

Illinois Center for Transportation University of Illinois at Urbana-Champaign

Pavement Density Using Dielectric Mapping

12/11/2024

Yihan Chen Lama Abufares* Imad L. Al-Qadi

"Where Excellence and Transportation Meet"

Asphalt Concrete Density

- AC Mat density is an AQC* in all US states
- Contractors are subjected to incentives/disincentives based on AQCs

State	Acceptance Quality Characteristics (AQCs)*	
Illinois	Air voids, VMA, Mat density	
New Jersey	Mat density, Thickness, Ride quality	
Pennsylvania	Asphalt content, Percent passing the #200 sieve, Percent passing primary control sieve, Mat density	
Maryland	Air voids, Mat density	
Minnesota	Air voids, Asphalt content, Aggregate gradation, Asphalt film thickness, Mat density, Confined edge density, Unsupported edge density	
:		

Illinois Center for Transportation University of Illinois at Urbana-Champaign

- Compaction and quality control are two processes
- Sparse checks at random locations by extracting cores or nuclear gauge readings
- Too late for any fixes...

- Compaction and quality control are merged
- Checking all spots
- Constant feedback for roller operator during construction
- Fix on the go!

Illinois Center for Transportation University of Illinois at Urbana-Champaign

Density Prediction

GPR Signal Processing

- **GPR** signals are affected by several factors
- **Processing is required to correct GPR signals**

* Zhao et al., 2018; ^ Cao and Al-Qadi, 2021; # Abufares et al., 2025; + Leng et al., 2011

Validation (Last Year)

- Six different SMA sections
- Example section with Traprock aggregates
- Environmental and cost benefits when avoiding overcompaction

Middle

Extra passes!

6

100

98

96

94

92

90

88

86

84

82

80

0

% Compaction

Roller passes

Dielectric Profiling System

- DPS is a 3-antenna GPR system mounted on a pushcart
- DPS may be used after compaction
- Lab-fabricated pills are used to develop a linear calibration curve

*LDMS: Laboratory dielectric measurement system

I-57 Field Project

- Pay for Performance project (PFP)
- Accepted density range is 90-98%
- Construction was done by Iroquois Paving Co. the NB right lane near Gilman, IL
- 2.25in IL19.0 binder lift (with 17% FRAP) on top of a concrete surface
- Two rollers in echelon mode: GPR roller was driving on the left sub-lane
- DPS measurements were obtained after compaction
- Both nuclear gauge and core data are available at specific locations

Data Analysis – Section 3

Roller-Mounted GPR

Method	Spot %compaction
Roller-mounted GPR	93.9
Pushcart DPS	95.6
Nuclear gauge	93.0
Core	92.9

South Holland Field Project

- 154th St in South Holland, IL (4 lanes)
- 2.25in N50 binder lift on top of concrete
- Construction was on the two outer lanes
- Accepted density range is 93-97.4%
- GPR roller was the finishing roller (third roller), moving on left and right sub-lanes
- DPS measurements were obtained after compaction
- Both nuclear gauge and core data are available at specific locations

Data Analysis – Section 8

Roller-Mounted GPR

Some moisture remaining

Progression Curve

Method	Spot %compaction
Roller-mounted GPR (L)	95.3
Pushcart DPS (L)	93.4
Nuclear gauge (L)	95.4
Core (L)	94.9

Moisture

Summary

- Non-destructive monitoring of asphalt density during construction is important for contractors and agencies
- More validation of our roller-mounted GPR was done on different projects (parking lot, rural road, and interstate)
- Our approach was compared to the commercial DPS approach

Acknowledgement

- FHWA Accelerating Market Readiness Program: Jeffery Zaharewicz and Ryan Buck
- IDOT: LaDonna Rowden, John Senger, and Chad Nelson
- Gallagher Asphalt (Brian Gallagher and Steve Rubio), Open Roads (Jeff Kern and John Miller), and Iroquois Paving (Jason McKee and Nikki)
- Research engineers: Greg Renshaw, Mohsen Motlagh and Uthman Mohammad Ali
- ICT students: Qingqing Cao, Amir Ibrahim, Zehui Zhu, Javier Garcia Mainieri, Mohammad Fakhreddine, Egemen Okte, Aravind Ramakrishnan, Gafar Sulaiman, Aditya Singh, Akash Bajaj, and Alex Sandoval Campos

THANK YOU Any Questions?

Presenter: Lama Abufares Email: Iamaha2@illinois.edu

Illinois Center for Transportation