PAVEMENT FRICTION AND SAFETY PERFORMANCE

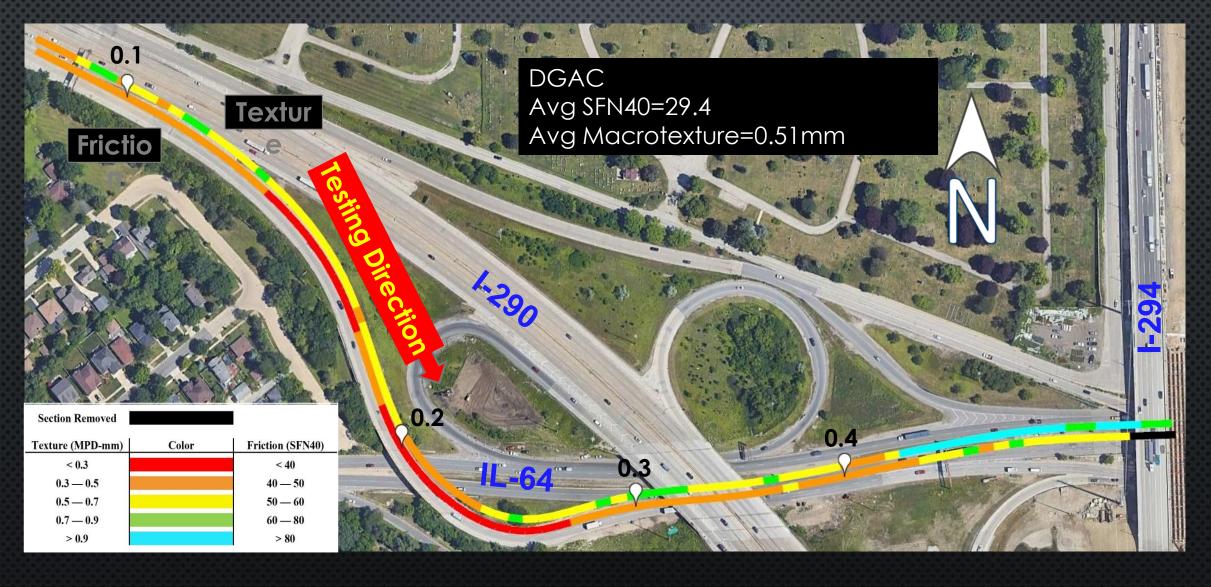
PRISCILLA TOBIAS, PE, RSP2IB ARORA AND ASSOCIATES, P.C. PTOBIAS@ARORAPC.COM

PAVEMENT FRICTION AND SAFETY: HISTORICAL

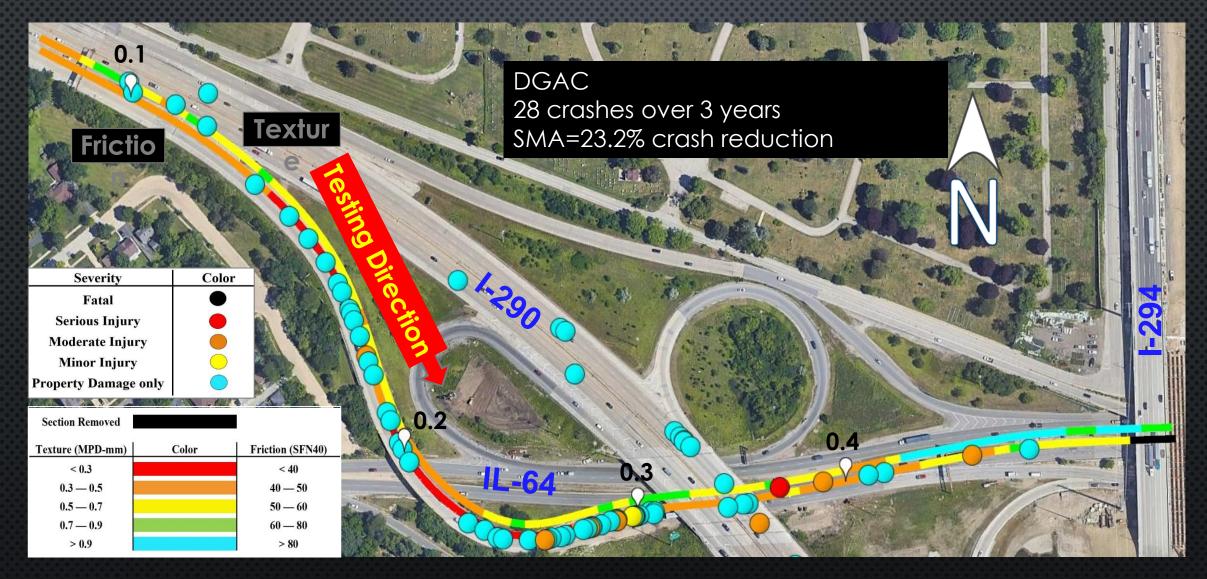
- FRICTION DATA HAS PRIMARILY BEEN USED FOR EVALUATING SURFACE MIX PERFORMANCE
- CONSIDERATION OF SAFETY AND FRICTION
 - REACTIONARY
 - CRASHES ARE RANDOM IN NATURE
 - Analysis period of 3 to 5 years
 - WITHOUT FRICTION DATA, DIFFICULT TO IDENTIFY TRENDS/CONTRIBUTING FACTORS
 - FRICTION DATA COLLECTED FOR A SPECIFIC LOCATION AND PROVIDED UPON REQUEST
 - Spot friction measurement with a locked-wheel trailer: limited at curves and intersections

PAVEMENT FRICTION AND SAFETY PERFORMANCE

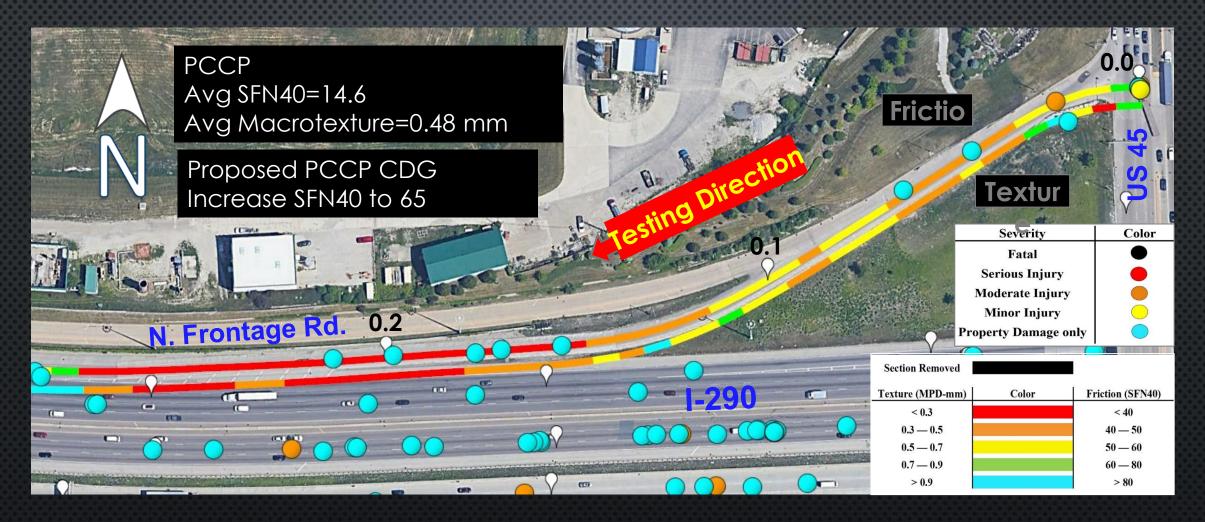
MYTH: FRICTION ONLY CONSIDERS WET CRASHES

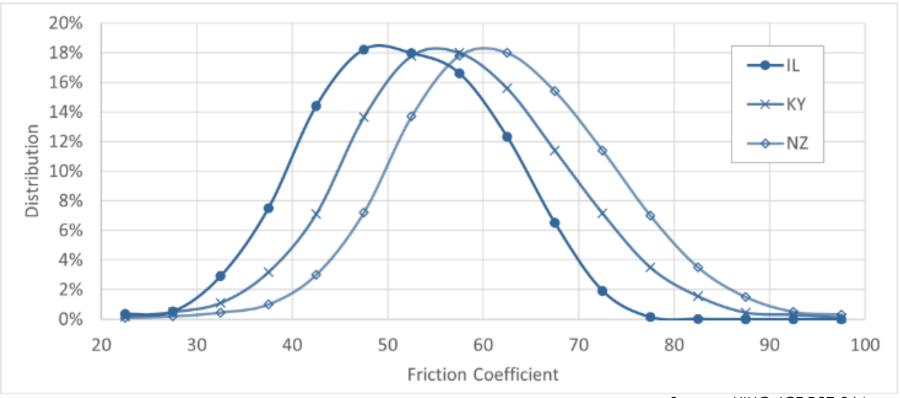


FRICTION DEMAND ROADWAY CHARACTERISTICS


• VARIES BASED ON ROADWAY CHARACTERISTICS.

- CHANGING GEOMETRICS (E.G., HORIZONTAL CURVES, INTERSECTIONS, STEEP GRADES).
- SITE CONDITIONS (TRAFFIC VOLUMES, CONGESTION, SIGHT DISTANCE, LANE CHANGES, RAMP/MAINLINE ENTRY, QUARRIES).
- DRIVER CHARACTERISTICS (REACTION TIME, ALERTNESS, EXPERIENCE)
- VEHICLE CHARACTERISTICS (TIRES, VEHICLE WEIGHT, BRAKES, SUSPENSION SYSTEM)
- Speed


IDOT District 1

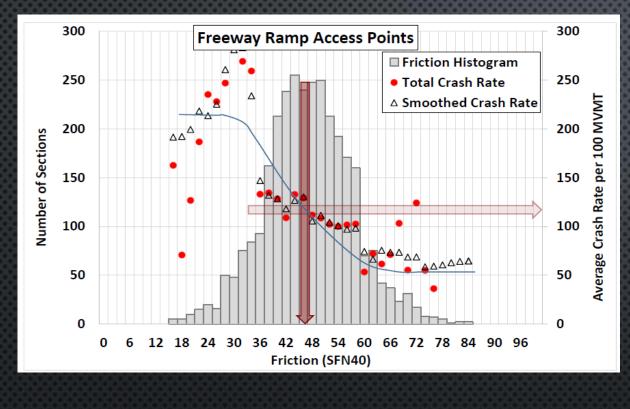

IDOT District 1

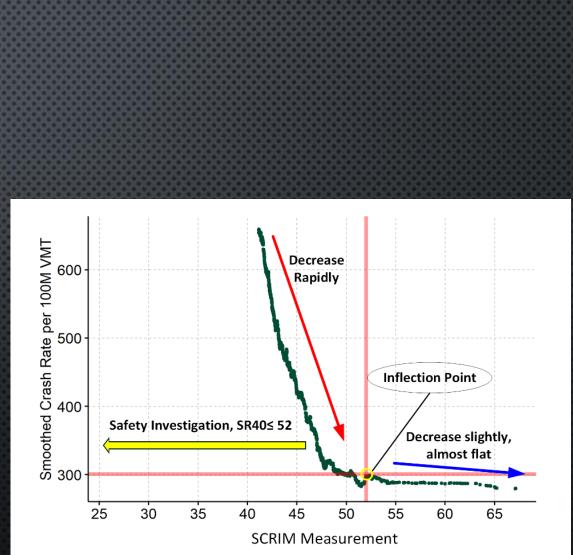
IDOT District 1

PAVEMENT FRICTION PERFORMANCE

Source: UIUC, ICT R27-264

Comparison of SCRIM data distribution: Illinois vs Kentucky vs New Zealand


Vaughn, M. (2024). Safety and friction enhancement. In TRB Annual Meeting, Pavement Friction Management Continuous Pavement Friction Measurement, and Safety Analysis, Workshop 1024, Washington, DC.


Izeppi, E., McCarthy, R., Flintsch, G. W., and Tobias, P. (2023). Continuous friction measurement and pavement friction management demonstration for the Illinois department of transportation. Draft final report, Virginia Tech Transportation Institute (VTTI). TPF-5(345) Pavement Surface Properties Consortium – Managing the Pavement Properties for Improved Safety.

PAVEMENT FRICTION MANAGEMENT PROGRAM

Investigatory Levels (Graphical Representation)

10

FRICTION DEMAND AND INVESTIGATORY LEVELS

Roadway Facility Type	Site Type	Suggested per FHWA	
	Tangents	40	
Freeways	Curves	45	
	Ramp Access	45	- FHWA
	Divided Tangents	50	
Rural Multilane Roadways	Undivided Tangents	50	
Korar Monitarie Koaaways	Curves	55	Recommended
	Intersections	55	
	Tangents	50	INVESTIGATORY
Rural 2-lane, 2-way Roadways	Curves	55	
	Intersections	55	Levels
	Divided Tangents	50	LEVELS
Urban and Suburban Arterials	Undivided Tangents	50	152525352555555555555555555555555555555
	Curves	50	252555555555555555555555555555555555555
	Intersections	55	

 FLORIDA DOT
RECOMMENDED INVESTIGATORY LEVELS

Area	Pavement Type	Suggested IL			
Alea	Favement Type	SR40	MPD (mm)		
Urban and Suburban	Open	≤50	≤2.6		
	Dense and Rigid	≤52	≤1.6		
Rural	All	≤52	≤1.8		

Economic Analysis

Treat sections with $B/C \ge 1.0$:

Average Crash Cost=\$169,816 & 10,931 crashes

 $B/C = \frac{CR Savings}{Estimated Treatment Cost}$

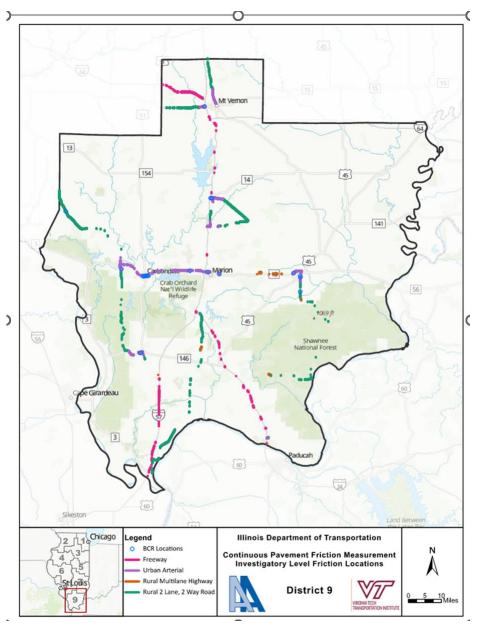
Treatment Selection Criteria: these could sometimes be:

- Interstate:
 - i. DGAC & SMA: SMA Overlay
 - ii. PCCP CDG: PCCP Conventional Diamond Grinding
- Primary:
 - i. PCCP CDG > 5 Yrs : PCCP Conventional Diamond Grinding
 - ii. DGAC > 5 Yrs: DGAC Overlay
 - iii. SMA > 5 Yrs: SMA Overlay

However, for Illinois DOT it was just considered a replacement.

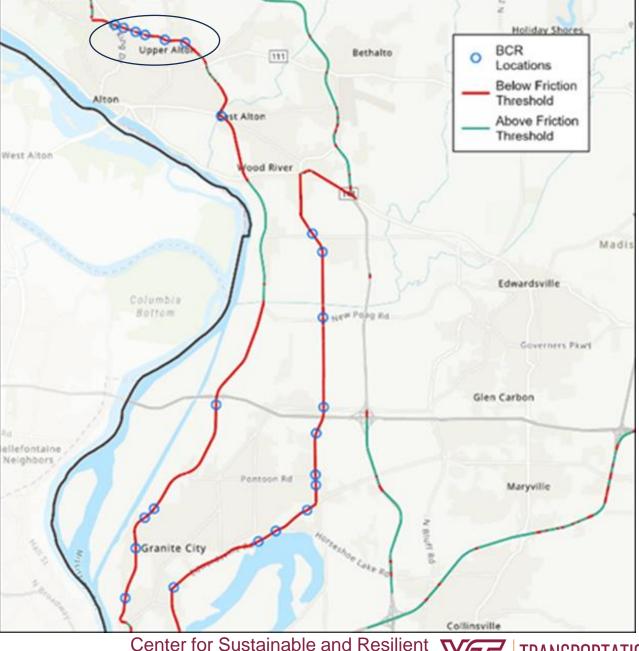
Center for Sustainable and Resilient Transportation Infrastructure

Illinois Friction Enhancement Economic Analysis Results


Savings/	Number of Treated Sections					Predicted	Treatment	Total	Average
Sections	DGAC	SMA	CDG	HFST	Total	Crash Reductions	Cost (\$MM)	Savings (\$MM))	B/C
\$1.0 M	0	1	0	1	2 (0.01%)	14 (0.13%)	\$0.055	\$2.320	43
\$0.5 M	1	1	1	8	11 (0.06%)	42 (0.38%)	\$0.376	\$6.677	19
\$0.4 M	1	0	3	10	14 (0.08%)	38 (0.35%)	\$0.504	\$5.983	13
\$0.3 M	9	1	4	5	19 (0.11%)	47 (0.43%)	\$0.377	\$6.487	18
\$0.2 M	16	1	8	20	45 (0.25%)	70 (0.64%)	\$1.080	\$10.794	11
\$0.1 M	79	6	38	45	168 (0.93%)	153 (1.40%)	\$3.258	\$22.783	8
Total	106	10	54	89	259 (1.43%)	364 (3.33%)	\$5.652	\$55.044	10.7

Center for Sustainable and Resilient Transportation Infrastructure

Pavement Friction Management Using CFME



Center for Sustainable and Resilient Transportation Infrastructure

Pavement Friction Management Using CFME

ARORA and ASSOCIATES, P.C. Consulting Engineers

Center for Sustainable and Resilien Transportation Infrastructure

Asset Management Interaction of CPFM, Safety Tier (PSI), and CRS EN 🗄 🛇 EN 🗄 😂 E N 🚆 😂 V North Ave Northlake -Northlake Elmhurst Elmhurst Elmhurst 20 20 2nd St 2nd St 2nd St Schiller St Schiller St [20] Schiller S 20 1st St Park A CPFM Web Map (arcgis.com) Church St ch St Proviso Dr Proviso Dr St Charles Rd St Charles Rd St Charles Rd St Charles Rd May St May St May St Berkeley Berkeley Berke ey Crescent Av Crescent Av Crescent Av Spring Mit Harrison St Roosevelt Rd Timber Edge Dr Harge Harge Harge Fresh Meadow Fresh Meadow Fresh Meadow Golf Club Golf Club Golf Club **Continuous Pavement Fiction** Safety Tiers (SRI/PSI) Condition Rating System (CRS) **Measurement (CPFM)** 2 km 2 km 2 km 5,000 ft 5,000 ft 5,000 ft

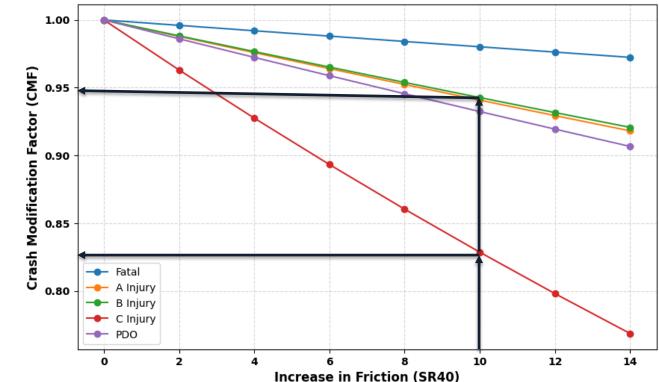
ARORA and ASSOCIATES, P.C. Consulting Engineers

Center for Sustainable and Resilient Transportation Infrastructure

Asset Management Interaction of CPFM, Safety Tier (PSI), and CRS

Continuous Pavement Fiction Measurement (CPFM) Safety Tiers (SRI/PSI)

CPFM Web Map (arcgis.com)


Center for Sustainable and Resilient Transportation Infrastructure

Condition Rating System (CRS)

ICT R27-264 Preliminary Results

- Crash Modification Factor: Increasing friction number reduces crash frequency for various severity levels.
- Formula: relative reduction $CMF = e^{(eta_f \cdot \Delta f)}$
- 10-Unit increase in friction results in reduction of more than 15% of C -Injury crashes and 5% of other crashes
- Absolute reduction for 10-unit friction increase:
 - K 0.000056
 - A 0.0008
 - PDO 0.02

Comparison of CMFs for Friction Increase on Different Crash Severities

PAVEMENT FRICTION AND SAFETY

- KENTUCKY TC: A 10-UNIT INCREASE IN AVERAGE FRICTION VALUE ON PRIMARY/SECONDARY ROUTES.
 - <u>17-33% REDUCTION IN WET AND DRY CRASHES</u>,
 - UP TO 24% REDUCTION IN FATAL AND SERIOUS INJURY CRASHES OVER A 5-YEAR PERIOD
- WYOMING DOT:
 - PAVEMENT FRICTION WAS A CRITICAL FACTOR ASSOCIATED WITH CRASHES
 - INCREASE IN PAVEMENT FRICTION VALUES FROM <u>25 to 45</u> SIGNIFICANTLY DECREASE SEVERE INJURY AND FATAL CRASHES.
- FLORIDA DOT DISTRICT 7:
 - GOAL IS TO INCORPORATE NETWORK LEVEL PAVEMENT FRICTION AND SAFETY ANALYSIS INTO 3R PROJECTS.
 - 1,484 SEGMENTS IN SAFETY TIERS 1-3, INCORPORATING INTO 3R.

SAFETY TIER	PSI THRESHOLDS	DESCRIPTION
1 - CRITICAL	TOP 5%	MOST OPPORTUNITY FOR SAFETY IMPROVEMENT
2 - HIGH	5% - 10%	2 ND MOST OPPORTUNITY FOR SAFETY IMPROVEMENT
3 - MEDIUM	10% - 25%	3 RD MOST OPPORTUNITY FOR SAFETY IMPROVEMENT

Florida DOT Crash Reduction Estimation

• ESTIMATE <u>EXPECTED</u> CRASH <u>FREQUENCY BEFORE</u> <u>PAVEMENT IMPROVEMENT.</u>

- FOR EACH SEGMENT ON THE CANDIDATE LIST.
- MATCH SCRIM DATA TO IDENTIFIED SEGMENTS.
- EB ADJUSTMENT USING SPFs.
- ESTIMATE CRASH <u>REDUCTION AFTER PAVEMENT</u> <u>IMPROVEMENT.</u>
 - Use developed CMFs.
 - ASSUME PAVEMENT CONDITIONS CHANGE FROM CURRENT VALUES TO THE AVERAGE VALUES OF NEW PROJECT.
 - CRASH REDUCTION CALCULATED USING NON-HFST AND HFST TREATMENTS.

Pavement Measure	Pavement Type	Average Value of New Project
IRI	Open	25
MPD	Open	1.5
SR40	Open	50
MPD Standard Deviation	Open	0.13
SR40 Standard Deviation	Open	3.44
IRI	Dense & Rigid	35
MPD	Dense & Rigid	1
SR40	Dense & Rigid	50
MPD Standard Deviation	Dense & Rigid	0.22
SR40 Standard Deviation	Dense & Rigid	3

Crash Modification Functions (CMF) – SR (40) Urban/Suburban

Pavement	Crash	Coef. in SPF					
Туре	Туре	(β) ¹	SE of Coef.	CMF	SE of CMF	CMF CI of 95%	CRF
	ALL	-0.0237	0.0029	0.789	0.0229	[0.744, 0.834]	21.1%
Donco ond	FI	-0.0225	0.0032	0.799	0.0258	[0.748 <i>,</i> 0.850]	20.1%
Dense and Others	WET^*	-0.0155	0.0035	0.856	0.0300	[0.797, 0.915]	14.4%
Others	RE	-0.0176	0.0034	0.839	0.0288	[0.783, 0.895]	16.1%
	LD	-0.0173	0.0033	0.841	0.0278	[0.787 <i>,</i> 0.895]	15.9%
	ALL	-0.0250	0.0044	0.779	0.0344	[0.712, 0.846]	22.1%
Open	FI	-0.0165	0.0053	0.848	0.0448	[0.760, 0.936]	15.2%
	WET	-0.0406	0.0060	0.666	0.0402	[0.587 <i>,</i> 0.745]	33.4%
	RE	-0.0295	0.0050	0.745	0.0372	[0.672, 0.818]	25.5%
	LD	-0.0226	0.0044	0.798	0.0351	[0.729, 0.867]	20.2%

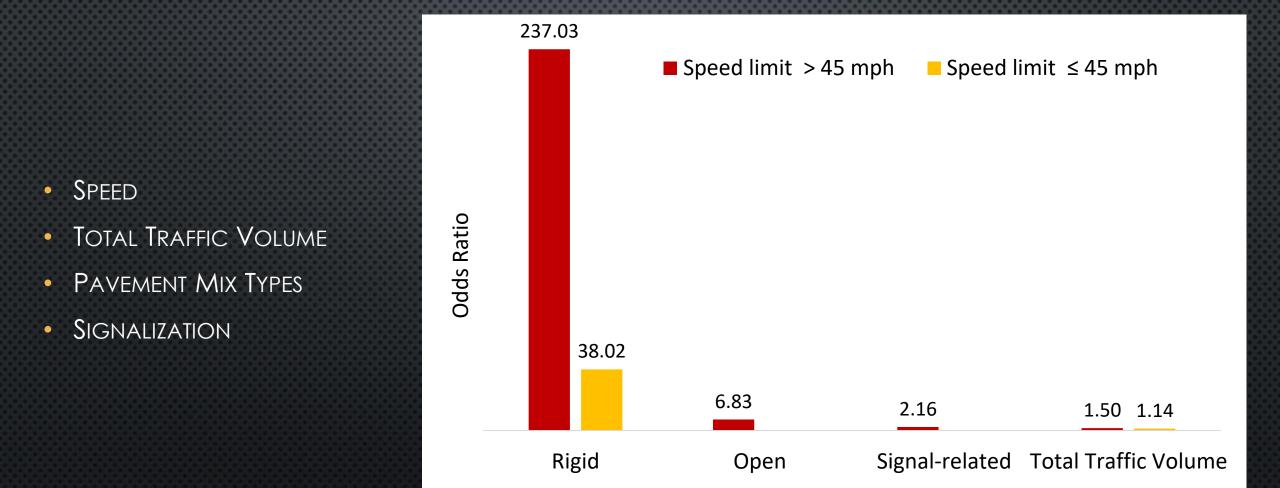
Table 4-3. CMFs and CRFs for A 10-unit Increase in SR40 on Urban and Suburban Roads

Note: 1. β is the estimated coefficient for the SR40 in SPF models.

Crash Modification Functions (CMF) – MPD Urban/Suburban

CMF FOR 0.50-MM INCREASE IN MACROTEXTURE URBAN AND SUBURBAN ROADS

Crasl	n Type	Coef. in SPF (β) ¹	SE of Coef.	CMF	SE of CMF	CMF CI of 95%	CRF	
Å	LL	-0.1726	0.0649	0.917	0.0018	[0.913, 0.921]	8.3%	
W	/ET	-0.2105	0.0925	0.900	0.0025	[0.895, 0.905]	10.0%	
RE -0.4148 0.0721 0.813 0.0018 [0.809, 0.817] 18.7%								
Note: 1	$.\beta$ is the	estimated coefficient	for the MPD in S	PF models.	-			


(DENSE AND OTHER)

المجاوية فترك فيؤدهم والمحا noteo coegnitene jor ene mi

Crash type	Coef. in SPF (β1) ¹	Coef. in SPF (β₂) ²	SE of β_1	SE of β_2	CMF ³	SE of CMF	CMF CI of 95%	CRF
ALL	-0.1188	-	0.0422	-	0.942	0.0199	[0.903, 0.981]	5.8%
FI	-0.1993	0.0018	0.0718	0.0004	0.973	0.0377	[0.899, 1.047]	2.7%
WET	-0.2383	0.0017	0.0856	0.0005	0.950	0.0444	[0.863, 1.037]	5.0%
RE	-0.2429	-	0.0471	-	0.886	0.0208	[0.845, 0.927]	11.4%
LD	-0.1090	0.0012	0.0632	0.0004	0.992	0.0343	[0.925, 1.059]	0.8%

(OPEN)

KEY Findings-Good Pavement Condition But Poor Friction

QUESTIONS