to 
explore advancements in precast construction and maintenance, and actively participating in 
online TRANS-IPIC monthly webinars. The outcome of this research project will be published 
in four papers including one accepted journal paper, a second journal paper that is currently 
under review, a third journal paper that will be submitted to a leading journal, and a 
conference paper that will be published in the proceedings of the ASCE Construction 
Research Congress in 2025. 
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Statement of Problem 
The aging and deteriorating conditions of US bridges prompted the federal government to 
enact a $1 trillion infrastructure bill in 2021 that includes $110 billion in additional funding for 
repairing and rebuilding US bridges and roadways (White House, 2022). State DOTs need to 
optimize the use of these investments to accomplish multiple objectives including maximizing 
durability, safety, sustainability, and mobility while minimizing life-cycle cost. This presents 
DOTs with a number of challenges including how to (1) select the most cost-effective bridge 
construction method from a set of feasible alternatives including conventional cast-in-place, 
precast bridge elements or systems, precast lateral slide, and precast self-propelled modular 
transporter, for each planned project based on its specific conditions and requirements; (2) 
accurately predict the cost of these alternative bridge construction methods during the early 
project phase with limited design data; (3) optimize the planning of transportation and onsite 
installation of PC elements during the pre-construction phase; and (4) quantify and optimize 
the impact of important construction planning decisions on multiple objectives including 
safety and life-cycle cost. 

Research Plan/Tasks 
Task 1: Develop Machine Learning Models for Estimating Cost of Conventional and 
Accelerated Bridge Construction Methods During Early Design Phase 
This task focused on developing and comparing the performance of six novel Machine 
Learning models for predicting the construction cost of conventional construction and ABC 
methods during the early design phase. The six ML models were developed in four main 
phases that focus on (1) collecting available bridge construction data for conventional and 
accelerated bridge construction methods; (2) preprocessing the collected bridge construction 
data to identify, classify, clean, transform, and split all predicted and predictor variables data 
into training and testing sets; (3) developing six novel ML models for estimating bridge 
construction cost using Ordinary Least Square (OLS), LASSO Regression (LR), Ridge 
Regression (RR), Random Forest (RF), Gradient Boosting (GB), and Extreme Gradient 
Boosting (XGBoost) using the training set; and (4) evaluating and validating the performance 
of the developed ML models, as shown in Figure 1. 

 

Figure 1. Development phases of machine learning models. 
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1.1  Bridge Data Collection 
This phase developed a dataset that was used to train and evaluate the performance of the 
machine learning models for estimating the construction cost of alternative bridge 
construction methods during the early design phase. A total of 413 bridges that were 
constructed between 1992 and 2024 across 29 US states were collected and analyzed 
(FHWA 2013; FIU 2024; IDOT 2024a; b; UDOT 2024; VTRANS 2017). The dataset includes 
202 conventional bridge projects, 168 prefabricated bridge elements projects, 33 lateral slide 
bridge projects, and 10 self-propelled modular transporter bridge projects, as shown in Table 
1. All related bridge data that were reported to have significant impact on bridge construction 
cost were collected such as bridge length, width, number of spans, maximum span length, 
average daily traffic, as shown in Figure 1 (Essegbey 2021; Hadi et al. 2016; Juszczyk 2020; 
Yang and Qiu 2020a). The collected construction cost data was adjusted to 2024 and 
national average to account for variations in construction year and location using the 2024 
RSMeans as shown in Eq. (1) and (2) (Doheny 2023). These adjusted unit cost for the 413 
bridge projects were then utilized to calculate the average cost per square foot for each 
alternative bridge construction method, as shown in Table 1. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑦𝑒𝑎𝑟 𝑐𝑜𝑠𝑡 ($) = 𝐵𝑟𝑖𝑑𝑔𝑒 𝐶𝑜𝑠𝑡 𝑖𝑛 𝑌𝑒𝑎𝑟 𝐴 × 
𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑌𝑒𝑎𝑟

 
𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑌𝑒𝑎𝑟 𝐴 

𝐶𝑜𝑠𝑡 𝑖𝑛 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐴 = 𝐶𝑜𝑠𝑡 𝑖𝑛 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐵 × 
𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐴

 
𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐵 

 
(1) 

 
 

(2) 
 
 

 
Table 1. Statistical analysis of unit costs of alternative bridge construction methods. 

Bridge Construction 
Method 

Dataset 
(projects) 

Avg. Unit 
Cost ($/sf) 

Min. Unit 
Cost ($/sf) 

Max. Unit 
Cost ($/sf) 

Standard 
Deviation (ft.) 

Conventional Staged 202 346.9 124.8 849.6 116.1 
PBE 168 370.7 113.5 856.7 546.1 

Lateral Slide 33 1031.3 239.5 1965.4 154.0 
SPMT 10 1166.1 321.0 1927.1 681.7 

 
1.2  Data Preprocessing 
This phase focused on preprocessing the raw data that was collected in the previous phase 
for alternative bridge construction methods to ensure its quality and usability. This was 
accomplished in five main steps that focused on (1) identifying predicted and predictor 
variables, (2) categorizing predictor variables to categorical and numerical variables, (3) 
cleaning collected data by detecting and deleting outliers, (4) transforming predictor variables 
to enhance their performance in the machine learning models, and (5) dividing the 
transformed data into training and testing sets, as shown in Figure 1. 
First, the square foot cost of bridge construction projects was selected as the predicted 
variable, as it enables the estimation of total bridge costs using bridge length and width, 
which are readily available during the early design phase. Twelve predictor variables were 
identified to have an impact on bridge construction cost including construction method, 
bridge width, bridge length, number of lanes, number of spans, maximum span length, total 
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project length, average daily traffic (ADT), design type, location type, deck material, and 
mobility impact category (MIC), as shown in Table 2. 

 
 Table 2. Types and values for predictor variables.  

Predictor Variable Type Value 
Total Project Length Numerical Total project length in feet 

Bridge Length Numerical Bridge length in feet 
Bridge Width Numerical Bridge width in feet 

Maximum Span length 

Average Daily Traffic (ADT) 

Numerical Max span length of the bridge in feet 

Categorical Less than 1,000, 5,000, 10,000, 20,000, 50,000, 
 
 
 
 
 
 
 
 

Mobility Impact Categories 
(MIC) Categorical (within 2 weeks), Tier 4 (within a month), Tier 5 

(within 3 months), Tier 6 (longer than 3 months), or 
 7 (for conventional staged projects)  

 
Second, the identified twelve predictor variables were categorized in two main groups based 
on their types: numerical and categorical. The numerical variables represent all variables that 
have measurable quantity including bridge length, bridge width, project length, and maximum 
span length, as shown in Table 3. The categorical variables represent all variables that can 
have one of several possible values such as urban or rural location, new or replacement 
bridge, and steel or concrete beam, as shown in Table 3Table 2. A statistical analysis was 
conducted on the collected bridge data for these twelve predictor variables to evaluate the 
comprehensiveness and distribution of the collected dataset, as shown in Table 3 and Figure 
2. The flow distribution of bridge construction methods and their subdivision based on the 
values of each categorical variable is illustrated in Figure 3. For example, the number of 
prefabricated bridge projects in the dataset is split almost equally between urban (82 
projects) and rural (86 projects) locations, as shown in Figure 3 (a). The same figure shows 
that the dataset includes more conventional bridge projects in urban locations (134 projects) 
than in rural areas (68 projects). Conversely, the dataset includes more lateral slide and 
SPMT bridge projects in rural locations, with 19 and 6 projects respectively, compared to 14 
and 4 projects in urban areas, as shown in Figure 3 (a). 

 Table 3. Statistical analysis of numerical predictor variables.  
Numerical Variable Average (ft.) Min (ft.) Max (ft.) Standard Deviation (ft.) 

Bridge Length 231.90 21.70 3375.00 339.3 
Bridge Width 43.90 8.50 359.50 26.8 

Maximum Span Length 81.00 10.00 727.00 58.8 
Project Length 819.40 21.70 10261.20 1,036.40 

 
Number of Lanes 

 
Categorical 

100,000, or more than 100,000 vehicles/day 
1, 2, 3, 4, or more than 4 lanes 

Number of Spans Categorical 1, 2, 3, 4, or more than 4 spans 
Beam Material Categorical Concrete or steel 
Design Type Categorical Beam, slab, girder, arch, truss, or culvert. 

Location Type Categorical Urban or rural 
Tier 1 (within 1 day), Tier 2 (within 3 days), Tier 3 
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Location Type 

   
 

Figure 2. Variability of collected categorical predictor variables by bridge construction methods 
 
 
 

 
(a) Distribution of location type among 

bridge construction methods 
 

(d) Distribution of number of spans among 
bridge construction methods 

(b) Distribution of ADT among bridge 
construction methods 

 

(e) Distribution of design type among bridge 
construction methods 

(c) Distribution of MIC among bridge 
construction methods 

 

(f) Distribution of number of lanes among 
bridge construction methods 

Figure 3. Sankey diagrams of categorical variables by bridge construction methods 

Third, the collected dataset was cleaned by detecting and deleting outliers to enhance model 
performance by reducing noise and minimizing errors caused by these outliers. Frequency 
distribution histograms were created for each numerical variable to detect outliers, as shown 
in Figure 4. This cleaning step resulted in the exclusion of 16 outlier bridge projects including 
3 conventional construction, 11 prefabricated, and 2 lateral slide bridge projects. 
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Figure 4. Identifying outliers using histograms of numerical variables 

Fourth, the categorical and numerical variables were transformed to enhance the 
performance of the machine learning models using the using min–max normalization 
technique for all numerical variables, and the one hot encoding method for all categorical 
variables (Daly et al. 2016; Hardy 1993). 
Fifth, the transformed data were divided into training and testing sets that include 80% and 
20% of the cleaned dataset of 397 historical bridge projects, respectively. The stratified train- 
test split method was utilized to maintain the proportions of bridge projects for each 
construction method in the original dataset in both the training and testing sets. The training 
set was utilized to train the machine learning models and evaluate their performance, while 
the testing set was utilized to validate their performance on unseen data. 
1.3  Models Development 
This phase focused on the development of six ML models that can be used to estimate the 
construction cost of conventional and precast accelerated bridge construction methods 
during the early design phase. These models were developed using six ML algorithms that 
are widely used for similar cost prediction problems including Ordinary Least Square (OLS), 
LASSO Regression (LR), Ridge Regression (RR), Random Forest (RF), Gradient Boosting 
(GB), and Extreme Gradient Boosting (XGBoost). Each model was trained using the training 
set identified in the previous phase. 
To ensure optimal model performance, the hyperparameters of each ML model were tuned 
using the Genetic Algorithm (GA) optimization technique (Shanthi and Chethan 2023). The 
GA optimization process aimed to maximize the R² value of each model. The GA parameters 
were set to be population size of 100, total generation of 1000, mutation rate of 0.2, and 
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cross-over rate of 0.6. The optimized hyperparameters values, shown in Table 4, were then 
used to develop the machine learning models that are described in the following sections. 

Table 4. Optimal hyperparameters of developed machine learning models 
 

Machine Learning 
Model 

Hyperparameters Range Optimal Hyperparameters of 
Best Performing Model 

LASSO Regression alpha (L1Norm) = 0.01 - 100 alpha (L1Norm) = 0.20 
Ridge Regression alpha (L2Norm) = 0.01 - 100 alpha (L2Norm) = 4.40 

Random Forest 
 
 
 

Gradient Boosting 
 
 
 
 
 

XGBoost 

estimator = 90-100 
max features = 2-38 
max depth = 2-38 
estimator = 90-100 

learning rate = 0.1 - 0.990 
max depth = 2 - 38 

sub sample = 0.01 - 0.99 
alpha = 0-1 

estimator = 90-100 
learning rate = 0.001 - 0.990 

max depth = 2 - 38 
sub sample = 0.01 - 0.99 

colsample by tree = 0.5 - 1.0 
reg lambda = 1 - 30 
reg alpha = 0 - 30 

estimator = 100 
max features = 13 
max depth = 16 
estimator = 100 

learning rate = 0.25 
max depth = 30 

sub sample = 0.82 
alpha = 0.66 

estimator = 100 
learning rate = 0.56 

max depth = 17 
sub sample = 0.65 

colsample by tree = 0.89 
reg lambda = 5.12 
reg alpha = 0.19 

 

 
1.4  Models Evaluation and Validation 
The performance of the developed machine learning models was evaluated and validated 
using the training and testing sets, respectively. First, the performance of the developed 
models was evaluated using the training set by analyzing their coefficient of determination 
(R2) values. This analysis indicates that the GB and XGBoost models acheived the highest 
performance with R2 values of 99.99% and 99.97%, respectively, while the R2 values for the 
other ML models ranged between 55.85% to 90.3%, as shown in Table 5. 
Second, the performance of the developed ML models was validated using the testing set by 
comparing their predicted values to the true values, as shown in Figure 6. This validation 
analysis was conducted using four primary metrics: (1) mean absolute percentage error 
(MAPE), (2) mean absolute error (MAE), (3) median absolute error (Med AE), and (4) root 
mean squared error (RMSE). The results show that (a) the XGBoost model outperformed the 
other models in the three metrics of mean absolute percentage error (𝑀𝐴𝑃𝐸 = 13.90%), 
mean absolute error (𝑀𝐴𝐸 = $64.28/sf), and median absolute error (𝑀ed. 𝐴𝐸 = $29.94/sf); 
and (b) GB model outperformed the other models in the fourth metric of root mean square 
error (RMSE = $113.01/sf), as shown in Table 5, Figure 5, and Figure 6. 
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 Table 5. Performance of developed machine learning predictive models.  

Developed 
ML 

Training Dataset Testing Dataset 
 

  

 

Algorithms R2
 MAPE MAE Med AE RMSE 

 
 
 
 
 
 
 
 
 
 

 

 
Figure 5. Performance of developed ML models using testing dataset. 

 (%) (%) ($/sf) ($/sf) ($/sf) 
OLS 55.82 21.34 123.62 52.98 226.82 
LR 56.00 20.54 116.53 51.97 214.89 
RR 54.85 20.65 118.50 54.81 215.19 

RFR 90.37 19.46 93.40 54.27 138.03 
GB 99.99 16.99 75.18 57.59 113.01 

XGBoost 99.97 13.90 65.23 29.94 120.29 
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Figure 6. Actual and predicted unit cost for developed ML models using testing set 
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!" 

Task 2: Create Novel Multi-Objective Optimization Model to Optimize the planning of 
Conventional and Accelerated Bridge Construction Projects 
The second task focuses on developing novel multi-objective optimization model to optimize 
the planning of conventional construction and ABC methods during the pre-construction 
phase to maximize safety of the traveling public and construction workers while minimizing 
the total cost of planned projects. The model is developed in four main phases that focus on 
(i) identifying all decision variables that have a significant impact on the safety and cost of 
planned bridge projects such as delivery date of PC bridge components to the construction 
site, size and equipment of each construction crew, use of overtime hours and/or multiple 
shifts for construction crews, and PC transportation method from prefabrication plant to site; 
(ii) formulating optimization objectives and constraints; (iii) implementing the optimization 
model; and (iv) analyzing a case study to illustrate the use of the developed optimization 
model, as shown in Figure 7. 

 

Figure 7. Development phases of the multi-objective optimization model 

2.1  Decision Variables 
This phase focused on identifying relevant pre-construction planning decisions that have an 
impact on the cost and safety of planned bridge projects. This includes the decisions of 
selecting from a feasible set of alternatives: an onsite installation crew (𝑐!"), a transportation 
method (𝑟#), and a delivery date (𝑑# ), as shown in Figure 7. It should be noted that the 

!" !" 

installation crew decision variable (𝑐!") represents a combined selection of crew size (m), 

equipment type (q), and overtime policy (p), as shown in Figure 7. Similarly, the 
transportation decision variable (𝑟#) represents a combined selection of transportation type 
(y), size (s), and capacity (p), as shown in Figure 7. 
2.2  Model Formulation 
The main objectives of the developed multi-objective optimization model are to (a) maximize 
safety of both the travelling public and construction workers by minimizing work zone fatality 
and injury crashes using safety performance functions (Schattler et al., 2020), as shown in 
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Eq. (3) and (4); and (b) minimize total construction cost of planned bridge project that 
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includes off-site fabrication of PC elements, on-site construction costs as well as the 
transportation, on-site storage, and assembly of PC elements, as shown in Eq. (5). 

" 

 

 
(3) 

𝑀𝑖𝑛 % 𝑁 ∗ 𝐶! ∗ 𝑈𝐶! 

!#$ 

𝑁 = 𝑒%&.()* ∗ 𝐷(.*() ∗ 𝐿(.+$& ∗ 𝐴𝐷𝑇(.),- ∗ 𝑒%(.((()(/!∗ /") (4) 

 
 
 

Where, 𝑁 is predicted number of work zone crashes that can be estimated using Eq. (4), 𝐶$ 
is percentage of crash type t, t is type of crash including fatal, injury, and property damage, 
𝑈𝐶$ is unit cost of crash type t, D is work zone duration in days, L is work zone length with 
detour in miles, ADT is average daily traffic, S1 is speed limit in work zone under normal 
condition, and S2 is speed limit in work zone during construction. 

𝑀𝑖𝑛 % 𝐹𝐶 + 𝑇𝐶 + 𝑆𝐶 + 𝐴𝐶+ 𝑂𝐶 (5) 

 
 

Where 𝐹𝐶 is fabrication cost of all PC bridge components, 𝑇𝐶 is transportation cost of all PC 
bridge components from fabrication plant to site, 𝑆𝐶 is onsite storage cost of all bridge 
components, 𝐴𝐶 is assembly cost of all PC bridge components, and 𝑂𝐶 is onsite cost of all 
bridge components that are not prefabricated. 
2.3  Model Implementation 
The optimization model will be implemented using multi-objective genetic algorithms due to 
their ability to efficiently explore and identify near optimal solutions in problems with large 
search spaces within a reasonable computational timeframe (Abdallah and El-Rayes 2016; 
Alotaibi et al.2021; Altuwaim and El-Rayes 2021). The model will be implemented using the 
nondominated sorting genetic algorithms II (NSGA-II) (Deb et al. 2002) and executed with 
the Distributed Evolutionary Algorithms (DEAP) (Fortin et al. 2012) Python library 
(vanRossum 2017). The research work in this phase is still ongoing. 
2.4  Case study 
This phase will focus on analyzing a case study to demonstrate the capability of the 
developed multi-optimization model in the previous phase in optimizing the planning of 
conventional construction and precast accelerated bridge construction methods during the 
pre-construction phase to maximize safety of traveling public and construction workers while 
minimizing the construction cost of planned projects. This phase is planned to start after the 
completion of the model implementation phase. 

Educational Outreach Activities 
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The educational outreach activities of this research project include: (1) enhancing the 
analytical and research skills of a female PhD student, the lead research assistant, in 
collecting and analyzing bridge construction data from various databases as well as 
developing machine learning and multi-objective optimization models; (2) developing 
educational modules for two construction engineering courses (CEE 421 and CEE 526), that 
the PIs teach with annual enrollments of more than 120 students; and (3) presenting 
preliminary research findings at the first annual TRANS-IPIC workshop, held at the Big Ten 
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Office and Conference Center in Rosemont, IL, in April 2024, and during the TRANS-IPIC 
monthly virtual webinar in August 2024, as shown in Figure 8. 

 

  
(a) The research team presenting their preliminary 

findings at the first TRANS-IPIC workshop 
(b) The research team with a group of other 

researchers in the workshop 
 

Figure 8. Research team activities in the first annual TRANS-IPIC workshop in Rosemont, IL 

Workforce Development Activities 
The research team attended the Transportation Infrastructure Precast Day (TIP Day) that 
was held at the University of Illinois at Urbana-Champaign (UIUC) on November 1st, 2024, to 
learn about cutting-edge research for infrastructure PC construction, implementation, and 
maintenance process. Additionally, the research team actively participated in the TRANS- 
IPIC Monthly Webinars that were held online. 

Technology Transfer Actions 
The research team developed (1) six different machine learning models that provide the 
capability of accurately estimating the construction cost of alternative bridge construction 
methods including conventional and precast concrete accelerated bridge construction 
methods during the early design phase; and (2) a multi-objective optimization model for 
optimizing construction decisions of PC bridges. The research team will develop a plan for 
sharing the machine learning and optimization models that were created in this research 
project. Furthermore, the research team plans to develop a user-friendly interface in the 
second round of funding, if awarded, to facilitate the use of the developed machine learning 
and optimization models and support their technology transfer. 

Papers that Include TRANS-IPIC UTC in the Acknowledgments 
Section 

The outcome of this research project will be published in four papers that include one 
accepted journal paper, a second journal paper that is currently under review, a third journal 
paper that will be submitted to a leading journal, and a conference paper that will be 
published in the proceedings of the ASCE Construction Research Congress, as follows: 
1. First Journal Paper (Accepted): Helaly, H., El-Rayes, K., Ignacio, E.J., and Joan, H. J. 

(September 2024) “Comparison of Machine Learning Algorithms for Estimating Cost of 
Conventional and Accelerated Bridge Construction Methods During Early Design Phase.” 
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Accepted for publication in the Journal of Construction Engineering and Management, 
ASCE on September 30, 2024. 

2. Second Journal Paper (Under 2nd Review): Helaly, H., El-Rayes, K., and Ignacio, E.J. 
(Under 2nd Review) “Predictive Models to Estimate Construction and Life Cycle Cost of 
Conventional and Precast Bridges During Early Design Phase.” Submitted to Canadian 
Journal of Civil Engineering, CSCE, for 2nd Review on September 10, 2024. 

3. Third Journal Paper (In Progress): Helaly, H., El-Rayes, K., and Ignacio, E.J. (In 
progress) “Optimizing the Planning of Conventional and Accelerated Bridge Construction 
Projects during the Pre-Construction Phase.” 

4. Conference Paper (Submitted): Helaly, H., El-Rayes, K., and Ignacio, E.J. (July 2025) 
“Machine Learning Models for Estimating Cost of Conventional and Accelerated Bridge 
Construction Methods.” Abstract submitted to the ASCE Construction Research 
Congress (CRC) 2025, Modular and Office Construction Summit (MOC) 2025, November 
2024. 

Presentations and Posters of TRANS-IPIC Funded Research 
The research team presented their preliminary research findings at the first annual TRANS- 
IPIC workshop, held at the Big Ten Office and Conference Center in Rosemont, IL, in April 
2024 (see Figure 9), and during the TRANS-IPIC monthly online webinar in August 2024, as 
follows: 
• El-Rayes, K., Ignacio, E.J., Andrawes, B., and Helaly, H., April 2024. “Optimizing the 
Planning of Precast Concrete Bridge Construction Methods to Maximize Durability, Safety, 
and Sustainability.” Poster presented at the first Annual TRANS-IPIC Workshop, Rosemont, 
IL. 
• El-Rayes, K., Ignacio, E.J., Andrawes, B., and Helaly, H., August 2024. “Optimizing the 
Planning of Precast Concrete Bridge Construction Methods to Maximize Durability, Safety, 
and Sustainability.” Presentation at the Monthly TRANS-IPIC Virtual Webinar. 
https://mediaspace.illinois.edu/media/t/1_58gfc5g2 
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Figure 9. Poster presenting preliminary results of this TRANS-IPIC research project (El-Rayes 

et al., 2024) 

Any other Events or Activities that Highlights the Work of TRANS-IPIC 
Research that Occurred at Your University 

None 

Any Mentions/References to TRANS-IPIC in News or Interviews from 
Your Research 

None 
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