MATH 257 Final CARE Review

Please join the queue!

https://queue.illinois.edu/q/queue/955



Midterm 1 Topics

Linear systems
- Solving systems with matrices
Reduced row echelon form
- Pivot columns: basic and free
variables
- Row operations
Vectors and spans
Matrix operations
- Addition, subtraction, scalar
multiplication, linear
combinations
- Transposition

Matrix multiplication

Properties of matrix
multiplication

Matrix inverses

What matrices are invertible?
Elementary matrices



Midterm 2 Topic Summary

Basis and Dimension

- LU Decomposition

- Lower/Upper Triangular Matrix - Fundamental Subspaces
- LU for Linear Systems - Orthonormal bases
- Permutation Matrix - Orthogonal/normal

- Vectors and Spans Complements

- Inner Product

- Orthogonality

- Linear Independence
- Subspaces

- Column Space

- Null Space

Graph and Adjacency Matrices
Coordinates
Coordinate Matrices



Midterm 3 Topic Summary

- Linear Transformation -
- Coordinate Matrices :

- Determinants

- Eigenvectors and -

eigenvalues

- Markov Matrices :

Diagonalization
Matrix powers

- Matrix exponential
Linear differential
equations
Matrix projections
Least squares solutions



Topic Summary - New Content

- Gram-Schmidt Method - PCA

- Spectral Theorem - Complex Numbers

- SVD *not historically part of the
- Low Rank SVD final

- Spectral Theorem
- Psuedo Inverse



Linear Systems

aixy+...+apnx,=D>b

and matrices

Linear systems must have either:
1. One unique solution

2. Infinite solutions

3. No solutions

Equivalent linear systems have the
same set of solutions.

You can represent a linear system
with matrices...



linear system
aiixi + aiexe + -+ + ainxn = b1
ax1X1 + axXxo + -+ + axpnXxp = by

amiX1 + ameX2 + -+ amnXn = bm

coefficient matrix

dl1l d12 dln
da21 da22 d2n
dml | dm2 dmn

Column vector

augmented matrix

di1 d12 din
dani a2 d2n

[@m1  dm2 dmn
Row vector

We often define a matrix in terms of its columns or its rows:

a_are all column vectors

A = [al

a; an]

Rm are all row
vectors

A=




Echelon Forms

Row Echelon Form (REF):

1. All nonzero rows above rows of
all zeros

2. Leading entry (leftmost
nonzero number) is strictly to
the right of the leading entry of
the row above

Reduced Row Echelon Form

(RREF):

1. Leading entries of nonzero
rows are all 1

2. Each leading entry is the only
nonzero entry in the column



Elementary Row
Operations

Elementary operations do not
change the solution set of a
system.

There are three kinds:

1. Replacement (R, — R, +a*R,)
2. Scaling (R, — a*R.)
3. Interchange (R, —R,)

All elementary operations are
reversible. Two matrices are row
equivalent if elementary operations
can turn one into the other.



Matrix Operations

Addition: only defined for matrices
with the same dimensions

a) The sum of A+ B is Subtraction: the same as addition
(a1 +b11 anp+bix -+ ain+ bin |

Scalar multiplication: every entry is
a1 +bx ax+by - a4+ bap P y y

multiplied by the scalar

G ¥ By Bzt b o Band B - Scalar = any real number

Linear combinations: any mixture of

b) The product cA for a scalar c is Scal.a.r multlpllcat!on and |
(cari Jcats @ Cli| addition/subtraction of matrices
Canzy Cdpp -+ Caop

- span(a,b) is a set of ALL the
possible linear combinations of
el AR i aandb




Transpose: switch rows and
columns

Matrix Operations
(cont.)

i - o — p 5 P

18 -7 6 -1 11 6

Matrix-vector multiplication: Ax =
x.a, +x,a,+..+xa which means
you multiply the entries of the
vector with the columns of the
matrix




) Only defined for two matrices A
Matrix and B if

multiplication

- A has the dimensions m x n
and B has the dimensions n x p

- A¥ (exponent) is only defined
for a square matrix

Each entry of AB is a linear
combination of a row of A with a
column of B.

AB = | R,C; ... R2Cp and (AB)U . R,'Cj = a,-1b1j -+ a,-2b2j —+ coumit a,-,,b,,j.
‘ RnCi ... RnC,




Properties of Matrix Multiplication

(a) A(BC) = (AB)C (associative law of multiplication)

(b) A(B+ C) =AB+ AC , (B + C) A= BA+ CA (distributive laws)

(c) r(AB) = (rA)B = A(rB) for every scalar r,

(d) A(rB + sC) = rAB + sAC for every scalars r,s (linearity of matrix multiplication)
(e) ImA = A= Al, (identity for matrix multiplication)

Transpose Theorem: (AB)T =BTAT

Matrix multiplication is NOT COMMUTATIVE: AB # BA




Elementary
Matrices

Any matrix that can be form from
the identity matrix with one
elementary row operation.

ldentity Matrices Ex.

100 i g
1x1
2 X 2 _ _O 0 1- R>—3R» -O O 1
1. 0 0 1 0 0
. 0 1 0 ~> B ¥ 1
etc. & B oL R2<>R3 0 1 O_




Definition of an inverse;
AC =1,
Requirements for a matrix to be

Determinants: invertible:

1. It has to be square

2. The determinant of the matrix
cannot be 0 or

3. The RREF of A is the identity
matrix or

4. A has as many pivots as
columns/rows

Matrix Inverses

1 For the a b
ad — bc BUELDE ¢ id

Statements 2, 3, and 4 mean the
same thing.




Calculating an For 2x2:
Inverse 1 [ J _b}

Al =
ad — bc

Elementary Matrix strategy:

—€ d

A_1 exlE 8 e B = BIES § see Eil

OR: set up an augmented matrix
with the identity and reduce to
RREF



Properties of Matrix Inverses

(a) A~1 is invertible and (A'l)_1 = A (ie. Ais the inverse of A71).
(b) AB is invertible and (AB) ' = B~1A"L.
(c) AT is invertible and (AT)~ = (A‘l)T.

Inverses are unique! Every invertible matrix only has one inverse.

Multiplying by a matrix inverse is the closest we get to dividing matrices.

Theorem 14. Let A be an invertible n x n matrix. Then for each b in R", the equation
Ax = b has the unique solution x = A~ 1b.



Upper/Lower Triangular Matrices

Upper Triangular: ~ Lower Triangular. LU Decomposition:
% % * x | |*x 0 0 0 A=LU

O_
0 « « %« +| |* *= 0 0 O
00******00
0

- Not all matrices have

B B % | e E s LU decompositions
000 0 | % 7x"x & & .
- - - LU decompositions are
Finding this is like Keep track of your row

doing REF with only operations to find L !‘]O’[ unique (unllke
row replacement II‘\VGI’SGS)



Finding the LU Decomposition

Determine the LU-decomposition of

[ 2

> p =
NS S\

i 1) Col1TRow?2 2)Col 1 Row 3 1 2
8

Rz—)RQ —4 Rl,R3—)R3 —4 R1

N

2

o ]

0 -4 O

e

R3—)R3

o BN

3) Col 3Row 3 r
>

—1|r |0

0 —4 —4

2 2
0 4



LU for Linear
Systems

Use LU decomposition to solve a linear

system if:

1. Ais nxn matrix
2. A=LU

3. beR"

Step-by-step Algorithm

1. FindLandU

2. SolveforcusinglLc=b
3. Solve forx usingUx =c

Ax = b

O\

lc=b— Ux=c

Ax = (L =L(Ux) = Le



Permutation Matrices: for matrices that don’t have

an LU decomposition

Theorem 21. Let A be n X n matrix. Then there is a permutation matrix P such that PA

has an LU-decomposition. Step-by-step:

- 1— - O- e Use the interchange operation done
0 0 on A to an equivalent size identity
0| = PA matrix, this will be your P matrix

|

A=

e Solve the for the LU decomposition

N>
= of PA
e * e e When we apply the P! to LU (on the right),
0
1
0

1 1 9
2 1 0
we'll be able to get the original value of A

g1 |2 1 0
g1 |8 5 B
i) 0 B d

o\ 7

0
P=|0
1

100 2 :[

N

"

=:U

'{ OorR O

I
'\



Inner Product,
Norm, and Distance

. then v-wis

ViWwy + VoWo + - -+ + VW,

The inner product of v,w € R" is
V- -W = VTW
AKA the dot product
It is a scalar!

Definition. Let v,w € R".

The norm (or length) of v is

V| = Vv -v=1/vi+ -+ V2
The distance between v and w is

dist (v,w) = [|[v — w||.

The norm is also a scalar!



Properties of the Inner Product: similar to scalars

Theorem 22. Letu,v andw be vectors in R", and let ¢ be any scalar. Then
(a) U-v=V-u Commutative!

(b) (u+v)-w=u-w-+v-w Distributivel

(C) (cu) ‘v =C (u 5 v) —u- (cv) Associative!

(d) u-u>0,andu-u=0ifandonly ifu=0.



Orthogonality Orthonormality

(fancy word for perpendicular)

A unit vector in R” is vector of length 1.
Vectors are orthogonal if their

dot product is zero. u— ——

vl

Orthonormal sets are all orthogonal
to each other and unit vectors.

Ex.

Why? The dot product of two
non-zero vectors can only be

zero if the angle between
them is 90.




Subspaces W is a subspace of V, if:

e W contains the 0 vector

e Adding any 2 vectorsin W
together gives a vector also in
W

e Multiplying any vector in W by
any scalar gives a vector also
in W

Theorem 24. Letwvy,vs,...,vy, € R,

Then Span (v1,v2,...,Vy) is a subspace of R".




Vector Spaces 'V’

u,v,w € V and for all scalars c,d € R:

© u+tvisin V. (Vis “closed under addition".)
Qutv=v+u.

© (u+v)+w=u+(v+w).

© There is a vector (called the zero vector) Oy in V such that u+ 0y = u.

© For each u in V, there is a vector —u in V satisfying u + (—u) = 0y,.

© cuisin V. (Vis “closed under scalar multiplication”.)
© c(u+v)=cu+ecv.

© (¢ + d)u=cu+ du.

© (cd)u = c(du).

© lu=u.




Column Spaces

Definition. The column space, written as Col(A), of an m x n matrix A is the set of all
linear combinations of the columns of A. If A= [al a - a,,], then

Col(A) = span (a1, a2, ..., an).

1 10 —24 —42] How to solve for Col(A):
A=1 1 -8 =18 =32

9 90 51 Q7 Put matrix A into REF

1.
- 2. Find all the pivots of A
3. Map the pivots to the
columns of your original

matrix, A
—24
- ’ [_18]
al

1 —-10 -24 —42
1 —8 _18 —32 RZ_RI_} RZ
3

—2 20 51 87

1
Col(A) :{ [_19] ;




Null Spaces

Definition. The nullspace of an m x n matrix A, written as Nul(A), is the set of all solutions
to the homogeneous equation Ax = 0; that is, Nul(A) = {ve R" : Av = 0}.

How to solve for Nul(A):

1. Set matrix A into Augmented Matrix
with zeros on the right (Ax = 0)

2. Get Ainto RREF

3. Solve for x

Nul(A) = span(x,, X,,...)



Null Space Example

(bR
R e
M0 L s

-3
-1
-4

-x1-2x2-xq+3x5=0

-x3+2xq-—2x5=0

1 = 229 + x4 — 3T5

r3 = —2x4 + 225

(229 + 24 — 35|

T2
—2x4 + 25
T4

L5

Nul A = SpanJ

dmi=220
= ()
Ot (et ()= (0)

1

(2

A
2

()

)

\ 0/

3
)

e

o

\1)




Linear Independence

Definition. Vectors vy,...,v, are said to be linearly independent if the equation
X1v1 +xoVo + -+ + xpv, = 0

has only the trivial solution (namely, x; = x = -+ = x, = 0).
We say the vectors are linearly dependent if they are not linearly independent.

Theorem 30. Let A be an m x n matrix. The following are equivalent:
© The columns of A are linearly independent.
© Ax = 0 has only the solution x = 0.
© A has n pivots.
© there are no free variables for Ax = 0.



Basis and Dimension

Definition. Let V be a vector space. A

sequence of vectors (vi,...,v,) in Vis a
basis of V |f

© V =span(vy,...,v,), and

© (vi,...,vp) are linearly independent.

The number of vectors in a basis of V is the dimension of V.



Basis and Dimension example

1 0 (| Our set has 3 vectors and - e T .
eneral Definition of dimension
s [ [2],11],]0] | abasisof R3?  gimRE=3—
. n__
0 1 3 Next, we check linear dimR" = n
J independence

i1 B8 i1 @ 3 ER
21 0|~ (01 -2~ |0 1 =2
0O 1 3 0 1 3 0 0 5 *Recall: All pivots for
L. l L - - - nxn matrix means

linear independence

Theorem 33. A basis is a minimal spanning set of V/; that is the elements of the basis span
V' but you cannot delete any of these elements and still get all of V.




Rank [r] : Number of pivots matrix has

Basis and Dim Of fOUI' Let A be an m X n matrix with rank r

subspaces:

e dimNul(A)=n-r
e dimCol(A) =r

o dimNul(AD)=m-r
e dimCol(AT)=r




Graphs and Adjacency Matrices

A graph is a set of nodes (or: vertices) that are connected through edges.

Definition. Let G be a graph with n nodes. The adjacency matrix of G is the n X n-matrix
A = (ajj) such that

1 if there is an edge between node i/ and node j
an —
= 0 otherwise .

N1 N2 N3 N4

@ 2 0 1 1 O1Node1:Connectedto N2 & N3
1 1 1 0O [Node2: ConnectedtoN1T,N2, &N3
1 1 0 1 {Node3:ConnectedtoN1, N2 &N4
00 1 0

@ @ 't _|Node 4: Connected to N3



Walks and Paths

Definition. A walk of length k on a graph of is a sequence of k + 1 vertices and k edges
between two nodes (including the start and end) that may repeat.A path is walk in which all
vertices are distinct.

Example. Count the number of walks of length 2 from node 2 to node 3 and the number of
walks of length 3 from node 3 back to node 3:

© Node 2 to Node 3{ 2 walks of length 2
© Node 3 to Node 3: 3 walks of length 3




Directed Graphs

Definition.

A directed graph is a set of vertices connected by edges, where the edges have a
direction associated with them.

®

1
(2) N1
0

0

Definition.
G is the n x

N2 N3 N4
0 0 0
0 1 0
0 0 O
E 1 9

Node 1: Nothing pointing to N1
Node 2: N1 and N3 pointing to N2
Node 3: N1 points to N3

Node 4: N2 and N3 pointing to N4

Let G be a directed graph with m edges and n nodes. The adjacency matrix of

n matrix A = (a; ;)i with

S { 1, if there is a directed edge from node j to node i
i

0, otherwise



Edge-Node Incidence

Definition. Let G be a directed graph with m edges and n nodes. The edge-node incidence
matrix of G is the m x n matrix A = (a;);; with

—1, if edge i leaves node j
ajj =4 -1, if edge i enters node j
0, otherwise

NT N2 N3 N4

[.—d 1 0 O] Edge 1: Leaves N1; Enters N2
-1 0 1 0| Edge2:Leaves N1; Enters N3
0 1 —1 0] Edge 3: Leaves N3; Enters N2
0 —1 0 1| Edge 4:Leaves N2; Enters N4

| 0 0 —1 1] Edge5:Leaves N3; Enters N4




‘Connectedness’

Definition. A connected component of an undirected graph is a part in which any two
vertices are connected to each other by paths, and which is connected to no additional vertices
in the rest of the graph. The connected components of a directed graph are those of its
underlying undirected graph. A graph is connected if only has one connected component.

A graph with one connected component: A graph with two connected components:
O &
1 2

Theorem 40. Let G be a directed graph and let A be its edge-node incidence matrix. Then
dim Nul(A) is equal to the number of connected components of G.



Definition. A cycle in an undirected graph is a path in which all edges are distinct and the
only repeated vertices are the first and last vertices. By cycles of a directed graph we mean
those of its underlying undirected graph.

Cycle 1 Cycle 2 Cycle 3
iy BT =
1 0 1
1{lar|l=-1] = ||lo0
0 —1 —1
| i@ | | 4 | L, |

Theorem 41. Let G be a directed graph and let A be its edge-node incidence matrix. Then
the cycle space of G is equal to Nul(AT).



Orthogonal Complements

Definition. Let W be a subspace of R”. The orthogonal complement of W is the
subspace W of all vectors that are orthogonal to W that is

Wt :={veR" : v-w=0 forallw e W}.

Some helpful theorems:
o (WH)t=Ww

® Nul(A) = Col(AT)+

® Nul(A)+ = Col(AT)

® Nul(AT) = Col(A)*

Theorem 43. Let V be a subspace of R". Then dim V + dim V+ = n.



Coordinates

Standard basis (¢):

Generally, ifv_, v,, ... v,area basis
B of vector space V, the coordinate
vector of any vectorwin Vis:

1
€2
WB — C3

?

ifw=ocvi+cva+--+ cpvp

This coordinate vector is unique!



Coordinate Example

Let V = R2, and consider the bases

= (bl — E] by = [ 11]) W = [_31} Determine wi and wg
1 0 We want to find ‘w’ in terms of B's and
Ei= e = 0 , € = 1 E's coordinate planes

3 | | | 1 1 5 1 1 This is what [3,-1]
— — W = i A s
1 Ci 1 + O 1 1 -+ 1 B 5 looks like in ‘basis’ B

37 [t o1 b oM., — [3] s e
2| =alo) ey =2l ren ]y =5




Change of Basis Matrix

Definition. Let 5 and C be two bases of R". The change of basis matrix /¢ 5 is the matrix
such that for all v € R”

le.svB = v Matrix allowing us to go from
coordinates mapped in B to be
mapped onto C

Theorem 45. Let B=(by,...,b,) be a basis of R". Then

lo.q= [bl b,,]
That is, for all v € R",



What we know:

e |, =Matrix that maps coordinates in B onto
Standard
HOW dO we ComPUte ° IB‘En = Matrix that maps coordinates in Standard

change of basis onto B

matriX. ° IEn'C = Matrix that maps coordinates in C onto
¢ Standard
° IC’En = Matrix that maps coordinates in Standard
ontoC

e le, c

From right to left:

We map coordinates from C into the standard
coordinate plane, then, we map the newly acquired
standard coordinates onto B’s coordinate plane

AKA: IB,C




Orthogonal and Orthonormal Bases

Definition. An orthogonal basis (an orthonormal basis) is an orthogonal set of vectors (an
orthonormal set of vectors) that forms a basis.

Theorem 47. Let B := (b1, ba,...,b,) be an orthogonal basis of R", and let v € R". Then

_v-b1b+ +v~b,,
“by-b; - " b,-b,

When B is orthonormal, then b; -b; =1 fori=1,...,n.

v b,.

Theorem 48. LetU = (uy,...,un) be an orthonormal basis of R". Then
T
IL{,E,, = [ul u,,] g

Why? An n x n-matrix Q is orthogonal if Q=1 = QT




Linear Transformation

Definition. Let V and W be vector spaces. A map T : V — W is a linear transformation if

T(av+ bw) = aT(v) + bT (w)
forallv,we Vandall a,b € R
To check linearity for a transformation, we can test with 0, since when

T(O0y)=T(0-0y)=0-T(0y) =0y~ T(0y)=0w we multiply anything by 0, we get 0 back in both spaces

Theorem 50. Let T: R" — R™ be a linear transformation. Then there is a m X n matrix A
such that

© T(v)=Av, forallveR".
© A=[T(e1) T(e2) ... T(en)|, where (e1,eo,...,e,) is the standard basis of R".

Remark. We call this A the coordinate matrix of T with respect to the standard bases - we
write Tgm,gn.



Coordinate matrices

Theorem 51. Let V, W be two vector space, let B = (by,...,b,) be a basis of V and
C =(c1,...,cm) be a basis of W, and let T: V. — W be a linear transformation. Then there
Isa mx n matrix T¢c g such that

© T(v)e= Tenvp, forallveV.
© Tep=|T(bi)e T(b2)e ... T(bn)].

apply T

v : vector in V vector in W : T(v)

write in coordinates wrt Bj lwrite in coordinates wrt C

: : multiply by T¢ 5 . :
vz : coordinate vector in R” coordinate vector in R™ : T¢ v




Determinants
(how to find them)

2x2: easy formula!

([ ) -

Triangular: multiply all of the
diagonal entries together

Otherwise: cofactor expansion
Note: if the matrix A is not

invertible, det(A) = 0 « this is the
definition of a determinant!



Cofactor Expansion Example

1

= 2-(—1)**%. 3 2

1

H-1)(-1)2*

2

2

==2:(=1)+(-1):1=0=1

1 2

3 =1
2 0

+2.(—-1)*3. +1.(-1)*3.| 3 -1

2 0

—0-2-(-4)+1-(-7)=1



Properties of determinants

(Replacement) Adding a multiple of one row to another row does not change the
determinant.

(Interchange) Interchanging two different rows reverses the sign of the determinant.
(Scaling) Multiplying all entries in a row by s, multiplies the determinant by s.

These three things also apply to the columns of a matrix!

Let A, B be two n x n-matrices. Then det(AB) = det(A) det(B)

If Ais invertible, then det(A™1) = det(A)

Let A be an n x n-matrix. Then det(AT) = det(A)



An eigenvector of A is a nonzero v € R"
such that

Eigenvectors and
Eigenvalues Av = Av

An eigenspace is all the eigenvectors
associated with a specific eigenvalue.

Eigenvectors are always linearly independent!




Calculating eigenvectors and eigenvalues

Theorem 59. Let A be an n x n matrix. Then pa(t) := det(A — tl) is a polynomial of
degree n. Thus A has at most n eigenvalues.

Definition. We call pa(t) the characteristic polynomial of A.
The roots of the characteristic polynomial are the eigenvalues

Let A be n X n matrix and let \ be eigenvalue of A. Then

Eig,(A) = Nul(A — \J).

General algorithm: 1) find det(A-Al) and solve for A
2) plug each eigenvalue back into A-Al
3) solve for the nullspace




Properties of
Eigenvalues and
Eigenvectors

For a 2x2 matrix:

p(A\) = A2 — Tr(A)X + det(A)

Multiplicity:

- Algebraic multiplicity is the
multiplicity of A in the
characteristic polynomial

- Geometric multiplicity is the
dimension of the eigenspace
of A

Trace: the sum of the diagonal
entries of a matrix
- Tr(A) = sum of all eigenvalues
- det(A) = product of all
eigenvalues



Markov Matrices

Definition: a square matrix with
non-negative entries where the
sum of terms in each column is 1

A probability vector has entries
thatadd up to 1

The A of a Markov Matrix:

- 1 is always an eigenvalue, and
the corresponding eigenvector
is called stationary

- All other |[\| = 1



Why is a Markov Matrix useful?

Theorem 65. Let A be an n x n-Markov matrix with only positive entries and let z € R" be
a probability vector. Then

Zoo 5= i Az exists,
k—o0

and z, is a stationary probability vector of A (ie. Az, = z,).

This basically says you can left multiply A with z infinitely and you will
get a stationary probability vector (steady state)

D x¢: % of population employed at time t

9 ‘ 5 yt: % of population unemployed at time t

1 Xt+1 _ -9Xt+-5yt _ 9 b Xt
| yii1 1x: + 5y 1 5|y



Diagonalization

P = [vl vn]

Vv are eigenvectors

For a matrix A to be diagonalizable:

- A must be square

- A must have as many unique
eigenvectors as rows/columns
(i.e. it has an eigenbasis)

- A =PDP’

Observe that
A= PDP ! =g, sDIgg,

Where B is the eigenbasis —

diagonalizing is a base change to the
eigenbasis



Matrix Powers and Matrix power: diagonal matrices are

1 3 ! m mp—
Matrix Exponential Y aAm = pomp
(A1)™ ]
Where D™ =
. x x? x3 :
=1+ o+t ot _ (An)™

Matrix exponential:

(AP | (AP

F=1+ At
AT 21 3!

At - PeDtP—].




Linear Differential

Equatlons Let A be an n X n matrix and v € R"
The solution of the differential
equation %‘i‘- = Au with initial condition

u(0) = v isu(t) = e’tv

du With initial condition:

u(0) =v

— = Au
dt
If v.,v,,...v_is an eigenbasis of A:

Aty = c1e>‘1tv1 + -+ c,,e>‘"tv,7




Projecting v onto w yields the vector in
span(w) that is closest to v.

Vector Projections

Projection of vontow

The error term is v - proj_(v) and is in
span(w)*

Can also use:

S —

W-w

Error term

Where the boxed term is called the
orthogonal projection matrix onto
span(w)




Subspace Projections

Let W be a subspace of R" and v € R". Then v can be written uniquely as

L

V= V -+ vl
N =
in W in WL

v is calculated by projecting v onto an orthogonal basis of W

P,, is the orthogonal projection matrix for subspace W. Calculate P, by
projecting each column of the identity matrix onto W and join them all in a matrix

Q = | — Py, where [ is the identity. Then Py, = Q



LeaSt Squares General algorithm:

- TAR o AT
Solutions: ATAX=A"b
Trying to minimize the Find AT and ATA, then solve the above
distance between Ax and system with any method you prefer.
b for an inconsistent For linear regressions:
system = = /b
A |1 x %1
AR = projcoi(a)(b) N ox [51] = Y2
1 x3 B2 3
LSQ _1 Xg | \ BZ3
solution L l I |
design matrix X X observation vector y

The shape of the design matrix
depends on the problem!




Gram-Schmidt Method

Algorithm. (Gram-Schmidt orthonormalization) Given a basis ai,...,an, produce an
orthogonal basis by, ...,b,; and an orthonormal basis q1,...,qm.
e QR Decomposition: Let Abeanm xn
b; =a —
1= <1 41 = 7, matrix of rank n.
- P 1 _ _bo o Thereis an m x n-matrix Q with
b2 = PrOJspan(ql)(azz’ Ha= [[b2]i orthonormal columns
— v o An upper triangular n x n invertible
(o) R h that A = QR
_ . b3 matrix R such that A = QR.
b; = a3 — BrOJspan(ql,qg)(a3Z 43 = Tb3]|

(a3-91)q1+(a3-92)q2



Spectral Theorem

Theorem 84. Let A be a symmetric n X n matrix. Then A has an orthonormal basis of

eigenvectors. _ _
Orthonormal basis: all vectors are orthogonal (perpendicular) to

each other and dot product of themselves =1

Theorem 85. Let A be a symmetric n X n matrix. Then there is a diagonal matrix D and a
matrix @ with orthonormal columns such that A = QDQT. 01— QT

1

-1

e - 3 1 1 1
=11 3 \> = 4: Eigenvector vo = [1] Normalized, we get q2 = \/lg [1]

20 _a[t 1
D_lo 4] a"dQ_\/i!—1 1]

N

A1 = 2: Eigevector v; = [_11] Normalized, we get q; =



Singular Value Decomposition

Definition. Let A be an m x n matrix. A singular value decomposition of A is a
decomposition A = ULV T where
© U is an m x m matrix with orthonormal columns,
© X is an m x n rectangular diagonal matrix with non-negative numbers on the diagonal,
© V is an n x n matrix with orthonormal columns.

Remark. The diagonal entries o; = X ;; which are positive are called the singular values of A.
We usually arrange them in decreasing order, that is 01 > 05 > ...



SVD Alg()rlthm Let A be an mxn matrix with rank r

1. Find orthonormal eigenbasis (v1,...,v,) of AT A with eigenvalues
/\12"'2/\r>/\r+1:():"': n-
2. et oy = /X K0k I =100,
1 -1 0 3. Setu; = LAvy, ..., u, = LAy,
ATA= [—1 2 —1] 4 o1 Or
s Find u,41,...,un € R™ such that (ug,...,uy)

Eigenvalues: A1 =3, A2 =1,A3=0

1 & is an orthonormal basis of R™
Eigenbasis: —% ! , BT N A 5
£
=v; 01
Singular values: o1 := \/5, oy =
: U=[wm ... un], = VS A
Omin{m,n}
Theorem 86. Let A be an m X n matrix with rank r, and let U = [ul ...um},
V= [vl ...v,,] .Y be such that A= ULV isa SVD of A. Then
© (uy,...,u,) is a basis of Col(A). © (vi,...,v,) is a basis of Col(AT).

© (uri1,...,Uupy) is a basis of Nul(AT).  © (V,y1,...,V,) is a basis of Nul(A).



Low rank approximation via SVD

Theorem 87. Let A be an m x n matrix with rank r, and let U = [u1 ...up],

V = [v1 ...v,| be matrices with with orthonormal columns and ¥ be a rectangular diagonal
m X n matrix such that A= UX VT is an SVD of A. Then

T i i§
A= olulvlT + o2UgVy + -+ 0o UV,

g1




Compact SVD

For k < r, define

If 01> 02> ......, Then, A isagood approx.
since most of the information is
A= o1urv] + ooupV3 + -+ OklVy inside of first term

Definition. Let A be an m X n matrix with rank r. A compact singular value
decomposition of A is a decomposition A= UL V] where

© U.=[u1 ...u/]isan mx r matrix with orthonormal columns,
© X is an r x r diagonal matrix with positive diagonal elements,
© V.= [vl ...v,] is an n X r matrix with orthonormal columns.
rank =2 = E. B A5
1 1
[t 1 0_|-7 | [vB oo | s gt
SVD = =i | 9 1 /2 /3
L V3 V3 V3




Pseudo Inverse

Definition. Let A be an m x n matrix with rank r. Given the compact singular value
decomposition A = U.X V.| where

© = [ul ...ur] is an m X r matrix with orthonormal columns,
© X.isan r x r diagonal matrix with positive diagonal elements,
© V.= |vi ...v/]isan nx r matrix with orthonormal columns,

pseudoinverse A" of Aas V.Y _1U/.

Theorem 88. Letv e Col(AT) and w € Col(A). Then ATAv =v and AATw = w

Theorem 89. Let A be an m x n matrix and let b € R™. Then A™b is the LSQ solution of
Ax = b (with minimum length).



PCA: Principal Component Analysis

Setup:

e (Given m objects, measure same n variables
e m samples, of n-dimensional data — mxn matrix — X

3 . .
Let X = (a1 ... am| bean m x n matrix. We define the column average

X) of X as
. H(X) = (@ + -+ a)

We say X is centered if u(X) =0 covariance matrix cov(X) of X as L XTX
*%-

© Not centered, replace X by [a; — u(X) ... am— pu(X)] "

© If the columns of X are orthogonal, then cov(X) is a diagonal matrix ~» each variable is
independent.



PCA Process

e |nput: centered mxn matrix, X
e Find cov(X)

e Find orthonormal eigenbasis V1>V2;--
with eigenvalues \1 > --- >\, >0

., Vp of cov(X)

e Write cov(X) as a sum of rank 1 matrices:
cov(X) = AlvlvlT + o+ )\nv,,vnT

e The principal component v. explains part of the variance of the data.
The larger A, the more of the variances is explained by v.



Complex Numbers

e Real Part: x .
e Imaginary Part: y e ml ] z _Z_f; gl 4
e Complex Conjugate: Z =x - iy o N
e Magnitude: W —
|2 Rz :‘: X
2| = VX2 + 2 | B
Imz=—-y+------- ---9
Z=X—1Iy

Any point in R? can be viewed as a complex

number: (;) & x+iy



Complex Numbers Find:

cont. e Complex eigenvectors/values
e Conjugate Matrix
e Eigen Basis

_21 =

Theorem 90. Letz € C.
Q?ZZ (z — iy) = (z + 2y)

© |z? =2z Va9 = (z+i)(e - iy)
© 2=z  vETE-yErce

A= [(1) ] det(A—)\I):I_l/\ j‘:A2+1

2
complex column vectors z =




Tips on
Approaching
Conceptual
Questions

What topic is the question asking
about?

Not always immediately apparent.
Think about the relevant theorems: is it
a vector or a matrix? Is the matrix
invertible? |Is the matrix orthonormal?

For true/false questions:

Look for counter examples. Try easy
test cases like (0 1] and (1 1) to prove
false + 0 e

If you think the statement is true, try to
connect theorems by breaking down
what each part of the statement means



Conceptual Toptic.:: matrix multiplication and
Question Example 1 matrix inverses

17. (5 points) Let A be an n x n matrix. Consider the following statements: T1 '. FALSE' LOOk for a
(T1) If A is not the zero matrix, then A? is also not the zero matrix. CO u nterexa m p I e - p | Ck Som eth I n g
(T2) If A is invertible, then A* is also invertible. 2X2 Wlth a |O.t Of ZGI’OS, SUCh aS ( g (1)]

Which of the statements are ALWAYS TRUE?

(A) Neither Statement (T1) nor Statement (T2). T2: TRUE. TO be |nvertib|e' 3 ma'[l’lx

B) Both Statement (T1) and Statement (T2).

SR — ) has to have a non-zero determinant

Only Statement (T1).

(
(@
(D

)

)

- Recall properties of
determinants: det(A?) = det(A)?

- If det(A) is non-zero, so is
det(A?)




Topic: diagonalization, eigenvectors

Conceptual A: TRUE. Look at the definition of an
QU.EStiOl’l Example 9) eigenvalue: Av = Av — multiplying A by

5 does not change the vector itself so
5A will also be diagonalizable

18. (5 points) Let A be a diagonalizable 3 x 3 matrix with only two distinct eigenvalues.
Which of the following statements is FALSE?

(A) The matrix 5A is diagonalizable. B TRUE Th|S |S part Of the deﬂ nl‘tlon
(B) The matrix A has an eigenbasis. Of dlagonallzable matrlces

(C) There are no more than two linearly independent eigenvectors of A.
(D) There is an eigenvalue of A for which the corresponding eigenspace is spanned by . . . .

two linearly independent eigenvectors. C FALSE If A h as an elgen baSIS, It
must have three linearly independent
elgenvectors

D: TRUE. If there are only two distinct
eigenvalues but there is an
eigenbasis, one of the eigenspaces
must have a span of 2 eigenvectors



e Realize how important REF & RREF are

) [}
PrOfessor S T]-ps o Help to solve linear systems
s o  Number of pivots can help you solve for the
(From Sprlng 2'0 2‘4) dimension of all fundamental subspaces
o If RREF([A]) = [I], [A] is invertible
o  REF serves as a test for linear independence
and solves for the basis of the column space

e Apply your understanding of the

fundamental subspaces wherever possible

o  Column space is the possible solution set of
a linear system

o  Null space is the 0-eigenspace

o  Rank-nullity is important for conceptual
questions

o  All decomposition, span, and transformation
questions are fundamental subspace
questions

o  Know orthogonal complements




Professor’s Tips
(From Spring 2024)

Abstract vector space questions may seem
intimidating, but each vector can be written
as a column vector and handled normally

o  Matrices, polynomials, etc.
There are an infinite number of bases for a
subspace. How we express a vector is up to
us

o  Thereis nothing special about standard basis
except for being convenient

There is an underlying geometry to all
operations in linear algebra
o  Can be used to understand coordinate

transforms, determinants, bases, subspaces,
decompositions, and more

Conceptual questions can be solved with
applying basic formulas & theorems and
inspecting the consequences of them



Questions?

Good luck on your final exam!

No new problems
Join the queue to see the past
worksheets and solutions!



