PHYS 212 Final Review

Final Exam
Queue

Exam 1 Overview

- 1) Coulomb's Law
- 2) Electric Field
- 3) Electric Flux
- 4) Gauss's Law
- 5) Electric Potential
- 6) Capacitance

Exam 2 Overview

- 9/10) Simple Circuits and Kirchhoff's Laws
- 11) RC Circuits
- 12) Magnetic Force
- 13) Forces and Magnetic Dipoles
- 14) Biot-Savart Law
- 15) Ampere's Law
- 16) Motional EMF

Exam 3 Overview

- 17) Faraday's Law
- 18) RL Circuits
- 19) LC Circuits
- 20) AC Circuits
- 21) AC Power and Resonance
- 22) Maxwell's Displacement Current
- 23) EM Waves
- 24) Polarization
- 25) Reflection and Refraction

Final Exam Overview

26) Lenses

27) Mirrors

1-25) Everything else

Coulomb's Law

Electrostatic force between 2 charges

Newton's Third Law: $F_1 = -F_2$

Coulomb's Law (1785)

$$\vec{F}_{12} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

Electric Charge

$$\vec{F}_{++}$$
 \longrightarrow \vec{F}_{++} \vec{F}_{--}

Superposition

The total electric force on a charge

is the **sum of all the forces** exerted

by "n" charges on that one charge

$$\vec{F}_{1,Net} = \vec{F}_{21} + \vec{F}_{31}$$

Superposition Principle

$$\vec{F}_{Net} = \sum_{i} \vec{F}_{i}$$

Electric Fields

3 main sources of electric fields:

Point Charges, Infinite Lines of Charge, and Infinite Sheets of Charge

Point Charge

3D symmetry - magnitude depends on r²

$$E = k \frac{q}{r^2}$$

Infinite Line of Charge

2D symmetry - magnitude depends on r

charge density - λ = Q/L (units: C/m)

Integral Setup Questions:

- Bounds are the length of the line of charge
- Inside the integral is of form k(q/r²)
- $dQ = \lambda dx$

$$E_{y} = \int_{x=-\infty}^{x=\infty} dE_{y} \qquad E_{y} = \int_{x=-\infty}^{x=\infty} k \frac{dq}{s^{2}} \cos \theta = \int_{x=-\infty}^{x=\infty} k \frac{\lambda dx}{s^{2}} \cos \theta$$

$$E = 2k\frac{\lambda}{r}$$

Infinite Sheet of Charge

1D symmetry - magnitude has no dependance on r

charge density - $\sigma = Q/A$ (units: C/m^2)

Electric Field Lines and Flux

Density of field lines indicates electric field strength

- More dense lines => stronger electric field
- Less dense lines => weaker electric field
- # of field lines is proportional to charge's magnitude

Flux is the number of field lines that pass through a surface

- Positive flux points outwards
- Negative flux points inwards
- Pay close attention to Φ_{net} vs Φ_{left} or Φ_{right}

Gauss's Law

 $\Phi_{Net} = \oint_{surface} \vec{E} \cdot d\vec{A} = \frac{q_{enclosed}}{\mathcal{E}_o}$

3 shapes have enough symmetry for easy

integration, so that we can get $\mathbf{E} \cdot \mathbf{A} = \mathbf{Q}_{enc}$

- Sphere (Point Charge)
- Cylinder (Infinite Line of Charge)
- Plane (Infinite Sheet of Charge)

Generally, a cylinder will be used but any symmetrical object would suffice (cube, sphere, etc.)

Gauss's Law says the number of field lines out of a surface is directly related to the charge(s) enclosed

Gauss's Law cont.

- A is the surface area of the chosen Gaussian surface (sphere, cylinder, cube, etc.)
- Charge denstitions (λ , σ , P) come from the **given physical object** we are working with
- We can use charge densities to find q_{enc}

$$\wedge$$
 $\lambda = \mathbf{q}_{enc} / \mathbf{L}$ (L is length - m)

$$\circ \quad \mathbf{\sigma} = \mathbf{q}_{enc} / \mathbf{A} \text{ (A is area - m}^2\text{)}$$

o
$$\mathbf{p} = \mathbf{q}_{enc} / \mathbf{V} \text{ (V is volume - m}^3\text{)}$$

$$\Phi_{Net} = \oint_{Surface} \vec{E} \cdot d\vec{A} = \frac{q_{enclosed}}{\mathcal{E}_o}$$

Conductors

Electric field inside a conductor is **ALWAYS 0**, since all the charge goes the surface

For charges inside a conducting shell:

- Q_{inner} = opposite value of the center charge
- Q_{outer} = value of the charge on the surface + value of the center charge

$$Q_{inner} = -q_o$$
 $Q_{outer} = Q + q_o$

Insulators

Charge is uniformly (equally) distributed throughout the entire insulator

The net charge inside an insulator behaves differently than outside the insulator

Outside - behaves like a point charge

Inside - behaves linearly

- Memorize second equation
- Saves you time from deriving it

Electric Potential Energy (Units: J)

Solving Systems of Particle Problems

- 1. $U_1 = 0$, for whatever particle you chose first
- 2. $U_2 = kq_2q_1 / (d_{21})$
- 3. $U_3 = kq_3q_1 / (d_{31}) + kq_3q_2 / (d_{32})$
- 4. Repeat process for all additional charge pairs and sum them up $(U_1 + U_2 + U_3 + ... U_n)$ to get U_{sys}
- 5. Remember that W = U

$$U_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}}$$

Electric Potential (Voltage - Units: V=J/C)

Energy required to move a positive test charge through a constant electric field

• V_{point charge} = U / q (where little q is the test charge) Electric Potential Difference

Equipotential Lines:

Perpendicular to electric field lines

- $\Delta V_{A \to B} = -\int_{A}^{B} \vec{E} \cdot d\vec{l}$
- Electric field lines always point from higher to lower electric potential
- More dense lines => Stronger electric potential
- Equal electric potential along on the same equipotential lines

Capacitance (Units: Farads - F)

Capacitance primarily depends on the geometry

Units - Farads (F)

Energy of a capacitor: $U = 0.5CV^2$

Dielectric - adding a dielectric to a capacitor increases its capacitance

Capacitors in Series/Parallel

Series -
$$1/C_1 + 1/C_2 + 1/C_3 + ... 1/C_n = 1/C_{total}$$

*Shortcut (Product over Sum): only works with $\bf 2$ capacitors at a time, repeat process for all capacitors until $\bf C_{total}$

$$(C_1 \times C_2) / (C_1 + C_2) = C_{1,2} = > Multiply C_1 and C_2 (product) and divide by their sum$$

Parallel - just add them up

$$C_1 + C_2 + C_3 + ... C_n = C_{total}$$

Current and KCL

Current (I) is the flow of charge per second

Units: Amperes (A) - Coulombs/second (C/s)

Kirchhoff's Current Law - KCL

• The amount of current going in is equal to the amount of current coming out

Currents Entering the Node Equals Currents Leaving the Node

$$I_1 + I_2 + I_3 + (-I_4 + -I_5) = 0$$

Voltage and KVL

Voltage (V) is the amount of energy per unit charge

Units: Volts (V) = Joules/Coulomb (J/C)

Kirchhoff's Voltage Law - KVL

Kirchhoff's Voltage Law

The Sum of Voltage rise across any loop is equal to sum of voltage drops across that loop.

- The total voltage in a loop is the sum of all the voltage drops and rises
 - Voltage drop "+" to "-"
 - Voltage rise "-" to "+"

You can solve all the circuit problems you will see in this course by applying KCL and KVL

Name	Diagram	Formulas
Series Resistors	$\begin{cases} R_1 & \longrightarrow \\ R_2 & \longrightarrow \\ R_1 + R_2 & \longrightarrow \\ R_1 + R_2 & \longrightarrow \\ R_2 & \longrightarrow \\ R_3 & \longrightarrow \\ R_4 & \longrightarrow \\ R_4 & \longrightarrow \\ R_5 & \longrightarrow \\ $	$ ext{Equivalent resistance} = R_1 + R_2$
Voltage Divider	V _s (±)	$V_1 = rac{R_1}{R_1 + R_2} V_s \qquad V_2 = rac{R_2}{R_1 + R_2} V_s$
Parallel Resistors	$= \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ ext{Equivalent resistance} = R_1 \ R_2 = rac{R_1 R_2}{R_1 + R_2}$
Current Divider	I, PR, I, PR,	$I_1 = rac{R_2}{R_1 + R_2} I_s \qquad I_2 = rac{R_1}{R_1 + R_2} I_s$

Power

Power is the amount of energy per second being delivered/absorbed

- Units: Watts (W) = Joules/second (J / s) ==> amount of energy per second
- $P_{resistor} = IV = V^2/R = I^2R$ (These last 2 equations are for resistors ONLY)

The sign ("+" or "-") is very important when it comes to power (Not on your test)

- Negative power means that circuit element is delivering energy to the circuit (sources, capacitors, inductors)
- Positive power means that the circuit element is absorbing energy from the circuit (resistors, capacitors, inductors)

RC Circuits

Time Constant

 $\tau = RC$

au - tau is the time constant which affects the rate of growth/decay

Charging and Discharging Equations

$$Q(t) = Q(\infty) \left(1 - e^{-t/\tau}\right)$$

$$Q(t) = Q(0)e^{-t/\tau}$$

Discharging

RC Circuits cont.

Charging

t = 0 → capacitor acts like a wire (short circuit)

• V = 0 V, but there is a current

 $t = \infty \rightarrow \text{no current thru capacitor (open circuit)}$

• I = 0 A, but there is a voltage

Discharging

t = 0 → capacitor acts like a battery (C = Q/V where V is found when charging up)

 $t = \infty \rightarrow$ capacitor acts like a wire (all the charge is dissipated aka gone)

Magnetic Force on Charges

- F_m = qv X B
 - we know that F = ma
 - and for these problems $\mathbf{a} = \mathbf{a}_c = \mathbf{v}^2/\mathbf{r}$
 - If we substitute in for F we get $mv^2/r = qv X B$
 - We use this to solve for any missing variable

Right-Hand Rule (1st RHR)

- Point fingers or hand along the direction of v
- Curl fingers in the direction of B
- Thumb points in the direction of the force*

*This works for positive charges, flip your thumb 180° for a negative charge

Forces on Current Wires and Loops

 $F_{wire} = I L x B (1st RHR)$

• The force around an entire loop of current is always zero (assuming B is constant) but be careful because it may not be zero at a segment of the loop

Currents traveling in the same direction - attract

Currents traveling in opposite directions - repel

Torques and Energy on Current Loops

Remember $sin(\theta)$ goes with cross products and $cos(\theta)$ goes with dot products

Magnetic Dipole: $\mu = n * I * A$ (2nd RHR)

- n = # of turns
- I = current through loop
- A = area of the loop

Torque: $\tau = \mu \times B = |\mu||B|\sin(\theta)$ (1st RHR)

Potential Energy: $\mathbf{U} = \mathbf{\mu} \cdot \mathbf{B} = |\mathbf{\mu}||\mathbf{B}|\cos(\boldsymbol{\theta})$

Work: W = -U

Torque on current loop

B field generates a torque on the loop

$$\tau_{loop} = FL\sin\varphi = IW \sin\varphi$$

$$\tau_{loop} = IAB\sin\varphi$$
Loop area

Torques and Energy Cont.

Remember $sin(\theta)$ goes with cross products and $cos(\theta)$ goes with dot products

Torque: $\tau = \mu \times B = |\mu||B|\sin(\theta)$

Max when $sin(\theta) = 1 \rightarrow \theta = 90 \rightarrow when \mu and B are perpendicular$

Potential Energy: $\mathbf{U} = \mathbf{\mu} \cdot \mathbf{B} = |\mathbf{\mu}||\mathbf{B}|\cos(\theta)$

Max when $cos(\theta) = 1 \rightarrow \theta = 0^{\circ} \rightarrow$ when μ and B are parallel in the same direction

Min when $cos(\theta) = -1 \rightarrow \theta = 180^{\circ} \rightarrow \mu$ and B are parallel in opposite directions

Work: W = -U

Biot-Savart Law

By using the Biot-Savart Law, we were able to derive the equation for the **magnetic field produced by a current carrying wire (in orange)**

Direction of B is always tangent to the circle (3rd RHR)

(Not used often, painful to integrate)

$$B = \frac{\mu_o I}{2\pi R}$$

Right Hand Rule

- 1. Place thumb in direction of $\,I\,$
- 2. Fingers curl in direction of $\,B\,$

$$B_z = \frac{\mu_0 I R^2}{2(z^2 + R^2)^{3/2}}$$

Right-Hand Rules (3 Total)

1st RHR - Cross Products

• Place your fingers along the first vector, curl your fingers in the direction of the second vector, your thumb gives you the direction of the force, torque, etc.

2nd RHR - Magnetic Dipole

 Curl your fingers along the direction in which the current is flowing, your thumb gives you the direction of the magnetic dipole

3rd RHR - Magnetic Fields

 Place your thumb along the direction of current, curl your fingers to give you the direction of the "circular path", B is tangent to the "circular path"

Ampere's Law

Think of it as the 2D version of Gauss's Law, but for magnetic fields now

By convention for line integrals, traversing a closed loop counter-clockwise (CCW)

is positive and traversing it clockwise (CW) is negative

Current density: J = I / A

Units: (A/m²)

I - Current

A - Area

Ampere's Law Cont.

Magnetic field equations inside and outside a current-carrying wire

Memorize inside equation (#1), it will save you time from deriving it on the exam

Ampere's Law Cont.

Magnetic field equation for an infinite sheet of current

$$\vec{B}$$

$$B = \frac{1}{2} \,\mu_o nI$$

Motional EMF

Potential difference = Voltage = Electromagnetic Force (EMF)

$$\varepsilon = vBL$$

v - velocity

B - magnetic field

L - length of the loop

To find direction of current: 1st RHR

- RHR wrt the magnet: F = qv x B
- Your thumb gives you the direction of the current

Faraday's Law

 $\mathcal{E}_{induced} = -\frac{d\Phi_B}{dt}$

Main Idea: A changing magnetic flux creates an electric field

The induced EMF (voltage) always opposes the change in magnetic flux

The induced EMF gets multiplied by N turns if the loop has N turns in it

3 ways to change the magnetic flux

- Making the area of the loop smaller or larger
- Moving the loop around in a constant magnetic field
- Having a time-varying magnetic field (i.e. B is not constant with time)

Faraday's Law cont.

 $\Phi_B = \int \vec{B} \cdot d\vec{A}$

Steps for solving Faraday's Law problems (2 types)

Type 1: (Usually given B as a function of time or on a graph)

$$\mathcal{E}_{induced} = -\frac{d\Phi_B}{dt}$$

- 1) Find the magnetic flux $(\mathbf{B} \cdot \mathbf{A})$
- 2) Solve for the induced EMF by take the negative derivative of the magnetic flux with respect to time (-d/dt of the magnetic flux)

Type 2: (Usually a picture with one or "N" conducting loops)

- 1) Determine the change in magnetic flux, B_{induced} will always point in the opposite direction to the change in magnetic flux
- 2) Use the 3rd RHR: Point your fingers in the direction of B_{induced} and curl your fingers to give you the direction of the induced current

RL Circuits

Inductors behave "oppositely" to capacitors (i.e. at t=0 and t=∞ when charging up)

Inductors in circuits add in series and in parallel like resistors

$$L \equiv \frac{\varphi_B}{I}$$

Inductance: L = magnetic flux / current

Time constant: $\tau = L / R$

Charging and Discharging Equations

$$\tau = \frac{L}{R}$$
 $V = L\frac{d}{dt}$

$$I(t) = I(\infty) (1 - e^{-t/\tau})$$
 $I(t) = I(0)e^{-t/\tau}$

RL Circuits cont.

Charging

t = 0 → inductor acts like an open circuit

• I = 0 A, but there is a voltage

 $t = \infty \rightarrow inductor acts like a wire (short circuit)$

• V = 0 V, but there is a current

Discharging

 $t = 0 \rightarrow inductor$ acts like a current source (I at t = 0 is the same as I at $t = \infty$ found when charging up)

 $t = \infty \rightarrow \text{inductor acts like a wire (no more current in the circuit)}$

LC Circuits

Inductors and capacitors are storage devices so their energies are constantly oscillating between one another (given an initial voltage/current)

Resonance only occurs at the natural frequency: ω_0

Natural Frequency

$$\omega_o = \frac{1}{\sqrt{LC}}$$

$$U = \frac{1}{2}LI^2 \qquad U = \frac{1}{2}CV^2$$

AC Circuits (RLC)

Resistor is in phase with the current

Inductor leads current by 90 degrees

Capacitor lags current by 90 degrees

Steps for AC Circuit Problems:

- 1) Find the reactances first $(X_L \text{ and } X_c)$
- 2) Then find impedance (Z)
- 3) Now you can solve for I_m
- 4) Solve for phase of the generator
 - a) If phase is positive → generator voltage leads current
 - b) If phase is negative → generator voltage lags current

Impedance Phasor Diagram

Inductor Reactance
$$X_L = \omega L$$

Capacitor Reactance $X_C = \frac{1}{C}$

apacitor Reactance
$$X_C = \frac{1}{\omega C}$$

Impedance
$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

Average Power and Resonance

Resonance occurs when $\omega = \omega_0$

This makes $X_1 = X_C$ thus $Z = R \Rightarrow$ this is when I_m is at its maximum value

$$\langle P_{Generator} \rangle = \mathcal{E}_{rms} I_{rms} \cos \phi$$

Root Mean Square (rms)

$$\mathcal{E}_{rms} = \frac{\mathcal{E}_m}{\sqrt{2}}$$
 Voltage

$$I_{rms} = \frac{I_m}{\sqrt{2}}$$
 Current

Natural Frequency

Transformers

Transformers are used to convert from high voltages to low voltages and vice versa

EM Wave Properties $E_x = E_o \cos(kz - \omega t)$

$$E_x = E_o \cos(kz - \omega t)$$

E and **B** have the same waveform: If E is $\sin(kz-\omega t)$ then B is also $\sin(kz-\omega t)$

Magnitude of B is smaller: $\mathbf{B}_0 = \mathbf{E}_0 / \mathbf{c}$ where c is the speed of light (3 x 10⁸ m/s)

The "x, y, or z" variable inside the argument tells you the direction of propagation $\cos(kz - \omega t)$ travels in +z-direction, $\cos(kz + \omega t)$ travels in -z-direction

Wave parameters: $\omega = 2\pi f$, $v = \lambda f = \omega / k$ (v = c for EM waves in free-space)

Poynting vector (S) points in the same direction the wave is traveling

$$S = (E \times B) / \mu_0$$

Power = S x A (units: W), **Intensity = Power / Area = S** (units: W/m²)

Doppler Shift

$$f' = f \sqrt{\frac{1 \pm \beta}{1 \mp \beta}} \qquad \xrightarrow{\beta \ll 1} \qquad f' \approx f(1 \pm \beta)$$

where
$$\beta \equiv \frac{v}{c}$$

Decreasing Separation

$$f' = f\sqrt{\frac{1+\beta}{1-\beta}}$$

Increasing Separation

$$f' = f\sqrt{\frac{1-\beta}{1+\beta}}$$

Linear Polarization

Circular Polarization

Right-handed (RCP):
$$E_{x} = E_{o} \cos(kz)$$

$$\phi_{x} - \phi_{y} = \frac{\pi}{2} \quad \text{Examples}$$

$$E_{x} = E_{o} \cos(kz - \omega t)$$

$$E_{y} = E_{o} \sin(kz - \omega t)$$

$$E_{x} = E_{o} \cos(kz - \omega t)$$

$$E_{x} = E_{o} \sin(kz - \omega t)$$

$$E_{y} = E_{o} \sin(kz - \omega t)$$

Left-handed (LCP):

$$\phi_x - \phi_y = -\frac{\pi}{2} \frac{\text{Examples}}{E_x = E_o \sin(kz - \omega t)}$$

$$E_y = E_o \cos(kz - \omega t)$$

$$E_x = E_o \sin(kz - \omega t)$$

$$E_y = E_o \cos(kz - \omega_t)$$

 $E_{y} = E_{a} \sin(kz)$

Circular Polarization cont.

- Produced by passing linear polarized light through a quarter wave plate (only if the light isn't 100% vertically or horizontally linearly polarized beforehand)
- If Slow-Axis X Fast-Axis = Direction of Wave → RCP, otherwise LCP

Reflection and Refraction

- Law of Reflection the incident angle is equal to the reflected angle wrt the normal
- Index of Refraction material specific: for air n = 1 and for glass n = 1.5 (v = c/n)
- Snell's Law used to find the angle of the refracted ray wrt the normal

Reflection and Refraction cont.

Total Internal Reflection - only happens when rays are at the critical angle or at angles larger than the critical angle

Lenses

Lenses cont.

Len's Equation

- Converging (f > 0) vs Diverging Lenses (f < 0)
- Real Image (S' > 0) vs Virtual Image (S' < 0)

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

Magnification

- Upright Image (M > 0) vs Inverted Image (M < 0)
- Real Images are always inverted and Virtual Images are always upright

General Lensmaker's Formula

$$\frac{1}{f} = (n-1)\frac{1}{R}$$

Mirrors

Lens Equations and Mirror Equations are the same

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

$$M \equiv \frac{h'}{h} = -\frac{s'}{s}$$

Sign Conventions

$$f < 0$$
 Convex Mirrors

$$s' > 0$$
 Real Image

$$s' < 0$$
 Virtual Image

Sign into queue for worksheet!

