

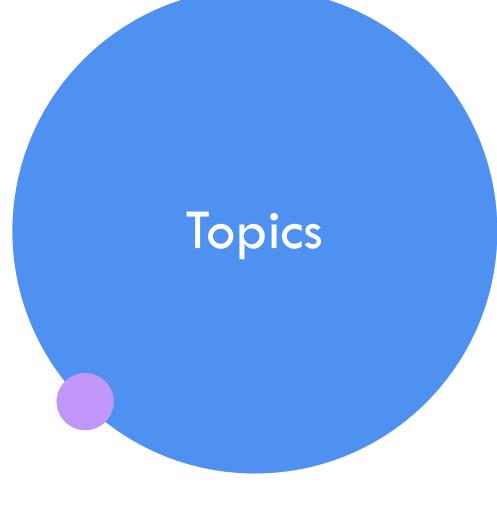
# MATH 285 Midterm 3 Review

CARE

#### Disclaimer

- These slides were prepared by tutors that have taken Math 285. We believe that the concepts covered in these slides could be covered in your exam.
- HOWEVER, these slides are NOT comprehensive and may not include all topics covered in your exam. These slides should not be the only material you study.
- While the slides cover general steps and procedures for how to solve certain types of problems, there will be exceptions to these steps. Use the steps as a general guide for how to start a problem but they may not work in all cases.





- . Systems of Differential Equations
- I. System notation
- II. Variation of Parameters
- III. Eigenvectors/Eigenvalues
- IV. Diagonalization
- V. Putzer's Method
- II. Boundary Value Problems
  - I. Eigenfunction Problems
- III. Fourier Series

# Systems of Ordinary Differential Equations

- Many physical phenomena can be described by a coordinated system of differential equations
- For example, **Maxwell's Equations**:

$$\frac{\partial B}{\partial t} = -\nabla \times E$$
$$u_0 \varepsilon_0 \frac{\partial E}{\partial t} = \nabla \times B$$

 Also, higher order differential equations can be broken down into systems of ODE's

# **Creating Systems**

- General process:
  - Redefine a derivative as a new variable
  - Create vectors v, g, and the matrix A
  - Write the differential equation in general form:

$$\frac{dv}{dt} = A(t)v + g(t)$$



# **Existence and Uniqueness**

• If the equation is **linear**:

$$\frac{dv}{dt} = A(t)v + g(t)$$

• A unique solution exists if A(t) and g(t) are defined on the interval



### **The Fundamental Solution Matrix**

- We want to find n solutions to the system of differential equations, where each solution  $v_i(t)$  is an n-vector
- Build the fundamental solution matrix M(t) by **column**stacking each solution  $v_i(t)$

$$v_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
  $v_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$   $M = \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}$ 

## **The Fundamental Solution Matrix**

- The Wronskian is the determinant of M(t)
  - If  $W(t) \neq 0$ , then a solution exists
  - If coefficients are continuous, then W(t) is either identically zero or nonzero
- M(t) depends on how the solutions are chosen
  - Most convenient choice is  $M(t_0) = I$
  - $M(t_0) = I$  can be calculated as  $M(t)M^{-1}(t_0)$

# **Putting it Together**

• The **homogeneous solution** to the following differential equation:

$$\frac{dv}{dt} = A(t)v \qquad v(t_0) = v_0$$

is given by:

$$v(t) = M(t)M^{-1}(t_0)v_0$$



## **Abel's Theorem Extended**

• For a system of linear differential equations given by

$$\frac{dv}{dt} = A(t)v$$

$$\frac{dW}{dt} = \mathrm{Tr}\big(A(t)\big)W$$

- W is the Wronskian / determinant of the fundamental solution matrix
- The "trace" (Tr) of a matrix is the sum of its diagonal components
- If A(t) is continuous, then the Wronskian is either always or never 0

## Variation of Parameters

• For a system of differential equations given by:

$$\frac{dv}{dt} = A(t)v + g(t)$$

• The **general solution** is given by:

$$v(t) = M(t) \int_{t_0}^{t} M^{-1}(s)g(s)ds + M(t)M^{-1}(t_0)v_0$$
  
particular solution characteristic solution

# **Calculating Eigenvalues and Eigenvectors**

• **Eigenvalues (** $\lambda$ **)** and **eigenvectors (**v**)** are given by:

$$(A-\lambda I)v=0$$

- Calculate **eigenvalues** with:  $det(A \lambda I) = 0$
- Then, calculate **eigenvectors** with **first equation**



## **Matrix Exponentials**

• The matrix exponential definition comes from the **power series** definition of an exponent:

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

$$e^{At} = \sum_{k=0}^{\infty} \frac{(At)^k}{k!} = I + At + \frac{A^2t^2}{2!} + \cdots$$



# **Constant Coefficient Linear Systems**

• If the matrix A is **no longer a function of** t:

$$\frac{dv}{dt} = Av$$

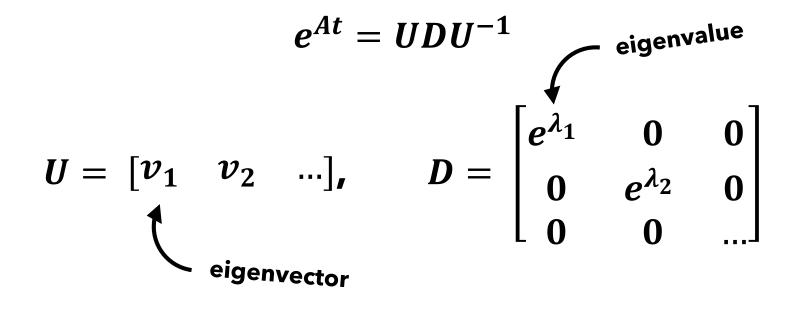
• The **fundamental solution matrix** can be calculated by the **matrix exponential**:

$$M(t) = e^{At}$$



# Diagonalization

• If there are *n* linearly independent eigenvectors, then the matrix exponential can be calculated as:



#### **Putzer's Method**

- Putzer's Method will *always* work for solving the matrix exponential
- Trying to get to:

$$e^{At} = B_0 r_1 + B_1 r_2 + B_2 r_3 \dots$$

• Number of terms matches degree of matrix, I.E. 2x2 matrix goes up to the  $B_1r_2$  term



#### Putzer's Method Contd.

- First, calculate the B matrices
- Follow the pattern:

 $B_0 = I$  $B_1 = (A - \lambda_1 I)B_0$  $B_2 = (A - \lambda_2 I)B_1$ 

. . .



#### Putzer's Method Contd.

- Second, **calculate the r functions**, then plug everything in
- Follow the pattern:

$$\frac{dr_1}{dt} = \lambda_1 r_{1}, \qquad r_1(0) = 1$$

$$\frac{dr_2}{dt} = \lambda_2 r_2 + r_1, \qquad r_2(0) = 0$$

$$\frac{dr_3}{dt} = \lambda_3 r_3 + r_2, \qquad r_3(0) = 0$$

. . .



#### **Putzer's Method Notes and Example**

- Putzer's Method doesn't require knowing the eigenvectors
- More calculation heavy than diagonalization, but no matrix multiplication either
- Example:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$



# **Boundary Value Problems**

- A boundary value problem is an **analog to an initial value problem**
- Instead of specifying just an initial condition, multiple "boundary" values are specified to constrain the solution



# **Eigenfunction Problems**

- BVP with an **unknown constant (eigenvalue)** remaining in it
- Process:
  - Solve the differential equation in terms of the eigenvalue
  - Identify the critical value where solutions change form
  - Apply boundary conditions to check if there are non-trivial solutions for each case
  - Write down the non-trivial eigenvalues and their corresponding eigenfunctions

#### 5.3 Eigenvalue Problem Example

$$y'' + \lambda y = 0$$
  $\lambda = k^2$   $y(0) = 0$   $y'(1) = 0$ 

| Case 1: | $\lambda > 0$ | y = Acos(kx) + Bsin(kx) | $\lambda = \left(n + rac{1}{2} ight)^2 \pi^2$ |
|---------|---------------|-------------------------|------------------------------------------------|
| Case 2: | $\lambda = 0$ | y = A + Bx              | $oldsymbol{\lambda} = oldsymbol{0}$            |

| Case 3: | $\lambda < 0$ | $y = Ae^{kx} + Be^{-kx}$ | $\lambda = 0$ |
|---------|---------------|--------------------------|---------------|
|---------|---------------|--------------------------|---------------|

## **Fourier Series**

- (Nearly) any periodic function can be represented as an **infinite** series of sin and cos functions
- A Fourier Series **will always repeat periodically**, even if the modelled function is only defined on a certain interval

$$f(x) = A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right).$$



#### **Fourier Coefficients**

- The coefficients of the series can be directly calculated using the orthogonality of sin and cos
- The integral **bounds are one period**L is half of a period
- For odd functions,  $A_n = 0$
- For even functions,  $B_n = 0$

 $A_0 = \frac{1}{2L} \int_0^{2L} f(x) dx$  $A_n = \frac{1}{L} \int_0^{2L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$  $B_n = \frac{1}{L} \int_0^{2L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$ 

# **Fourier Cosine Series**

- The Fourier cosine series models the even extension of a function
- Note that for the cosine series L is the full period (because it's half the period when extended)

 $A_0 = \frac{1}{L} \int_0^L f(x) dx$  $A_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$  $f(x) = A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right)$ 

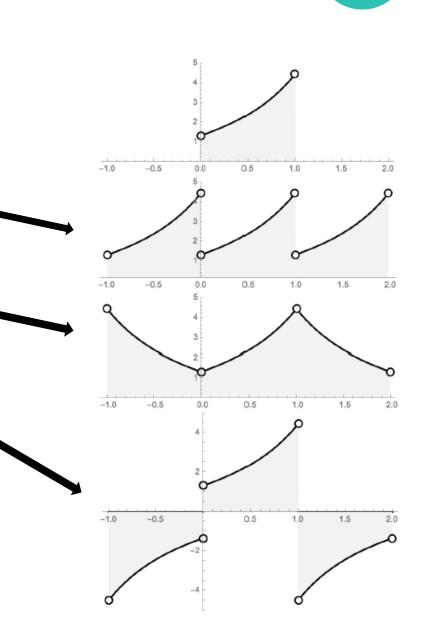
## **Fourier Sine Series**

- The Fourier sine series models the odd extension of a function
- Note that for the sine series L is the full period (because it's half the period when extended)

$$B_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$
$$f(x) = \sum_{n=1}^\infty B_n \sin\left(\frac{n\pi x}{L}\right).$$

# **Fourier Summary**

- The **"normal"** Fourier series is the **periodic extension**
- The Fourier **cosine** series is the **even extension**
- The Fourier **sine** series is the **odd extension**



## **Fourier Convergence Theorem**

**Theorem 6.2.2.** Suppose that f(x) is piecewise  $C^2$  (twice differentiable) and 2L-periodic: f(x + 2L) = f(x), with jump discontinuities at the points of discontinuity. Then the Fourier series

$$A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right)$$

converges to f(x) at points of continuity of f(x), and to  $\frac{1}{2}(f(x^-) + f(x^+))$  at the jump discontinuities.

- If the modelled function is **continuous**, the series converges to the **function values**
- If the modelled function has a **discontinuity**, the series converges to the **average of the values at the jump**

# Thanks for Coming!

