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Disclaimer
• These slides were prepared by tutors that have taken Math 

285. We believe that the concepts covered in these slides 
could be covered in your exam. 

• HOWEVER, these slides are NOT comprehensive and may not 
include all topics covered in your exam. These slides should 
not be the only material you study. 

• While the slides cover general steps and procedures for how 
to solve certain types of problems, there will be exceptions to 
these steps. Use the steps as a general guide for how to start a 
problem but they may not work in all cases.
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Topics

I. Linear Independence + Wronskian
II. Linear Constant Coefficient DE’s
III. Solving Particular Solutions

I. Undetermined Coefficients
II. Annihilators
III. Variation of Parameters
IV. Laplace Transformations

IV. Oscillations
I. Mechanical
II. Electrical
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Linear Independence and the Wronskian
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• In order to form a “complete” solution to a differential 
equation, we want to create a linear combination of 
solutions

• We need to have 𝒏𝒏 solution equations, where 𝒏𝒏 is the 
order of the differential equation

• The Wronskian is a tool for determining if our solutions 
are linearly independent



The Wronskian

• Calculate the determinant of the matrix built with solution 
functions and their derivatives

• Results
• If 𝑾𝑾 = 𝟎𝟎, the solutions are linearly dependent
• If 𝑾𝑾 ≠ 𝟎𝟎, the solutions are linearly independent
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Abel’s Theorem
• If the Wronskian is non-zero, then it will solve the first 

order linear differential equation:

𝑾𝑾′ + 𝒂𝒂𝒏𝒏−𝟏𝟏 𝒕𝒕 𝑾𝑾 = 𝟎𝟎
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Linear Constant Coefficient 2nd Order ODEs
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• General Form: 
𝑨𝑨𝒚𝒚′′ + 𝑩𝑩𝒚𝒚𝑩 + 𝑪𝑪𝒚𝒚 = 𝒈𝒈 𝒕𝒕

• Solving:
• Set up the characteristic equation 𝑨𝑨𝑨𝑨𝟐𝟐 + 𝑩𝑩𝑨𝑨 + 𝑪𝑪 = 𝟎𝟎
• Solve the roots of the characteristic equation
• Write the solution as 𝒚𝒚𝒉𝒉 = 𝑪𝑪𝟏𝟏𝒆𝒆𝑨𝑨𝟏𝟏 + 𝑪𝑪𝟐𝟐𝒆𝒆𝑨𝑨𝟐𝟐
• Use initial conditions to solve the constants



Three Specific Cases:
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• Two distinct, real roots (𝑟𝑟1, 𝑟𝑟2):

𝒚𝒚𝒉𝒉 = 𝑪𝑪𝟏𝟏𝒆𝒆𝑨𝑨𝟏𝟏𝒕𝒕 + 𝑪𝑪𝟐𝟐𝒆𝒆𝑨𝑨𝟐𝟐𝒕𝒕

• One distinct, real root (𝑟𝑟1):

𝒚𝒚𝒉𝒉 = 𝑪𝑪𝟏𝟏𝒕𝒕𝒆𝒆𝑨𝑨𝟏𝟏𝒕𝒕 + 𝑪𝑪𝟐𝟐𝒆𝒆𝑨𝑨𝟏𝟏𝒕𝒕

• Two distinct, imaginary roots (a + bi, 𝑎𝑎 − 𝑏𝑏𝑏𝑏):

𝒚𝒚𝒉𝒉 = 𝒆𝒆𝒂𝒂𝒕𝒕(𝑪𝑪𝟏𝟏𝐜𝐜𝐜𝐜𝐜𝐜(𝒃𝒃𝒕𝒕) + 𝑪𝑪𝟐𝟐𝐜𝐜𝐬𝐬𝐬𝐬(𝒃𝒃𝒕𝒕))



Solutions to Non-homogenous Equations
• If you have a linear non-homogenous DE:

𝓛𝓛𝒚𝒚 = 𝒇𝒇 𝒕𝒕

• Its general solution is given by:

𝒚𝒚 𝒕𝒕 = 𝒚𝒚𝒑𝒑𝒂𝒂𝑨𝑨𝒕𝒕 𝒕𝒕 + 𝒚𝒚𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒈𝒈(𝒕𝒕)

𝑦𝑦ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) – homogeneous solution
𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡  - particular solution
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The Method of Undetermined Coefficients
• A way to solve certain non-homogenous linear DEs
• Can be used when f(t) is an exponential, sin or cos, or 

polynomial
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Using Method of Undetermined Coefficients
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1. Initial Differential Equation: 𝒚𝒚′′ + 𝟔𝟔𝒚𝒚′ + 𝟖𝟖𝒚𝒚 = 𝒆𝒆𝒕𝒕

2. Guess in the same form: 𝒚𝒚 = 𝐀𝐀𝒆𝒆𝒕𝒕

3. Plug into the initial equation: 𝑨𝑨𝒆𝒆𝒕𝒕 + 𝟔𝟔𝑨𝑨𝒆𝒆𝒕𝒕 + 𝟖𝟖𝑨𝑨𝒆𝒆𝒕𝒕 = 𝒆𝒆𝒕𝒕

4. Solve for the constants: 𝟏𝟏𝟏𝟏𝑨𝑨 = 𝟏𝟏

5. Write the particular solution: 𝒚𝒚𝒑𝒑 =
𝟏𝟏
𝟏𝟏𝟏𝟏𝒆𝒆

𝒕𝒕



The Method of Undetermined Coefficients Contd.
• If guess functions appear in the homogenous solution, 

multiply by the lowest power of t such that the guess 
no longer solves the homogenous equation

• Example:
• If 𝑒𝑒𝑝𝑝 appears in the homogenous solution and 𝑓𝑓 𝑡𝑡 = 𝑒𝑒𝑝𝑝, guess 
𝐴𝐴𝑡𝑡𝑒𝑒𝑝𝑝 + 𝐵𝐵𝑒𝑒𝑝𝑝

21-23 October, 2024 MATH 285 Midterm 2 Exam Review 12



Annihilators
• Annihilators are another method for solving non-

homogenous differential equations
• Look for an operator that “annihilates” the right-hand side
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Annihilators Contd.
• How to use annihilators to solve particular solutions:

• Solve the homogenous equation
• Pick the right annihilator
• Apply the annihilator to the left-hand side
• Find the solutions to the new homogenous equation
• Identify the solutions that are not part of the original 

homogenous solution
• Plug in your guess and solve for the coefficients
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Variation of Parameters

𝑊𝑊 : Wronskian
𝑦𝑦1 and 𝑦𝑦2: homogenous solutions
𝑓𝑓 is the non-homogenous part

• Process:
• Find two solutions to the homogenous equation (could be given)
• Calculate the Wronskian
• Plug and chug
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Using Laplace Transformations
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1. Initial Differential Equation: 𝒚𝒚′ = 𝒆𝒆𝒕𝒕       𝒚𝒚 𝟎𝟎 = 𝟐𝟐

2. Apply Laplace transform to both sides: 𝒔𝒔𝒔𝒔 𝒔𝒔 − 𝟐𝟐 =
𝟏𝟏

𝒔𝒔 − 𝟏𝟏

3. Algebraically isolate the Laplacian: 𝒔𝒔 𝒔𝒔 =
𝟏𝟏

𝒔𝒔(𝒔𝒔 − 𝟏𝟏) +
𝟐𝟐
𝒔𝒔

4. Rewrite terms to match Laplace tables
     * in this case, partial fraction decomposition 𝒔𝒔 𝒔𝒔 =

𝟏𝟏
𝒔𝒔 − 𝟏𝟏 +

𝟏𝟏
𝒔𝒔

5. Inverse Laplace transform: 𝒚𝒚(𝒕𝒕) = 𝒆𝒆𝒕𝒕 + 𝟏𝟏



Laplace Transforms Tables
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Mechanical Oscillators

21-23 October, 2024 MATH 285 Midterm 2 Exam Review 18

• Derived from fundamental physics: 

𝒉𝒉𝒚𝒚′′ + 𝜸𝜸𝒚𝒚𝑩 + 𝒌𝒌𝒚𝒚 = 𝒇𝒇(𝒕𝒕)

• Can be solved as a standard 2nd order constant coefficient DE

• Frequently may see “natural frequency” 𝝎𝝎𝒏𝒏 = 𝒌𝒌
𝒉𝒉



Mechanical Oscillators Contd.
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• Use the radical part of the quadratic equation to assess cases:

𝜸𝜸𝟐𝟐 − 𝟒𝟒𝒉𝒉𝒌𝒌

Criteria Solution Physical Scenario

γ2 = 0 • roots = ±bi
• 𝑦𝑦ℎ = 𝐶𝐶1cos(𝑏𝑏𝑡𝑡) + 𝐶𝐶2sin(𝑏𝑏𝑡𝑡)

• Undamped
• Oscillates forever

γ2 < 4𝑚𝑚𝑚𝑚 • roots = a±bi
• 𝑦𝑦ℎ = 𝑒𝑒𝑝𝑝𝑝𝑝(𝐶𝐶1cos(𝑏𝑏𝑡𝑡) + 𝐶𝐶2sin(𝑏𝑏𝑡𝑡))

• Underdamped
• Oscillations die away slowly

γ2 = 4𝑚𝑚𝑚𝑚 • roots = a
• 𝑦𝑦ℎ = 𝐶𝐶1𝑡𝑡𝑒𝑒𝑝𝑝1𝑝𝑝 + 𝐶𝐶2𝑒𝑒𝑝𝑝1𝑝𝑝

• Critically damped
• Oscillations die away quickly

γ2 > 4𝑚𝑚𝑚𝑚 • roots = a±b
• 𝑦𝑦ℎ = 𝐶𝐶1𝑒𝑒𝑝𝑝1𝑝𝑝 + 𝐶𝐶2𝑒𝑒𝑝𝑝2𝑝𝑝

• Overdamped
• Oscillations mostly die away quickly



Electrical Oscillators
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• Derived from circuit laws (for series RLC circuits specifically):

𝑳𝑳𝑰𝑰′′ + 𝑹𝑹𝑰𝑰𝑩 +
𝟏𝟏
𝑪𝑪
𝑰𝑰 =

𝒅𝒅𝒅𝒅(𝒕𝒕)
𝒅𝒅𝒕𝒕

• Direct analogues can be drawn from mechanical to electrical 
oscillators

• 𝑳𝑳 = 𝒉𝒉 (inductance)
• 𝑹𝑹 =  ϒ (resistance)
• 𝟏𝟏
𝑪𝑪

= 𝒌𝒌 (inverse capacitance)

• Same cases and implications as mechanical oscillators



Thanks for 
Coming!
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