MATH 257 Exam 3 CARE Review

Please join the queue!

https://queue.illinois.edu/q/queue/955

In-Person Resources

CARE Drop-in tutoring:

7 days a week on the 4th floor of Grainger Library! Sunday - Thursday 12pm-10pm Friday & Saturday 12-6pm

Course Office hours:

TAs: Mondays - Thursdays 5-7pm

Mondays: Loomis 136

Tuesdays: Transportation Building 203

Wednesdays: Loomis 136 Thursdays: Loomis 139

Instructors: Chuang (PL1): M 3-5PM in CAB 233 Luecke (PL2,PL3): Tu 3:30-5:30 in Altgeld 105

Subject 🖣	Sunday 🛉	Monday ♦	Tuesday 🖣	Wednesday 🖣	Thursday 🖣	Friday 🖣	Saturday 🖣
Math 257		2pm-10pm	12pm-2pm		1pm-7pm	1pm-5pm	12pm-2pm
	6pm-9pm		3pm-10pm	4pm-6pm 7pm-10pm	8pm-10pm		3pm-5pm

Topic Summary

- Linear Transformation
- Coordinate Matrices
- Determinants
- Eigenvectors and eigenvalues
- Markov Matrices

- Diagonalization
- Matrix powers
 - Matrix exponential
- Linear differential equations

Linear Transformations

Definition. Let V and W be vector spaces. A map $T:V\to W$ is a **linear transformation** if

$$T(a\mathbf{v} + b\mathbf{w}) = aT(\mathbf{v}) + bT(\mathbf{w})$$

for all $\mathbf{v}, \mathbf{w} \in V$ and all $a, b \in \mathbb{R}$.

Theorem 50. Let
$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 be a linear transformation. Then there is a $m \times n$ matrix A such that $\mathbf{O}(\mathbf{v}) = A\mathbf{v}$, for all $\mathbf{v} \in \mathbb{R}^n$.

 $A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \dots \ T(\mathbf{e}_n)], \text{ where } (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n) \text{ is the standard basis of } \mathbb{R}^n.$

Remark. We call this A the **coordinate matrix of** T with respect to the standard bases - we write $T_{\mathcal{E}_m,\mathcal{E}_n}$.

Coordinate matrices

Theorem 51. Let V, W be two vector space, let $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ be a basis of V and $\mathcal{C} = (\mathbf{c}_1, \dots, \mathbf{c}_m)$ be a basis of W, and let $T: V \to W$ be a linear transformation. Then there is a $m \times n$ matrix $T_{\mathcal{C},\mathcal{B}}$ such that

- $T(\mathbf{v})_{\mathcal{C}} = T_{\mathcal{C},\mathcal{B}}\mathbf{v}_{\mathcal{B}}, \quad \text{for all } \mathbf{v} \in V.$

Determinants (how to find them)

2x2: easy formula!

$$\det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$$

Triangular: multiply all of the diagonal entries together

Otherwise: cofactor expansion

Note: if the matrix A is not invertible, $det(A) = 0 \leftarrow this$ is the definition of a determinant!

Cofactor Expansion

Definition. Let A be an $n \times n$ -matrix. The (\mathbf{i}, \mathbf{j}) -cofactor of A is the scalar C_{ij} defined by $C_{ij} = (-1)^{i+j} \det A_{ij}$.

Procedure for large matrices:

- Pick one row or one column to eliminate
- Go one by one in the other dimension (row or column) and ignore all the entries in that row + column
 - Calculate the cofactor
 - Find the determinant of the remaining matrix

This is very impractical for anything larger than 3x3!

Cofactor Expansion Example

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 2 \cdot (-1)^{1+2} \cdot \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + (-1) \cdot (-1)^{2+2} \cdot \begin{vmatrix} 1 & 0 \\ 3 & + 1 \end{vmatrix} + 0 \cdot (-1)^{3+2} \cdot \begin{vmatrix} 1 & 0 \\ 3 & 2 \end{vmatrix}$$
$$= -2 \cdot (-1) + (-1) \cdot 1 - 0 = 1$$

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 0 \cdot (-1)^{1+3} \cdot \begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & 1 \\ 2 & 0 & 1 \end{vmatrix} + 2 \cdot (-1)^{2+3} \cdot \begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & 1 \\ 2 & 0 & 1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & 1 \\ 3 & -1 & 1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & 1 \\ 3 & -1 & 1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & 1 \\ 3 & -1 & 1 \end{vmatrix}$$

Properties of determinants

(Replacement) Adding a multiple of one row to another row does not change the determinant.

(Interchange) Interchanging two different rows reverses the sign of the determinant.

(Scaling) Multiplying all entries in a row by s, multiplies the determinant by s.

These three things also apply to the columns of a matrix!

Let A, B be two $n \times n$ -matrices. Then det(AB) = det(A) det(B)

If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$

Let A be an $n \times n$ -matrix. Then $det(A^T) = det(A)$

Eigenvectors and Eigenvalues

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

An **eigenvector** of A is a nonzero $\mathbf{v} \in \mathbb{R}^n$ such that

$$A\mathbf{v}=\lambda\mathbf{v}$$
eigenvalue

An eigenspace is all the eigenvectors associated with a specific eigenvalue.

Eigenvectors are always linearly independent!

Calculating eigenvectors and eigenvalues

Theorem 59. Let A be an $n \times n$ matrix. Then $p_A(t) := det(A - tI)$ is a polynomial of degree n. Thus A has at most n eigenvalues.

Definition. We call $p_A(t)$ the characteristic polynomial of A.

The roots of the characteristic polynomial are the eigenvalues

Let A be $n \times n$ matrix and let λ be eigenvalue of A. Then

$$\operatorname{Eig}_{\lambda}(A) = \operatorname{Nul}(A - \lambda I).$$

General algorithm: 1) find det(A-λI) and solve for λ 2) plug each eigenvalue back into A-λI 3) solve for the nullspace

Eigenvalue/eigenvector example

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 & 3 \\ 0 & 6 - \lambda & 10 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(6 - \lambda)(2 - \lambda)$$

 \rightarrow A has eigenvalues 2, 3, 6. The eigenvalues of a triangular matrix are its diagonal entries.

$$\lambda_{1} = 2: \qquad A - 2I = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \underset{RREF}{\sim} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2.5 \\ 0 & 0 & 0 \end{bmatrix} \rightsquigarrow \text{Nul}(A - 2I) = \text{span}\left(\begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix} \right)$$

$$\lambda_2 = 3:$$
 $A - 3I = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 10 \\ 0 & 0 & -1 \end{bmatrix} \underset{RREF}{\sim} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \text{Nul}(A - 3I) = \text{span}\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right)$

$$\lambda_3 = 6: \qquad A - 6I = \begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 10 \\ 0 & 0 & -4 \end{bmatrix} \underset{RREF}{\sim} \begin{bmatrix} 1 & \frac{-2}{3} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightsquigarrow \text{Nul}(A - 6I) = \text{span}\left(\begin{bmatrix} \frac{2}{3} \\ 1 \\ 0 \end{bmatrix}\right)$$

Properties of Eigenvalues and Eigenvectors

For a 2x2 matrix:

$$p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A)$$

Multiplicity:

- Algebraic multiplicity is the multiplicity of λ in the characteristic polynomial
- **Geometric** multiplicity is the dimension of the eigenspace of λ

Trace: the sum of the diagonal entries of a matrix

- Tr(A) = sum of all eigenvalues
- det(A) = product of all eigenvalues

Markov Matrices

Γο	.25	.4		
1	.25	.2		
[O	.5	.4]		

Definition: a square matrix with non-negative entries where the sum of terms in each column is 1

A **probability vector** has entries that add up to 1

The λ of a Markov Matrix:

- 1 is always an eigenvalue, and the corresponding eigenvector is called **stationary**
- All other $|\lambda| \le 1$

Why is a Markov Matrix useful?

Theorem 65. Let A be an $n \times n$ -Markov matrix with only positive entries and let $\mathbf{z} \in \mathbb{R}^n$ be a probability vector. Then

$$\mathbf{z}_{\infty} := \lim_{k \to \infty} A^k \mathbf{z} \text{ exists,}$$

and \mathbf{z}_{∞} is a stationary probability vector of A (ie. $A\mathbf{z}_{\infty} = \mathbf{z}_{\infty}$).

This basically says you can left multiply A with **z** infinitely and you will get a stationary probability vector (steady state)

 x_t : % of population employed at time t y_t : % of population unemployed at time t

$$\begin{bmatrix} x_{t+1} \\ y_{t+1} \end{bmatrix} = \begin{bmatrix} .9x_t + .5y_t \\ .1x_t + .5y_t \end{bmatrix} = \begin{bmatrix} .9 & .5 \\ .1 & .5 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix}$$

How to approach a Markov Matrix problem

- 1. Write out the Markov Matrix A. If it helps, make a graph like on the previous slide.
- 2. Determine what the question is asking you to solve for. Steady state? Intermediate state?
- 3. Write the probability vector of what you know of the initial state, if possible.
- 4. To solve for the **steady state**: Find A-1*I and solve for the nullspace, then find the probability vector in the nullspace
- 5. To solve for an **intermediate state**: multiply the initial state vector by the Markov matrix the appropriate number of times.

Diagonalization

$$P = \begin{bmatrix} \mathbf{v_1} & \dots & \mathbf{v_n} \end{bmatrix}$$

v are eigenvectors

$$D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

For a matrix A to be diagonalizable:

- A must be square
- A must have as many unique eigenvectors as rows/columns (i.e. it has an eigenbasis)
- $A = PDP^{-1}$

Observe that

$$A = PDP^{-1} = I_{\mathcal{E}_n,\mathcal{B}}DI_{\mathcal{B},\mathcal{E}_n}$$

Where B is the eigenbasis → diagonalizing is a base change to the eigenbasis

Matrix Powers and Matrix Exponential

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Matrix power: diagonal matrices are

easy!

$$A^m = PD^mP^{-1}$$

Where
$$D^m = \begin{bmatrix} (\lambda_1)^m & & & \\ & \ddots & & \\ & & (\lambda_n)^m \end{bmatrix}$$

Matrix exponential:

$$e^{At} = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \dots$$

 $e^{At} = Pe^{Dt}P^{-1}$

Linear Differential Equations

$$\frac{d\mathbf{u}}{dt} = A\mathbf{u}$$

With initial condition:

$$\mathbf{u}(0) = \mathbf{v}$$

Let A be an $n \times n$ matrix and $\mathbf{v} \in \mathbb{R}^n$ The solution of the differential equation $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$ with initial condition $\mathbf{u}(0) = \mathbf{v}$ is $\mathbf{u}(t) = e^{At}\mathbf{v}$

If $v_1, v_2,...v_n$ is an eigenbasis of A:

$$e^{At}\mathbf{v}=c_1e^{\lambda_1t}\mathbf{v}_1+\cdots+c_ne^{\lambda_nt}\mathbf{v}_n$$

Vector Projections

Projection of v onto w

$$\mathsf{proj}_{\mathbf{w}}(\mathbf{v}) := \frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$$

Error term

Projecting **v** onto **w** yields the vector in span(**w**) that is closest to **v**.

The **error term** is \mathbf{v} - $\operatorname{proj}_{\mathbf{w}}(\mathbf{v})$ and is in $\operatorname{span}(\mathbf{w})^{\perp}$

Can also use:

$$\operatorname{proj}_{\mathbf{w}}(\mathbf{v}) = \left(\frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} \mathbf{w}^T\right) \mathbf{v}$$

Where the boxed term is called the orthogonal projection matrix onto span(w)

Subspace Projections

Let W be a subspace of \mathbb{R}^n and $\mathbf{v} \in \mathbb{R}^n$. Then \mathbf{v} can be written uniquely as

$$\mathbf{v} = \hat{\mathbf{v}} + \mathbf{v}^{\perp}$$
 $\lim_{W \to 0} W + \lim_{W \to 0} W^{\perp}$

v is calculated by projecting v onto an orthogonal basis of W

 P_{W} is the orthogonal projection matrix for subspace W. Calculate P_{W} by projecting each column of the identity matrix onto W and join them all in a matrix

$$Q = I - P_W$$
, where I is the identity. Then $P_{W^{\perp}} = Q$

Least Squares Solutions:

Trying to minimize the distance between Ax and b for an inconsistent system

$$A\hat{\mathbf{x}} = \operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$$

LSQ solution

General algorithm:

$$A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$$

Find A^T and A^TA, then solve the above system with any method you prefer.

The shape of the design matrix depends on the problem!

In-Person Resources

CARE Drop-in tutoring:

7 days a week on the 4th floor of Grainger Library! Sunday - Thursday 12pm-10pm Friday & Saturday 12-6pm

Course Office hours:

TAs: Mondays - Thursdays 5-7pm

Mondays: Loomis 136

Tuesdays: Transportation Building 203

Wednesdays: Loomis 136 Thursdays: Loomis 139

Instructors: Chuang (PL1): M 3-5PM in CAB 233 Luecke (PL2,PL3): Tu 3:30-5:30 in Altgeld 105

Subject 🖣	Sunday 🛉	Monday ♦	Tuesday 🖣	Wednesday 🖣	Thursday 🖣	Friday 🖣	Saturday 🖣
Math 257	1pm-5pm 6pm-9pm	2pm-10pm	12pm-2pm 3pm-10pm	12pm-2pm 4pm-6pm 7pm-10pm	1pm-7pm 8pm-10pm	1pm-5pm	12pm-2pm 3pm-5pm

Questions?

Join the queue to see the worksheet!