MATH 257 Final CARE Review

Please join the queue!

https://queue.illinois.edu/q/queue/955



Midterm 1 Topics

Linear systems
- Solving systems with matrices
Reduced row echelon form
- Pivot columns: basic and free
variables
- Row operations
Vectors and spans
Matrix operations
- Addition, subtraction, scalar
multiplication, linear
combinations
- Transposition

Matrix multiplication

Properties of matrix
multiplication

Matrix inverses

What matrices are invertible?
Elementary matrices



Midterm 2 Topic Summary

Basis and Dimension

- LU Decomposition

- Lower/Upper Triangular Matrix - Fundamental Subspaces
- LU for Linear Systems - Orthonormal bases
- Permutation Matrix - Orthogonal/normal

- Vectors and Spans Complements

- Inner Product

- Orthogonality

- Linear Independence
- Subspaces

- Column Space

- Null Space

Graph and Adjacency Matrices
Coordinates
Coordinate Matrices



Midterm 3 Topic Summary

- Linear Transformation

- Coordinate Matrices

- Determinants

- Eigenvectors and
eigenvalues

- Markov Matrices

Diagonalization
Matrix powers

- Matrix exponential
Linear differential
equations
Matrix projections
Least squares solutions



Topic Summary - New Content

- Gram-Schmidt Method - PCA

- Spectral Theorem - Complex Numbers

- SVD *not historically part of the
- Low Rank SVD final

- Psuedo Inverse



Elementary
Matrices

Any matrix that can be form from
the identity matrix with one
elementary row operation.

ldentity Matrices Ex.

100 i g
1x1
2 X 2 _ _O 0 1- R>—3R» -O O 1
1. 0 0 1 0 0
. 0 1 0 ~> B ¥ 1
etc. & B oL R2<>R3 0 1 O_




Definition of an inverse:
AC =,
Requirements for a matrix to be

Determinants: invertible:

1. It has to be square

2. The determinant of the matrix
cannot be 0 or

3. The RREF of A is the identity
matrix or

4. A has as many pivots as
columns/rows

Matrix Inverses

1 For the a b
ad — bc BUELLE ¢ id

Statements 2, 3, and 4 mean the
same thing.




Calculating an For 2x2:
Inverse 1 [ 4 b}

Al =
ad — bc

Elementary Matrix strategy:

—€ d

A_1 exlE 8 e B = BIES § see Eil

OR: set up an augmented matrix
with the identity and reduce to
RREF



Properties of Matrix Inverses

(a) A~1 is invertible and (A'l)_1 = A (ie. Ais the inverse of A71).
(b) AB is invertible and (AB) ' = B~1A"L.
(c) AT is invertible and (AT)~ = (A‘l)T.

Inverses are unique! Every invertible matrix only has one inverse.

Multiplying by a matrix inverse is the closest we get to dividing matrices.

Theorem 14. Let A be an invertible n x n matrix. Then for each b in R", the equation
Ax = b has the unique solution x = A~ 1b.



Upper/Lower Triangular Matrices

Upper Triangular: ~ Lower Triangular. LU Decomposition:
% % % % #| | ¢ 0 0 A=LU

O_
0 « « %« +| |* *= 0 0 O
00******00
0

- Not all matrices have

B B % | e E s LU decompositions
000 0 | % 7x"x & & .
- - - LU decompositions are
Finding this is like Keep track of your row

doing REF with only operations to find L !‘]Ot unique (unllke
row replacement mverses)



Finding the LU Decomposition

Determine the LU-decomposition of

[ 2

> p =
NS S\

i 1) ColTRow?2 2)Col 1 Row 3 1 2
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>
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LU for Linear
Systems

Use LU decomposition to solve a linear
system if:

1. Ais nxn matrix

2. A=LU

3. beR"

Step-by-step Algorithm

1. FindLandU

2. SolveforcusinglLc=b
3. Solve forxusingUx =c

Ax = b

O\

lc=b— Ux=c

Ax = (L =L(Ux) = Le



Permutation Matrices: for matrices that don’t have an

LU decomposition

Theorem 21.

has an LU-decomposition.

A=

ol BR @

110
2 1 ©

P =

Let A be n X n matrix. Then there is a permutation matrix P such that PA

Step-by-step:
e Use the interchange operation done
on A to an equivalent size identity
— PA matrix, this will be your P matrix
e Solve the for the LU decomposition
of PA
When we apply the P! to LU (on the right),
we'll be able to get the original value of A

g1 |2 1 0
g1 |8 5 B
i) 0 B d

o\ 7

P =| s

N

"

=:U

'{ OorR O

I
'\



You Try: Solving with LU Decomposition

1 0O O0||—-2 0 O For your reference:
Given: A=LU=|-1 1 0 0o -1 2
0 -1 1 0 0 =2 Step-by-step Algorithm
- 1. FindLandU
L - 2 2. Solveforcusinglc=b
Solve AT =b where b= g] 3. Solve for x using Ux = ¢
Do not compute A Ax = b

provide values of  and the intermediate vector ¢ /\

Llc=b—Ux=c
Ax=[LU=L(Ux)= Le=b




Solution: Solving with LU Decomposition

II Solve Lé =

-2 0 0 21 —~1
IIT SolveUZ =¢ 0 -1 2|z=|2| =5 7= |-6

) L 1 0 O 2 fod. sub
I Substitute U:E=c 1 1 ole=|o| frdsub, o
1 2 4



Subspaces W is a subspace of V, if:

e W contains the 0 vector

e Adding any 2 vectorsin W
together gives a vector also in
W

e Multiplying any vector in W by
any scalar gives a vector also
in W

Theorem 24. Letwvy,vs,...,vy, € R,

Then Span (v1,v2,...,Vy) is a subspace of R".




Vector Spaces ‘V’

u,v,w € V and for all scalars c,d € R:

© u+tvisin V. (Vis “closed under addition".)
Qutv=v+u.

© (u+v)+w=u+(v+w).

© There is a vector (called the zero vector) Oy in V such that u+ 0y = u.

© For each u in V, there is a vector —u in V satisfying u + (—u) = 0y,.

© cuisin V. (Vis “closed under scalar multiplication”.)
© c(u+v)=cu+ecv.

© (¢ + d)u=cu+ du.

© (cd)u = c(du).

© lu=u.




Column Spaces

Definition. The column space, written as Col(A), of an m x n matrix A is the set of all
linear combinations of the columns of A. If A= [al a - a,,], then

Col(A) = span (a1, a2, ..., an).

1 10 —24 —42] How to solve for Col(A):
A=1 1 -8 =18 =32

9 90 51 Q7 Put matrix A into REF

1.
- 2. Find all the pivots of A
3. Map the pivots to the
columns of your original

matrix, A
—24
- ’ [_18]
al

1 —-10 -24 —42
1 —8 _18 —32 RZ_RI_} RZ
3

—2 20 51 87

1
Col(A) :{ [_19] ;




Null Spaces

Definition. The nullspace of an m x n matrix A, written as Nul(A), is the set of all solutions
to the homogeneous equation Ax = 0; that is, Nul(A) = {ve R" : Av = 0}.

How to solve for Nul(A):

1. Set matrix A into Augmented Matrix
with zeros on the right (Ax = 0)

2. Get Ainto RREF

3. Solve for x

Nul(A) = span(x_, X,,...)



Linear Independence

Definition. Vectors vy,...,v, are said to be linearly independent if the equation
X1v1 +xoVo + -+ + xpv, = 0

has only the trivial solution (namely, x; = x = -+ = x, = 0).
We say the vectors are linearly dependent if they are not linearly independent.

Theorem 30. Let A be an m x n matrix. The following are equivalent:
© The columns of A are linearly independent.
© Ax = 0 has only the solution x = 0.
© A has n pivots.
© there are no free variables for Ax = 0.



Basis and Dimension

Definition. Let V be a vector space. A

sequence of vectors (vi,...,v,) in Vis a
basis of V |f

© V =span(vy,...,v,), and

© (vi,...,vp) are linearly independent.

The number of vectors in a basis of V is the dimension of V.



Rank [r] : Number of pivots matrix has

Basis and Dim of four LaE BBE i b

subspaces:

e dimNul(A)=n-r
e dimCol(A) =r

o dimNul(A)=m-r
e dimCol(AT) =r




Orthogonal Complements

Definition. Let W be a subspace of R”. The orthogonal complement of W is the
subspace W of all vectors that are orthogonal to W that is

Wt :={veR" : v-w=0 forallw e W}.

Some helpful theorems:
o (WH)t=Ww

® Nul(A) = Col(AT)+

® Nul(A)t = Col(AT)

® Nul(AT) = Col(A)*

Theorem 43. Let V be a subspace of R". Then dim V + dim V+ = n.



Coordinates

Standard basis (&):

Generally, if v, v,, ... v,area basis
B of vector space V, the coordinate
vector of any vectorw in Vis:

1
€2
WB — C3

?

ifw=ocvi+cva+--+ cpvp

This coordinate vector is unique!



Change of Basis Matrix

Definition. Let 5 and C be two bases of R". The change of basis matrix /¢ 5 is the matrix
such that for all v € R”

le.svB = v Matrix allowing us to go from
coordinates mapped in B to be
mapped onto C

Theorem 45. Let B=(by,...,b,) be a basis of R". Then

lo.q= [bl b,,]
That is, for all v € R",



How do we compute
change of basis
matrix:

What we know:
e |, =Matrix that maps coordinates in B onto
Standard

° IEn’C = Matrix that maps coordinates in C onto
Standard

° IC’En = Matrix that maps coordinates in Standard
ontoC

e le, c

From right to left:

We map coordinates from C into the standard
coordinate plane, then, we map the newly acquired
standard coordinates onto B’s coordinate plane

AKA: IB,C



Orthogonal and Orthonormal Bases

Definition. An orthogonal basis (an orthonormal basis) is an orthogonal set of vectors (an
orthonormal set of vectors) that forms a basis.

Theorem 47. Let B := (b1, ba,...,b,) be an orthogonal basis of R", and let v € R". Then

_v-b1b+ +v~b,,
“by-b; - " b,-b,

When B is orthonormal, then b; -b; =1 fori=1,...,n.

v b,.

Theorem 48. LetU = (uy,...,un) be an orthonormal basis of R". Then
T
IL{,E,, = [ul u,,] g

Why? An n x n-matrix Q is orthogonal if Q=1 = QT




Linear Transformation

Definition. Let V and W be vector spaces. A map T : V — W is a linear transformation if

T(av+ bw) = aT(v) + bT (w)
forallv,we Vandall a,b € R
To check linearity for a transformation, we can test with 0, since when

T(O0y)=T(0-0y)=0-T(0y) =0y~ T(0y)=0w we multiply anything by 0, we get 0 back in both spaces

Theorem 50. Let T: R" — R™ be a linear transformation. Then there is a m X n matrix A
such that

© T(v)=Av, forallveR".
© A=[T(e1) T(e2) ... T(en)|, where (e1,eo,...,e,) is the standard basis of R".

Remark. We call this A the coordinate matrix of T with respect to the standard bases - we
write Tgm,gn.



Coordinate matrices

Theorem 51. Let V, W be two vector space, let B = (by,...,b,) be a basis of V and
C =(c1,...,cm) be a basis of W, and let T: V. — W be a linear transformation. Then there
Isa mx n matrix T¢c g such that

© T(v)e= Tenvp, forallveV.
© Tep=|T(bi)e T(b2)e ... T(bn)].

apply T

v : vector in V vector in W : T(v)

write in coordinates wrt Bj lwrite in coordinates wrt C

: : multiply by T¢ 5 . :
vz : coordinate vector in R” coordinate vector in R™ : T¢ v




You Try: Linear Transformations

A certain basis of My is M (M1, Mo, M3, My} = {[g (1)] [g 8] [g i] B 3]}

The transformation ¥ acts on the basis vectors as follows:

oour=[g o[£ Eoves [ o[22

7 4
Compute ¥ ([6 3]>

Definition. Let V and W be vector spaces. A map T : V — W is a linear transformation if

T(av+ bw) = aT(v)+ bT(w)



Partial Solution: Linear Transformations

vy =[5 1w = [2 B wy = [F 8 womo = [© 2]

7 4
Compute ¥ (lG 3]>

Definition. Let V and W be vector spaces. A map T : V — W is a linear transformation if

T(av+ bw) = aT(v) + bT (w)

Express [g g] in terms of M basis vectors: [g g] =1 [g (1)] +1 [g 8] +3 [g i]

Thus: ¥ ([2 g]) = V(1M + 1My + 3M3)




Solution: Linear Transformations

Express |:Z; g] in terms of M basis vectors: [Zj g] =1 [g (1)] +1 [g g] + 3 [8 i
7 4
Thus: ¥ ([6 3]> = U(1M; + 1My + 3M3)
Apply Linearity: ¥(1M; + 1My + 3M3) = 1¥(M;) + 1¥(M2) + 3¥(M3)

8 14 4 23 3 18

7 4 66 59
Solve: ¥ ([6 3]> = [17 41]

Substitute Values: 1¥(M,) + 1¥(My) + 38 (M3) = [9 11] N [42 36] N [15 12‘



Determinants
(how to find them)

2x2: easy formula!

([ ) o

Triangular: multiply all of the
diagonal entries together

Otherwise: cofactor expansion
Note: if the matrix A is not

invertible, det(A) = 0 « this is the
definition of a determinant!



Properties of determinants

(Replacement) Adding a multiple of one row to another row does not change the
determinant.

(Interchange) Interchanging two different rows reverses the sign of the determinant.
(Scaling) Multiplying all entries in a row by s, multiplies the determinant by s.

These three things also apply to the columns of a matrix!

Let A, B be two n x n-matrices. Then det(AB) = det(A) det(B)

If Ais invertible, then det(A™1) = det(A)

Let A be an n x n-matrix. Then det(AT) = det(A)



An eigenvector of A is a nonzero v € R"
such that

Eigenvectors and
Eigenvalues Av = Av

An eigenspace is all the eigenvectors
associated with a specific eigenvalue.

Eigenvectors are always linearly independent!




Properties of
Eigenvalues and
Eigenvectors

For a 2x2 matrix:

p(A\) = A2 — Tr(A)X + det(A)

Multiplicity:

- Algebraic multiplicity is the
multiplicity of A in the
characteristic polynomial

- Geometric multiplicity is the
dimension of the eigenspace
of A

Trace: the sum of the diagonal
entries of a matrix
- Tr(A) = sum of all eigenvalues
- det(A) = product of all
eigenvalues



Markov Matrices

Definition: a square matrix with
non-negative entries where the
sum of terms in each column is 1

A probability vector has entries
thatadd up to 1

The A of a Markov Matrix:

- 1 is always an eigenvalue, and
the corresponding eigenvector
is called stationary

- All other [\| £ 1



Diagonalization

P = [vl vn]

Vv are eigenvectors

For a matrix A to be diagonalizable:

- A must be square

- A must have as many unique
eigenvectors as rows/columns
(i.e. it has an eigenbasis)

- A =PDPT

Observe that
A= PDP ! =g, sDIgg,

Where B is the eigenbasis —

diagonalizing is a base change to the
eigenbasis



Matrix Powers and Matrix power: diagonal matrices are

: : | . ——
Matrix Exponential Y aAm = pomp
(A1) ]
Where D™ =
. x x? x3 :
=1+ o+t ot _ (An)™

Matrix exponential:

(AP | (AP

F=1+ At
AT 21 3!

At - PeDtP—].




Linear Differential

Equatlons Let A be an n X n matrix and v € R"
The solution of the differential
equation %‘i‘- = Au with initial condition

u(0) = v isu(t) = e’tv

du With initial condition:

u(0) =v

— = Au
dt
If v.,v,,...v_is an eigenbasis of A:

Aty = c1e>‘1tv1 + -+ c,,e>‘"tv,7




Projecting v onto w yields the vector in
span(w) that is closest to v.

Vector Projections

Projection of v onto w

The error term is v - proj_(v) and is in
span(w)*

Can also use:

S —

W-w

Error term

Where the boxed term is called the
orthogonal projection matrix onto
span(w)




Subspace Projections

Let W be a subspace of R" and v € R". Then v can be written uniquely as

L

V= V -+ vl
N =
in W in WL

v is calculated by projecting v onto an orthogonal basis of W

P,, is the orthogonal projection matrix for subspace W. Calculate P, by
projecting each column of the identity matrix onto W and join them all in a matrix

Q = | — Py, where [ is the identity. Then Py, = Q



Least Squares General algorithm:

. TAR o AT
Solutions: ATAX=A"b
Trying to minimize the Find AT and ATA, then solve the above
distance between Ax and system with any method you prefer.
b for an inconsistent For linear regressions:
system = = /b
A |1 x %1
AR = projcoi(a)(b) N ox [51] = Y2
1 x3 B2 3
LSQ _1 Xg | \ BZ3
solution L l I |
design matrix X X observation vector y

The shape of the design matrix
depends on the problem!




Gram-Schmidt Method

Algorithm. (Gram-Schmidt orthonormalization) Given a basis ai,...,an, produce an
orthogonal basis by, ...,b,; and an orthonormal basis q1,...,qm.

b — . e QR Decomposition: Let Abeanm xn

L=y 41 = 7oy matrix of rank n.
b2 = ay — pro' ar o = by o Thereis an m x n-matrix Q with
i Jsparl(rql)( Z’ b2 orthonormal columns
=(a2-q1)q1 o An upper triangular n x n invertible
. . b3 matrix R such that A = QR.
b3 = a3 — Projepan(qr.q2)(a3) 43 = [y

(a3-91)q1+(a3-92)q2



Spectral Theorem

Theorem 84. Let A be a symmetric n X n matrix. Then A has an orthonormal basis of

eigenvectors. _ _
Orthonormal basis: all vectors are orthogonal (perpendicular) to

each other and dot product of themselves =1

Theorem 85. Let A be a symmetric n X n matrix. Then there is a diagonal matrix D and a
matrix @ with orthonormal columns such that A = QDQT. 01— QT

1

-1

e - 3 1 1 1
=11 3 \> = 4: Eigenvector vo = [1] Normalized, we get q2 = \/lg [1]

20 _a[t 1
D_lo 4] a"dQ_\/i!—1 1]

N

A1 = 2: Eigevector v; = [_11] Normalized, we get q; =



Singular Value Decomposition

Definition. Let A be an m x n matrix. A singular value decomposition of A is a
decomposition A = ULV T where
© U is an m x m matrix with orthonormal columns,
© X is an m x n rectangular diagonal matrix with non-negative numbers on the diagonal,
© V is an n x n matrix with orthonormal columns.

Remark. The diagonal entries o; = X ;; which are positive are called the singular values of A.
We usually arrange them in decreasing order, that is 01 > 05 > ...



SVD Algorlthm Let A be an mxn matrix with rank r

1. Find orthonormal eigenbasis (v1,...,v,) of AT A with eigenvalues
/\12"'2/\r>/\r+1:():"': n-
2. Set oy = /X K0F I =100,
1 -1 0 3. Setu; = LAvy, ..., u, = LAy,
ATA= [—1 2 —1] 4 o1 Or
s Find u,41,...,un € R™ such that (ug,...,uy)

Eigenvalues: A1 =3, A2 =1,A3=0

1 & is an orthonormal basis of R™
Eigenbasis: —% ! , BT N A 5
£
=v; 01
Singular values: o1 := \/5, oy =
: U=[wm ... un], = VS A
Omin{m,n}
Theorem 86. Let A be an m X n matrix with rank r, and let U = [ul ...um},
V= [vl ...v,,] .Y be such that A= ULV isa SVD of A. Then
© (uy,...,u,) is a basis of Col(A). © (vi,...,v,) is a basis of Col(AT).

© (uri1,...,Uupy) is a basis of Nul(AT).  © (V,y1,...,V,) is a basis of Nul(A).



You Try: SVD

A=UxVvT
0 1
where: A= |2 2
1 0
V2 [-1 -1
v 7[—1 1]

Solve for the matrices U and ¥

Hint: ATA has \; =9, ), =1

SVD Algorithm:
Let A be an mxn matrix with rank r

1. Find orthonormal eigenbasis (v1,...,v,) of AT A with eigenvalues
AL Zves 2 X S A =0= = X

9 Set 6y = N Hokd =1,.....,0.
_ 1 S,
3. Setu; = 0_1Av1’ i g oy Ml G—rAv,
4 Find u;41,...,upn € R™ such that (ug,...,uy)
S.



Solution: SVD

0 wa-fp 3|

o1 0 3 0
IT1T) With known singular values: ¥ = | 0 o3| = [0 1

; . [5 4] 1) Find eigenvalues: pa(\) = (5 —A)? =16 = (A —9)(A — 1)
ol Tle s A=91=0=3,1

0 O 0 0

DN =

0
1 1v2
1

] [:ﬂ =§ Fl] V)a;z:ULAgl:%g

2

o

2
1
VI) calculating a 3rd orthonormal vector: 43 = 3 !—1] VII) U = ['{[1 Us 12'3]



Low rank approximation via SVD

Theorem 87. Let A be an m x n matrix with rank r, and let U = [u1 ...up],

V = [v1 ...v,| be matrices with with orthonormal columns and ¥ be a rectangular diagonal
m X n matrix such that A= UX VT is an SVD of A. Then

T i i§
A= olulvlT + o2UgVy + -+ 0o UV,

g1




Compact SVD

For k < r, define

If 71> 02> ......, Then, A isagood approx.
since most of the information is
A= o1urv] + ooupV3 + -+ OklVy inside of first term

Definition. Let A be an m X n matrix with rank r. A compact singular value
decomposition of A is a decomposition A= UL V] where

© U.=[u1 ...u/]isan mx r matrix with orthonormal columns,
© X is an r x r diagonal matrix with positive diagonal elements,
© V.= [vl ...v,] is an n X r matrix with orthonormal columns.
rank = 2 = E. B A5
1 1
[t 1 0_|-7 | [vB oo | s gt
SVD = =i | 9 1 /2 /3
L V3 V3 V3




Pseudo Inverse

Definition. Let A be an m x n matrix with rank r. Given the compact singular value
decomposition A = U.X V.| where

© = [ul ...ur] is an m X r matrix with orthonormal columns,
© X.isan r x r diagonal matrix with positive diagonal elements,
© V.= |vi ...v/]isan nx r matrix with orthonormal columns,

pseudoinverse A" of Aas V.Y _1U/.

Theorem 88. Letv e Col(AT) and w € Col(A). Then ATAv =v and AATw = w

Theorem 89. Let A be an m x n matrix and let b € R™. Then A™b is the LSQ solution of
Ax = b (with minimum length).



Tips on
Approaching
Conceptual
Questions

What topic is the question asking
about?

Not always immediately apparent.
Think about the relevant theorems: is it
a vector or a matrix? Is the matrix
invertible? Is the matrix orthonormal?

For true/false questions:

Look for counter examples. Try easy
test cases like (0 1] and (1 1) to prove
false + 0 e

If you think the statement is true, try to
connect theorems by breaking down
what each part of the statement means



COHCEptual Torii(:: matrix multiplication and
Question Example 1 matrix inverses

17. (5 points) Let A be an n x n matrix. Consider the following statements: T1 '. FALSE' LOOk for a
(T1) If A is not the zero matrix, then A? is also not the zero matrix. CO u nterexa m p | e - p I Ck Som eth I n g
(T2) If A is invertible, then A* is also invertible. 2X2 Wi.th a |O.t Of ZerOS, SUCh aS ( g (1)]

Which of the statements are ALWAYS TRUE?

(A) Neither Statement (T1) nor Statement (T2). T2: TRUE, TO be invertible, a matriX

B) Both Statement (T1) and Statement (T2).

SR — ) has to have a non-zero determinant

Only Statement (T1).

(
(@
(D

)

)

- Recall properties of
determinants: det(A?) = det(A)?

- If det(A) is non-zero, so is
det(A?)




Topic: diagonalization, eigenvectors

Conceptual A: TRUE. Look at the definition of an
QU.EStiOIl Example p) eigenvalue: Av = Av — multiplying A by

5 does not change the vector itself so
5A will also be diagonalizable

18. (5 points) Let A be a diagonalizable 3 x 3 matrix with only two distinct eigenvalues.
Which of the following statements is FALSE?

(A) The matrix 5A is diagonalizable. B TRUE ThlS |S part Of the deﬂ n I'tlon
(B) The matrix A has an eigenbasis. Of d Iagon 3 I |Zab|e m atrlCeS

(C) There are no more than two linearly independent eigenvectors of A.
(D) There is an eigenvalue of A for which the corresponding eigenspace is spanned by . . . .

two linearly independent eigenvectors. C FALSE If A haS an elgen baS I S, It
must have three linearly independent
elgenvectors

D: TRUE. If there are only two distinct
eigenvalues but there is an
eigenbasis, one of the eigenspaces
must have a span of 2 eigenvectors



e Realize how important REF & RREF are

, o
PrOfessor S T]-pS o Help to solve linear systems
- o  Number of pivots can help you solve for the
(From Sprlng 2024) dimension of all fundamental subspaces
o If RREF([A]) = [I], [A] is invertible
o  REF serves as a test for linear independence
and solves for the basis of the column space

e Apply your understanding of the

fundamental subspaces wherever possible

o  Column space is the possible solution set of
a linear system

o  Null space is the 0-eigenspace

o  Rank-nullity is important for conceptual
questions

o  All decomposition, span, and transformation
questions are fundamental subspace
questions

o  Know orthogonal complements




Professor’s Tips
(From Spring 2024)

Abstract vector space questions may seem
intimidating, but each vector can be written
as a column vector and handled normally

o  Matrices, polynomials, etc.
There are an infinite number of bases for a
subspace. How we express a vector is up to
us

o  Thereis nothing special about standard basis
except for being convenient

There is an underlying geometry to all
operations in linear algebra
o  Can be used to understand coordinate

transforms, determinants, bases, subspaces,
decompositions, and more

Conceptual questions can be solved with
applying basic formulas & theorems and
inspecting the consequences of them



Questions?

Good luck on your final exam!

No new problems
Join the queue to see the past
worksheets and solutions!



