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Math 285 − Intro Differential Equations Midterm 3 Exam Review

1. Find the eigenvalues and corresponding eigenvectors for the following matrix A:[
0 1
−2 −3

]
The eigenvalues can be calculated with the following equation: det(A− I) = 0∣∣∣∣(0− λ) 1

−2 (−3− λ)

∣∣∣∣ = 0 −→ (−λ)(−3− λ)− (−2) = 0

λ2 + 3λ+ 2 = 0 −→ λ = −1,−2

To find eigenvectors, the following equation must be satisfied: (A− λ) ∗ V = 0

For λ = −1: [
(0− (−1)) 1

−2 (−3− (−1))

]
∗
[
a1
a2

]
=

[
0
0

]
Multiplying the matrix by the vector results in the equation a1 = −a2. If a2 is assumed to be
1, then the eigenvalue λ = −1 has eigenvector:[

1
−1

]

For λ = −2: [
(0− (−2)) 1

−2 (−3− (−2)

]
∗
[
a1
a2

]
=

[
0
0

]
Multiplying the matrix by the vector results in the equation a2 = −2a1. If a1 is assumed to be
1, then the eigenvalue λ = −2 has eigenvector:[

1
−2

]
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2. Find the matrix exponential using Putzer’s Method for the following matrix A:1 0 0
0 −1 2
2 0 0


Putzer’s Method requires the eigenvalues of the matrix. These can be found with the equation
det(A− λI) = 0. ∣∣∣∣∣∣

(1− λ) 0 0
0 (−1− λ) 2
2 0 (−λ)

∣∣∣∣∣∣ = 0

(1− λ) · [(−1− λ) · (−λ)− (2 · 0)] = 0

(1− λ) · (−1− λ) · (−λ) = 0

The eigenvalues are λ1 = 0, λ2 = 1, and λ3 = −1.

Next, set up the corresponding B0, B1, and B2 matrices:

B0 =

1 0 0
0 1 0
0 0 1

 B1 = A− λ1I =

1 0 0
0 −1 2
2 0 0



B2 = (A− λ2I)(A− λ1I) =

(1− 1) 0 0
0 (−1− 1) 2
2 0 (0− 1)

 ∗

1 0 0
0 −1 2
2 0 0

 =

0 0 0
4 2 −4
0 0 0



Now, we must solve a series of first order ODEs to find r1, r2, and r3 so Putzer’s definition of
the matrix exponential can be used.

(a) r1 (Separable equation)
dr1
dt

= λ1r1 r1(0) = 1

dr1
dt

= 0r1 −→ r1 = c −→ r1 = 1

(b) r2 (Integrating factor)
dr2
dt

= λ2r2 + r1 r2(0) = 0

dr2
dt

= 1r2 + 1 −→ dr2
dt

− r2 = 1

r2 = −1 + cet −→ r2(0) = 0 −→ r2 = et − 1

(c) r3 (Integrating factor)
dr3
dt

= λ3r3 + r2 r3(0) = 0

dr3
dt

= −r3 + et − 1 −→ dr3
dt

+ r3 = et − 1
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r3 =
1

2
et − 1 + ce−t −→ r3(0) = 0 −→ r3 =

1

2
et +

1

2
e−t − 1

Now use Putzer’s definition of the matrix exponential:

eAt = B0 · r1 +B1 · r2 +B2 · r3

= 1 ·B0 + (et − 1) ·B1 + (
1

2
et +

1

2
e−t − 1) ·B2

=

1 0 0
0 1 0
0 0 1

+
 (et − 1) 0 0

0 (1− et) (2et − 2)
(2et − 2) 0 0

+
 0 0 0
(2et + 2e−t − 4) (et + e−t − 2) (−2et − 2e−t + 4)

0 0 0


eAt =

 (et) 0 0
(2et + 2e−t − 4) (e−t) (−2e−t + 2)

(2et − 2) 0 1
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3. Solve the ODE with given boundary value conditions. How many solutions does it have?

y′′ + y = 0 y(−π) = 0, y(π) = 2

The characteristic equation r2 + 1 = 0 has roots r = ±i, so

yc = C1sin(t) + C2cos(t)

Substituting for the first condition,

y(−π) = C1sin(−π) + C2cos(−π)

0 = C1(0) + C2(−1)

C2 = 0

Substituting for the second condition,

y(π) = C1sin(π) + C2cos(π)

2 = C1(0) + C2(−1)

C2 = −2

Since C2 can’t equal both 0 and -2, there are no solutions.
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4. Find the matrix exponential using diagonalization for the following matrix A:[
5 4
2 3

]
Diagonalization requires the eigenvalues and eigenvectors of the matrix. These can be found
with the equation det(A− λI) = 0. ∣∣∣∣(5− λ) 4

2 (3− λ)

∣∣∣∣ = 0

(5− λ) · (3− λ)− 8 = 0

λ2 − 8 + 7 = 0 ⇒ (λ− 7)(λ− 1) = 0

The eigenvalues are λ1 = 1 and λ2 = 7.

Next, calculate the corresponding eigenvectors using the eigenvector definition (A− λI)ν = 0

For λ1 = 1: [
4 4
2 2

] [
A
B

]
= 0

By inspection, A+B = 0, so:

λ1 = 1, ν1 =

[
1
−1

]
For λ1 = 7: [

−2 4
2 −4

] [
A
B

]
= 0

By inspection, 2A− 4B = 0, so:

λ2 = 7, ν2 =

[
2
1

]
Now, to perform diagonalization, create the matrices U and D:

U =

[
1 2
−1 1

]
, D =

[
et 0
0 e7t

]
Finally:

eAt = UDU−1

eAt =

[
1 2
−1 1

] [
et 0
0 e7t

] [
1
3

−2
3

1
3

1
3

]

eAt =

[
et+2e7t

3
−2et+2e7t

3
−et+e7t

3
2et+e7t

3

]
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5. Match all the sets of boundary conditions with the solution type they produce when imposed
on the following homogeneous ODE:

y′′ − 2y′ = 0

A) y′(0) = 1 and y′(1) = 0

B) y′(1) = 2 and y′′(1) = 4

C) y(0) = 5 and y′(0) = 2

D) y(0) = 0 and y′(0) = 0

(I) Unique Solution

(II) Infinitely Many Solutions

(III) Trivial Solution

(IV) No Solution

The homogeneous ODE has the following characteristic equation and roots:

r2 − 2r = r(r − 2) = 0

Therefore,
y(x) = c1 + c2 ∗ e2x

Using the boundary conditions from A):

y′(x) = 2c2e
2x

y′(0) = 1 −→ 1 = 2c2e
0 −→ c2 = 1/2

y′(1) = 0 −→ 0 = 2c2e
2 −→ c2 = 0

c2 can’t have two different values. Therefore, A) leads to (IV) No Solution since both boundary
conditions can’t be satisfied.

Using boundary conditions from B):

y′′(x) = 4c2e
2x

y′(1) = 2 −→ 2 = 2c2e
2 −→ c2 = e−2

y′′(1) = 4 −→ 4 = 4c2e
2 −→ c2 = e−2

Both conditions specifiy that c2 = e−2, so c1 can be any value and still satisfy both boundary
conditions. Therefore, the B) boundary conditions lead to (II) Infinitely Many Solutions.

Using boundary conditions from C):

y′(0) = 2
2−→= 2c2e

0 −→ c2 = 1

y(0) = 5
5−→= c1 + c2e0c1 = 5− c2 = 5− 1 = 4

Since unique values can be found for both c1 and c2 for the boundary conditions, the C) condi-
tions lead to (I) Unique Solution.

Using boundary conditions from D):

y′(0) = 0 −→ 0 = 2c2e
0 −→ c2 = 0

y(0) = 0 −→ 0 = c1 + c2c
0 −→ 0 = c1 + 0 −→ c1 = 0

Since the boundary conditions require that both c1 and c2 are 0, the D) boundary conditions
lead to (III) Trivial Solution.
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6. Compute all the eigenvalues and corresponding eigenfunctions for the boundary value problem

y′′ − λy = 0 y′(−2) = 0, y(0) = 0

If a certain range of the real numbers does not include any eigenvalues, show why there are
none in that range

The BVP has eigenvalues

λn = −
(n− 1

2
)2π2

4

with the corresponding eigenfunctions

yn(x) = sin

(
(n− 1

2
)πx

2

)
, (n = 1,2...)

a. There are no positive eigenvalues. Write λ = µ2 (with µ > 0), hence we are solving the diff
eq

y′′ − µy = 0

The corresponding characteristic equation r2 − µ2 = 0 has roots r = ±µ hence the general
solution is

y(x) = C1e
µx + C2e

−µx

Then y(0) = C1 + C2 = 0, hence C2 = −C1 and y(x) = C1(e
µx − e−µx)

Further, y′(x) = C1µ(e
µx + e−µx) so y′(−2) = C1µ(e

−2µ + e2µ) = 0
This leads to C1 = 0, hence y(x) = 0

b. Zero is not an eigenvalue either. For λ = 0 we are solving the DE y′′ = 0
y(x) = C1x+ C2. We have y(0) = C1 = 0 and y′(−2) = C2 = 0, hence y = 0

c. Finally we look for negative eigenvalues λ = -µ2, with µ > 0. We are solving the diff eq

y′′ + µ2y = 0

The general solution has the form

y(x) = C1 cos(µx) + C2 sin(µx)

From y(0) = y(0) = C1 we conclude that y(x) = C2 sin(µx) and y′(x) = C2µ cos(µx)
We have y′(−2) = C2µ cos(2µ) = 0, hence y can be non-zero if and only if cos(2µ) = 0

This last equality occurs if and only if
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2µ = π
(
n− 1

2

)
for some positive integer n. Thus, we have eigenvalues

λn = −µ2
n = −

(n− 1
2
)2π2

4

with the corresponding eigenfunctions

yn(x) = sin(µnx) = sin

(
(n− 1

2
)πx

2

)
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7. Functions f , g, h and k are 6-periodic. Their values on [−3, 3) are given below. For which of
these functions does the Fourier series converge at x = 0 to the value 1?

f(x) =


2 + x −3 ≤ x < 0

1 x = 0

−2 0 < x < 3

h(x) =


x2 − 1 −3 ≤ x < 0

−1 x = 0

3 0 ≤ x < 3

g(x) =


1 + x −3 ≤ x < 0

4 x = 0

2− x2 0 < x < 3

k(x) =


3 + x −3 ≤ x < 1

1 x = 1

x− 8 1 < x < 3

A) f

B) h

C) None

D) g and k

E) f and h

The Fourier series of a function ϕ(x) converges at x = 0 to value ϕ(0) if ϕ is continuous at

x = 0, and converges to value ϕ(0−)+ϕ(0+)
2

if ϕ jumps at x = 0. Here is the summary of relevant
information

f : f(0−) = 2, f(0+) = −2, jump at x = 0, so Fourier series at 0 has value 0

g: g(0−) = 1, g(0+) = 2, jump at x = 0, so Fourier series at 0 has value 3
2

h: h(0−) = −1, h(0+) = 3, jump at x = 0, so Fourier series at 0 has value 1

k: k(0) = 3 since k is continuous at x = 0, so Fourier series at 0 has value 3

The answer is (B).
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8. Consider the function f(x) = 1− x defined on the interval x ∈ [−1, 1)

(a) Sketch the 2-periodic Classical extension of f(x) on the interval x ∈ [−3, 3]

(b) Compute the 2-periodic Classical Fourier series representation of f(x)

(a) The sketch is shown below.

2

2

f(x)

x

(b) Here we have L = 1 so the Fourier expansion is

f(x) = A0 +
∞∑
n=1

(
An cos

(nπx
1

)
+Bn sin

(nπx
1

))
A0 =

1

2L

∫ 2L

0

f(x)dx =
1

2

∫ 1

−1

(1− x)dx =
1

2

[
x− x2

2

]1
−1

= 1

An =
1

L

∫ 2L

0

f(x) cos
(nπx

L

)
dx =

∫ 1

−1

(1− x) cos(nπx)dx

However, since (1−x) cos(nπx) is an odd function and the integration interval is symmetric:

An = 0

Bn =
1

L

∫ 2L

0

f(x) sin
(nπx

L

)
dx =

∫ 1

−1

(1−x) sin(nπx)dx =

∫ 1

−1

sin(nπx)dx−
∫ 1

−1

x sin(nπx)dx∫ 1

−1
sin(nπx)dx = 0 since integrating an odd function over a symmetric interval. The second

term can be solved with Integration by Parts:

−
∫ 1

−1

x sin(nπx)dx =
[ x

nπ
cos(nπx)

]1
−1

− 1

nπ

∫ 1

−1

cos(nπx)dx

2 cos(nπ)

nπ
− 1

n2π2

[
sin(nπx)

]1
−1

→ Bn =
2 cos(nπ)

nπ

This gives us the Fourier expansion

1 +
∞∑
n=1

2 cos(nπ)

nπ
sin(nπx)
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9. Find the matrix exponential using Putzer’s Method for the following matrix A:[
9 8
6 7

]
Putzer’s Method requires the eigenvalues of the matrix. These can be found with the equation
det(A− λI) = 0. [

(9− λ) 8
6 (7− λ)

]

(9− λ) · (7− λ)− 48 = 0

λ2 − 16 + 15 = 0 ⇒ (λ− 15)(λ− 1) = 0

The eigenvalues are λ1 = 1 and λ2 = 15.

Next, set up the corresponding B0 and B1 matrices:

B0 = I =

[
1 0
0 1

]
B1 = A− λ1I =

[
8 8
6 6

]
Now, we must solve a series of first order ODEs to find r1 and r2 so Putzer’s definition of the
matrix exponential can be used.

(a) r1 (Separable equation)
dr1
dt

= λ1r1 r1(0) = 1

dr1
dt

= r1 −→ r1 = Cet −→ r1 = et

(b) r2 (Integrating factor)
dr2
dt

= λ2r2 + r1 r1(0) = 0

dr2
dt

= 15r2 + et −→ r2 = Ce15t − et

14
−→ r2 =

e15t − et

14

Now use Putzer’s definition of the matrix exponential:

eAt = B0 · r1 +B1 · r2

= B0 · (et) +B1 · (
e15t − et

14
)

=

[
et 0
0 et

]
+

[
8 · e15t−et

14
8 · e15t−et

14

6 · e15t−et

14
6 · e15t−et

14

]

eAt =

[
8e15t+6et

14
8e15t−8et

14
6e15t−6et

14
6e15t+8et

14

]
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