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Abstract
Extracellular vesicles (EVs) serve as crucial mediators of cell-to-cell communication in normal physiology as well as in diseased states; they have 
been largely studied in regard to their role in cancer progression. However, the mechanisms by which their biogenesis and secretion are regulated 
by metabolic or endocrine factors remain unknown. Here, we delineate a mechanism by which EV secretion is regulated by a cholesterol 
metabolite, 27-hydroxycholesterol (27HC), where treatment of myeloid immune cells (RAW 264.7 and J774A.1) with 27HC impairs lysosomal 
homeostasis, leading to shunting of multivesicular bodies (MVBs) away from lysosomal degradation, toward secretion as EVs. This altered 
lysosomal function is likely caused by mitochondrial dysfunction and subsequent increase in reactive oxygen species (ROS). Interestingly, 
cotreatment with a mitochondria-targeted antioxidant rescued the lysosomal impairment and attenuated the 27HC-mediated increase in EV 
secretion. Overall, our findings establish how a cholesterol metabolite regulates EV secretion and paves the way for the development of 
strategies to regulate cancer progression by controlling EV secretion.
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Extracellular vesicles (EVs) are nano-sized membrane bound 
vesicles that comprise biologically active cargo including pro-
teins, lipids, and nucleic acids (1, 2). They are signaling entities 
involved in mediating cross talk between cells and, in this 
way, they behave like multisignaling hormones (3). The 
International Society for Extracellular Vesicles (ISEV) now de-
fines EVs as “particles naturally released from the cell that are 
delimited by a lipid bilayer and cannot replicate” (4). EVs are 
broadly divided into 2 subgroups: small EVs or exosomes, 

which fall in the size range of 30 to 150 nm and are derived 
from endosomes by their maturation to form multivesicular 
bodies (MVBs), and large EVs or microvesicles (MVs), which 
are in the size range of 150 to 500 nm and are formed at the 
plasma membrane (5). Other subtypes of EVs include exo-
meres (6), oncosomes (7), and apoptotic bodies (8).

EVs, in addition to other secreted factors such as chemokines 
and growth factors, are critical messengers in tumor progres-
sion and metastasis (9, 10). EVs influence cancer progression 

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article/165/11/bqae127/7762157 by U

niversity of Illinois - U
rbana C

ham
paign user on 20 O

ctober 2024

https://orcid.org/0000-0002-1273-0620
https://orcid.org/0000-0002-2716-4203
https://orcid.org/0000-0003-0071-8509
https://orcid.org/0000-0002-1882-6009
https://orcid.org/0000-0002-7623-9734
https://orcid.org/0009-0002-0743-2896
https://orcid.org/0000-0001-7468-7835
https://orcid.org/0000-0002-9386-5630
https://orcid.org/0000-0003-0369-6974
https://orcid.org/0000-0002-8887-1905
mailto:enels@illinois.edu
https://doi.org/10.1210/endocr/bqae127


by transporting molecules that can initiate several patho-
physiological processes such as vascular leakiness, angiogen-
esis, and formation of the premetastatic niche (11, 12). 
Therapeutic targeting of EVs and EV cargo could provide an 
approach to impair metastasis. Several factors, such as post- 
translational modifications (13, 14), hypoxia (15, 16), proto- 
oncogenes, and oncogenes (17, 18) and metabolic changes, 
such as alterations in rates of glycolysis and oxidative phos-
phorylation (19, 20), have been implicated in modulating EV 
secretion as well as EV cargo. Targeting of these regulatory 
pathways may serve as a means to impair the secretion of 
cancer-promoting EVs and thus act as potential therapeutic 
strategies for cancer. Specifically, pathways that alter EV secre-
tion may be prime targets for such intervention. However, 
neither the metabolic or endocrine agents that regulate EV se-
cretion, nor the mechanisms by which EV secretion is regu-
lated, are fully understood.

Elevated cholesterol has been identified as a poor prognos-
tic factor for breast cancer patients and cholesterol lowering 
drugs such as statins have been associated with increased 
recurrence-free survival (21). The cholesterol metabolite 
27-hydroxycholesterol (27HC) is an endogenous oxysterol 
that has been shown to mediate many of the pro-tumor effects 
of cholesterol (22-24). Physiologically, 27HC acts as a 
regulator of cholesterol homeostasis, through feedback inhib-
ition of cholesterol biosynthesis, promotion of cholesterol ca-
tabolism and through increased cellular cholesterol efflux 
(25). However, in the context of breast cancer, 27HC has 
been shown to increase the proliferation of estrogen receptor 
positive (ER+) cancer cells in an ER dependent manner (22). In 
addition, 27HC treatment of metastasis-bearing mice led to 
increased myeloid immune cell infiltration, and a decrease of 
intratumoral CD8+ cytotoxic T cells (23). Mechanistically, 
one way in which 27HC promotes breast cancer progression 
is through its action on liver X receptors (LXRs) in myeloid 
cells, resulting in suppression of T-cell expansion (24). 
Collectively, these studies strongly implicate the involvement 
of 27HC and myeloid immune cells in the progression of 
breast cancer.

Interestingly, while exploring how 27HC alters myeloid im-
mune cell function, we found that the treatment of several cell 
types with 27HC resulted in an increased rate of EV secretion 
and altered EV cargo (26). Simultaneous label-free autofluor-
escence multiharmonic (SLAM) microscopy indicated that 
EVs from 27HC-treated cells had a decreased ratio of flavin 
adenine dinucleotide (FAD) to (FAD + nicotinamide adenine 
dinucleotide [NAD(P)H]) compared with those from dime-
thylsulfoxide (DMSO)-treated cells, suggesting that the cargo 
was altered (26). Importantly, primary tumor and metastatic 
burden was increased in mice treated with EVs derived from 
myeloid immune cells incubated with 27HC, findings that 
were consistent in 2 different murine mammary cancer mod-
els, 4T1 and Met1 (26). Given that EVs secreted post-27HC 
treatment are pro-tumorigenic, our objective was to elucidate 
the mechanism by which 27HC increases the biogenesis of 
these EVs.

Here we have established that 27HC increases EV secretion 
by altering lysosomal homeostasis, leading to MVBs being di-
rected away from lysosomal degradation and toward secretion 
as EVs. We have also observed that the altered lysosomal func-
tion is caused in part by 27HC-mediated mitochondrial 
disruption and subsequent production of reactive oxygen spe-
cies. Further, we have observed that cotreatment of 27HC with 

Mitoquinol (MitoQ), a mitochondria-targeted antioxidant, is 
able to rescue the disrupted lysosomal homeostasis and there-
fore attenuate the 27HC-mediated increase in EV secretion. 
Overall, we have delineated a mechanism causing the increased 
secretion of EVs.

Materials and Methods
Reagents
27HC (purity 95%) was synthesized by Sai Labs (Hyderabad, 
India). Bafilomycin A and Mitoquinol were purchased from 
Cayman Chemicals (Ann Arbor, MI). All compounds were 
dissolved in DMSO and stored at −20 °C.

Cell Culture
Murine cell lines RAW 264.7 and J774A.1 were purchased 
from the American Type Culture Collection (ATCC, USA) 
and were cultured in Dulbecco’s Modified Eagle Medium 
(DMEM, Gibco, USA) media, supplemented with 10% fetal 
bovine serum (FBS, Gibco), 1% Non-essential amino acids 
(Corning), 1% Sodium Pyruvate (Corning) and 1% Penicillin/ 
Streptomycin (Corning). Briefly, cells were seeded and treated 
with the respective compounds for 24 hours in media contain-
ing EV-depleted FBS (Gibco). All cells were maintained at 37 °C 
with 5% CO2. Cell lines were cultured no longer than passage 
25. Cell lines were routinely tested for mycoplasma.

EV Isolation
EVs were isolated from cell culture supernatant using one of 
the two independent methods. For nanoparticle tracking ana-
lysis (NTA), EVs were enriched using ExoQuick TC ULTRA 
EV Isolation Kit (SBI Biosciences) as previously described 
(26). For NTA and Western blot analyses, EVs were enriched 
by differential centrifugation which collected the supernatants 
after 800g for 10 minutes and 2000g for 30 minutes followed 
by ultracentrifugation (Sorvall, Thermo Scientific) at 10 000g 
for 1 hour (Microvesicles or large EVs) and 100 000g for 
1 hour (exosomes or small EVs). Supernatant depleted 
of EVs was considered as vesicle free media and used for 
Western blot analysis.

Nanoparticle Tracking Analysis
The concentration of EVs and their size distributions were 
measured using NanoSight NS300 (Malvern Panalytical). 
For each sample, three 30-second videos were captured and 
analyzed using NTA3.1 software. During capture, screen 
gain was set at 1.0 and camera level at 13. For analysis, screen 
gain was set at 10.0 and detection setting at 5.

Western Blot Analysis
For Western blot analysis of cells, lysis was carried out using 
RIPA lysis buffer and protein was quantified using BCA Assay 
(Thermo Fischer Scientific, USA). An equal amount of cell protein 
was used, and protein was separated using SDS-PAGE. For EVs, 
EV protein obtained from equal number of cells was lysed directly 
in Laemmli buffer and loaded into the gel. Separated proteins 
were transferred to PVDF membrane and blocked using 5% 
milk in Tris-buffered saline with Tween (TBST). The blots were 
incubated with primary antibody overnight at 4 °C (RRID: 
AB_2162471, RRID:AB_2754982, RRID:AB_1279332, 
RRID:AB_2848144), washed using TBST, incubated with 
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HRP-conjugated secondary antibody for 1 hour at room 
temperature and washed using TBST. Heat shock protein 
90 (HSP90) was used as loading control (RRID:AB_2121214). 
Blots were incubated with either SuperSignal West Pico 
or Femto chemiluminescent substrates and imaged using 
iBrightCL1000 imaging system (Thermo Fischer Scientific, USA).

RNA Isolation and Quantitative PCR Analysis
Total RNA was extracted from cells using GeneJet RNA 
Purification kit (Thermo Fischer) and cDNA was synthesized 
using iScript Reverse Transcription Supermix (Bio-Rad), as 
previously described (26). Gene expression was determined 
by quantitative polymerase chain reaction (qPCR), using 
iTaq Universal SYBR Green Supermix (Bio-Rad). The primers 
used were designed using Primer-Blast (https://www.ncbi.nlm. 
nih.gov/tools/primer-blast/). Expression was determined us-
ing the formula, 2−ΔΔCT, and normalized to housekeeping 
gene, TATA box binding protein (TBP).

Immunofluorescence Microscopy
Cells were cultured in glass slides (ibidi) coated with 
poly-L-lysine (Sigma) and treated with respective compounds 
prior to being fixed and permeabilized with ice cold methanol 
for 5 minutes, blocked with 5% bovine serum albumin for 
1 hour and then incubated with indicated primary antibodies 
(anti-EEA1, anti-CD63, anti-LAMP1 and anti-CTSB; 1:100; 
Abcam; RRID:AB_10863524, RRID:AB_2754982, RRID: 
AB_2923327, RRID:AB_2848144) at 4 °C overnight, fol-
lowed by secondary antibody (Goat polyclonal Ab to Rabbit 
IgG (Alexa Fluor®488); 1:1000; RRID:AB_2630356) at 
room temperature for 1 hour. Samples were mounted with 
mounting medium containing DAPI (ibidi) and imaged using 
Ziess LSM700 or LSM900 Confocal Microscope. Images 
were analyzed using Fiji.

(Scanning) Transmission Electron Microscopy
For analysis of MVBs using electron microscopy, cells were 
pelleted down and fixed using 2.0% paraformaldehyde and 
2.5% glutaraldehyde (both electron microscopy grade) in 
0.1 M Na-Cacodylate buffer, pH 7.4, for 4 hours at 4 °C. 
Samples were washed in Na-Cacodylate buffer for 10 minutes 
and again fixed in 1.0% aqueous osmium tetroxide for 90 mi-
nutes in the dark. Samples were washed and then stained using 
2% aqueous uranyl acetate, overnight, at 4 °C. Then, samples 
were dehydrated using a graded ethanol series (37%, 67%, 
95%) for 10 minutes each and then using 100% ethanol 
3 times for 10 minutes each on a shaker. They were then 
infiltrated using a series of ethanol:polypropylene oxide for 
10 minutes each and propylene oxide:Polybed 812 mixture 
(without DMP-30) for 10 minutes each, prior to embedding. 
Samples were then embedded in 100% Polybed 812 mixture 
(without DMP-30), overnight at room temperature. Then 
they were placed in 100% Polybed 812 mixture with 1.5% 
DMP-30, in molds, and into oven at 60 °C for 24 hours. 
Thin sections were cut using an ultramicrotome (Ultracut 
UCT, Leica), collected on grids and examined by electron mi-
croscopy (Tecnai G2 F20 S-Twin 200 kV, Thermo FEI).

Measurement of Number of Acidic Organelles
Acidic particles in cells were measured using LysoTracker™ 
Deep Red dye (Invitrogen, USA). Cells were cultured in ibidi 

glass slides and treated with respective compounds. After in-
cubation, the media was replaced with media containing the 
respective dye, along with Hoesht 33342 dye (Invitrogen, 
USA) to stain the nucleus. Samples were imaged using Ziess 
LSM900 Confocal Microscope. Images were analyzed using 
Fiji. Signal was quantified per field of view and normalized 
to Hoesht.

Measurement of Cellular Oxidative Stress and 
Mitochondrial Function
The amount of reactive oxygen species (ROS) produced with-
in the cell was measured using CellROX™ Deep Red Reagent 
for oxidative stress detection (Invitrogen, USA). The cells were 
cultured in glass slides (ibidi) coated with poly-L-lysine 
(Sigma) and treated with respective compounds. CellROX 
reagent was added to media, along with Hoesht 33342 
dye (Invitrogen, USA). Samples were imaged using Ziess 
LSM900 Confocal Microscope. Images were analyzed using 
Fiji. Signal was quantified per field of view and normalized 
to Hoesht. Mitochondria, mitochondrial membrane poten-
tial, and mitochondrial ROS were measured similarly using 
MitoTracker Deep Red, TMRM (tetramethylrhodamine me-
thyl ester), and MitoSOX dyes.

Label-Free Imaging Using Simultaneous Label-Free 
Autofluorescence Multiharmonic Microscopy
Imaging of cells using SLAM microscopy was carried out as 
described in (26, 27). In short, cells were cultured in glass bot-
tom dish coated with poly-L-lysine and treated with respective 
compounds. Cells were imaged using multiphoton micros-
copy with excitation centered at 110 nm with an average 
power of 14 mW pulse-shaped beam to excite the sample 
and NAD(P)H and FAD signals were captured using 420 to 
480 nm and 580 to 640 nm filter, at a spatial resolution of 
< 500 nM.

Seahorse Assay
Cells were seeded in XFe96 cell culture microplates (Agilent, 
USA) and treated with compounds for 24 hours. Cells were 
washed with Seahorse XF DMEM assay buffer (Agilent, USA) 
supplemented with 10 mM glucose, 1 mM pyruvate, and 
2 mM glutamine, and incubated for 1 hour at 37 °C without 
CO2. The ATP production from mitochondrial respiration and 
glycolytic respiration in response to Oligomycin and Rotenone/ 
Antimycin A was measured using the ATP production assay 
kit (Agilent, USA). The oxygen consumption rate (OCR) 
and extracellular acidification rate (ECAR) from mitochondrial 
oxidative phosphorylation in response to Oligomycin, 
Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) 
and Rotenone/Antimycin A was measured using the mitochon-
drial stress test kit (Agilent, USA). The glycolytic activity or 
glycoPER (glycolytic proton efflux rate) in response to 
Rotenone/Antimycin A and 2-deoxy-D-glucose was measured 
using glycolytic rate assay (Agilent, USA). All measurements 
were performed using Seahorse XFe96 Bioanalyzer (Agilent, 
USA).

Statistical Analysis
All statistical analysis was performed using GraphPad Prism 
software. Data are presented as mean ± SEM. Statistical meas-
urement was carried out using the Student t test for 2 groups 
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and using Ordinary one-way ANOVA with Dunnett multiple 
comparison test for more than 2 groups. A P value < .05 was 
considered statistically significant.

Results
27-Hydroxycholesterol Promotes EV Secretion in 
2 Different Myeloid Immune Cell Lines
We have previously shown that 27HC stimulated EV 
secretion in myeloid immune cells and that the EVs from 
27HC-treated myeloid cells had a different size profile. 
Here, we explored the extent of this regulation by examining 
its effects in 2 different cell line models of myeloid cells: RAW 
264.7 and J774.A1. The RAW264.7 line is a monocyte/ 
macrophage-like line derived from a tumor induced by the 
Abelson murine leukemia virus and is a very commonly used 
mouse “macrophage” line in medical research (28, 29). 
J774.A1 are derived from a female mouse with reticulum 
cell sarcoma and have monocyte/macrophage morphology 
and have been used to explore various macrophage functions 
(30-32). Therefore, we first wanted to explore whether the 
regulation of EV secretion by 27HC extended to these differ-
ent myeloid cell models.

Cells were treated with 27HC (10 µM) for 24 hours, the 
EC50 of 27HC for either the estrogen receptor or liver X 

receptor being around 1 µM (33, 34). As expected, 27HC 
upregulated the expression of LXR target genes Abca1 
and Abcg1. Since 27HC is a selective LXR modulator, it did 
not upregulate Srebf1 or Fasn, while a synthetic agonist 
(GW3965) did (35) (Supplementary Fig. S1 found at (36)). 
EVs were isolated from the conditioned media using ultracen-
trifugation, considered the gold standard of EV enrichment. 
Nanoparticle tracking analysis (NTA) of EV particle number 
and size distribution indicated that 27HC treated RAW 
264.7 cells resulted in increased EV secretion (Fig. 1A). 
Furthermore, the particle size distribution was shifted toward 
a slightly larger size (Fig. 1B). These findings were also found 
when EVs were isolated using a commercial kit (ExoQuick, 
Fig. 1C and 1D). Importantly, similar findings were observed 
when using the J774A.1 model, indicating that 27HC-induced 
EV secretion is not cell line specific (Fig. 1E-1H). We charac-
terized these EVs as expressing the classic EV tetraspanin 
markers CD63 and CD9, as well as ALIX (Fig. 1I). These 
data are consistent with our previously published findings, 
where EVs from RAW 264.7 cells were characterized using 
flow cytometry for tetraspanins and transmission electron 
microscopy for ultrastructure (37). Therefore, we conclude 
that RAW264.7 and J774A.1 cell lines are a suitable model 
to explore the mechanisms by which 27HC stimulates EV 
biogenesis.

BA C D

G HFE

I

Figure 1. 27-Hydroxycholesterol (27HC) promotes EV secretion from cell line models of myeloid immune cells. EVs were collected from conditioned 
media of RAW 264.7 cells (A-D) and J774A.1 cells (E-H), using 2 different EV isolation techniques (ultracentrifugation and ExoQuick kit). The number of 
particles and size distribution were measured by nanoparticle tracking analysis (NTA) using NanoSight NS300 (n = 3/condition). For B, D, E, and H: the 
size distribution is shown as a histogram to the left, and a violin plot to the right. On the violin plots, the central black line is the median and the upper and 
lower black lines denote the quartiles. (I) EVs were characterized for standard EV markers using Western blot. EVs from equal number of cells were 
used for the blots. Statistical analyses were performed using the Student t test. ****P value < .0001, **P value < .01, *P value < .05. Data are 
presented as mean ± SEM.
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27-Hydroxycholesterol Treatment Does Not Alter 
Genes Associated With Endosome Formation, but 
Leads to the Enlargement of Multivesicular Bodies
EVs are a heterogeneous population consisting of exosomes 
and microvesicles. Although still understudied, the process 
of EV biogenesis begins with the formation of early endo-
somes at the plasma membrane, which then form late endo-
somes. A complex machinery called the endosomal sorting 
complex required for transport (ESCRT) is recruited for 
the sorting of cargo. The endosome then matures to form mul-
tivesicular bodies (MVBs) containing intraluminal vesicles 
(38, 39). These MVBs can either be degraded in the lysosome 
or, with the help of Rab and SNARE transport proteins, dock 
at the plasma membrane and release the intraluminal vesicles 
as exosomes (3, 40-42). Microvesicles are formed by outward 
budding and fission at the plasma membrane (42-44).

To determine the mechanism by which 27HC modulates EV 
secretion, we first analyzed the expression of several genes as-
sociated with the biogenesis of EVs, expecting that an upregu-
lation of these genes would be required for increased 
biogenesis. We found that 27HC does not significantly upre-
gulate the expression of genes encoding ESCRT components 
(Fig. 2A), in either RAW264.7 or J774A.1 cells. This indicates 
that either the modulation of ESCRT is not at the mRNA level 
or does not involve ESCRT in its regulation of EV biogenesis.

Therefore, we next focused on biogenesis mechanisms 
downstream of the ESCRT pathway. Immunofluorescence 
analysis of the endosome marker EEA1 indicated that 
27HC did not change the total intensity or the size of 
EEA1-positive early endosomes, suggesting that the regula-
tion is not at the endosomal level (Fig. 2B). However, 27HC 
did increase the levels of the MVB marker CD63 and increased 
the size of the CD63-positive MVBs, as assessed by immuno-
fluorescence (Fig 2C). Transmission electron microscopy also 
revealed an enlargement in the size of vesicular bodies within 
the cells (Fig. 2D). Interestingly, when the MV fraction of 
ultracentrifuged conditioned media was assessed, 27HC was 
found to also increase the presence and size of these larger par-
ticles (Fig. 2E-2H). Collectively, these data suggest that the 
mechanism by which 27HC increases EV secretion is likely 
to (i) impact the secretion of both small and large EVs; and 
(ii) be downstream of the ESCRT complex.

27-Hydroxycholesterol Alters Lysosomal Function
Thus far, our data indicate that 27HC increases the secretion 
of both small and large EVs and that it seems to work down-
stream of the ESCRT complex. This points to a mechanism 
whereby treatment with 27HC leads to the secretion of EVs 
that would otherwise have been targeted toward lysosomal 
degradation. We have observed that 27HC increases MVB 
size (Fig. 2C and 2D). This indicates that there is less degrad-
ation and recycling of the MVBs within the cell and instead, 
the MVB cargo is being released as EVs. Interestingly, there 
have been several reports that an increase in MVB size can re-
sult from decreased trafficking of MVBs toward the lysosome 
(13, 45). Lysosomes are a crucial regulatory component of the 
cell and are involved in maintaining cellular homeostasis by 
actively degrading and recycling intracellular components 
and are also involved in regulating cellular signaling and me-
tabolism (46, 47). Lysosomes act as the fate determining step 
for MVBs once they are formed; MVBs can either fuse with the 
lysosome and get degraded, where the cargo gets recycled 

within the cell, or the MVBs can fuse with the plasma mem-
brane and release their contents as EVs (48). To study the ef-
fect of 27HC on lysosomes, we stained for LAMP1, which is a 
lysosomal marker, and observed no significant decrease in the 
overall LAMP1 signal intensity in the cell (Fig. 3A). However, 
there was an increase in the size of those lysosomes remaining 
after 27HC treatment (Fig. 3A).

An increase in the size of lysosomes has been suggested to 
occur as a result of lysosomal membrane permeabilization, 
where the integrity of the lysosomal membrane is disrupted, 
leading to a release of lysosomal components into the cytosol 
as well as their secretion into the extracellular space/media 
(49). If lysosomal membrane integrity is impaired by 27HC 
or if 27HC promotes lysosome exocytosis, we would expect 
an increase in lysosomal proteins secreted by the cells. 
Thus, we measured the expression of a lysosomal protease, 
Cathepsin B (CTSB), expecting that if lysosome homeostasis 
was disrupted there would be a change in CTSB protein. 
Using immunofluorescence, we found that 27HC significantly 
increased CTSB at the cellular level (Fig. 3B). CTSB is pro-
duced as pro-CTSB (unprocessed form) and gets cleaved in 
the lysosome to form active CTSB (processed form). We ob-
served an increase in the unprocessed form of the protein by 
Western blot analysis, suggesting that although 27HC in-
creases CTSB, its lysosomal processing is impaired (Fig. 3C). 
We also observed an increase in the amount of CTSB protein 
in the conditioned media depleted of EVs (vesicle free media), 
indicating that the CTSB is either escaping the lysosome or 
there is increased lysosomal exocytosis, both resulting in 
extracellular secretion (Fig. 3D). Interestingly, the mRNA ex-
pression of CTSB was also increased by treatment of RAW 
cells with 27HC, suggesting that there may be feedback to re-
plenish CTSB levels (Fig. 3E). Collectively, these data indicate 
that the lysosome homeostasis is altered, disrupting normal 
CTSB processing and secretion, and there are likely feedback 
mechanisms engaged to increase CTSB synthesis.

Lysosomes are also important for the process of autophagy, 
where autophagosomes transfer cytosolic contents to the lyso-
some by fusion to form autolysosome, and the contents get re-
cycled within the cell (50). We observed that 27HC treatment 
leads to an increase in the amount of LC3b positive vesicles or 
autophagosomes within the cells (Fig. 3F), again suggesting 
lysosomal dysfunction is decreasing autophagosome process-
ing. In summary, the data presented in Fig. 3 strongly support 
our hypothesis that lysosomal function is being impaired by 
27HC.

27-Hydroxycholesterol Induces Lysosomal 
Dysfunction Leading to an Impaired Acidification of 
Lysosomes and Increased EV Secretion
To further study the effect of 27HC on lysosomes, we assessed 
its effect on lysosomal acidification. First, we assayed the 
number of acidic organelles in the cells using a LysoTracker 
probe, which is a cell-permeable fluorescent dye that stains 
acidic organelles such as the lysosome. The probe acts as a ly-
sosomotrope; it diffuses across the plasma membrane and 
enters the acidic lysosomes, where it gets protonated and lo-
calized within the organelle. A decrease in LysoTracker signal 
was observed in cells treated with 27HC, indicating fewer 
acidic organelles (Fig. 4A). This finding indicates that lyso-
somes were failing to properly maintain their acidity, provid-
ing further support for 27HC disrupting lysosomal function.

Endocrinology, 2024, Vol. 165, No. 11                                                                                                                                                                5
D

ow
nloaded from

 https://academ
ic.oup.com

/endo/article/165/11/bqae127/7762157 by U
niversity of Illinois - U

rbana C
ham

paign user on 20 O
ctober 2024



A

B

D

E

C

F HG

Figure 2. 27HC treatment does not alter genes associated with endosome formation, but it leads to the enlargement of multivesicular bodies (MVBs). 
(A) mRNA expression of several ESCRT-related, non-ESCRT-related, and other genes associated with EV biogenesis indicates that 27HC does not lead 
to increased expression. RAW 264.7 or J774A.1 cells were treated with DMSO (control) or 27HC for 24 hours prior to assessment of mRNA by 
RT-qPCR. (B) Confocal microscopy analysis of Early Endosomal marker, EEA1 indicating that 27HC does not alter the amount of early endosomes. Scale 
bar, 5 um. Right graph: quantification of EEA1 signal relative to DAPI (n = 4). Each data point corresponds to the intensity of EEA1 signal per field of view. 
(C) Confocal microscopy analysis of MVB marker, CD63 indicating that 27HC increases the amount of CD63 intensity per cell and increases the size of 
CD63 positive MVBs in the cells. Scale bar, 5 um. Right graphs: quantification of CD63 signal relative to DAPI (n = 3) and size of CD63 positive MVBs (n  
= 20 dots). Each data point corresponds to the intensity of CD63 per field of view and size of CD63 positive MVBs. (D) (Scanning) transmission electron 
microscopy of cells treated with DMSO (control) or 27HC, indicating enlarged MVBs (arrows) Scale bar, 100 nm. (E-H) EVs obtained from the 10k 
ultracentrifugation fraction indicating and increase in number of particles and size distribution in RAW 264.7 cells and J774A.1 cells, on treatment with 
27HC. For F and H: the size distribution is shown as a histogram to the left, and a violin plot to the right. On the violin plots, the central black line is the 
median and the upper and lower black lines denote the quartiles. Statistical analyses were performed using a Student t test. ****P value < .0001, ***P 
value < .001, **P value < .01, *P value < .05. Data are presented as mean ± SEM. Original confocal images were used for analysis and representative 
images depicted here were brightness adjusted.
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The acidic lumen of lysosomes is in part maintained by 
ATP6V1A. ATP6V1A is a lysosomal V-ATPase, that func-
tions by coupling the energy obtained from ATP hydrolysis 
to the transport of protons into the lysosomes (51). To study 

the effect of impaired lysosomal acidification on the rate of 
EV secretion, we treated cells with Bafilomycin A, a known 
inhibitor of ATP6V1A (52). As expected, treatment with 
Bafilomycin A led to a decreased number of acidic organelles 

A

B
C

ED

F

Figure 3. 27HC impairs lysosomal function. (A) Confocal microscopy analysis of lysosomal marker, LAMP1 indicating that 27HC increases the size of 
LAMP1 positive lysosomes in the cells. Scale bar, 5 um. Right graphs: quantification of LAMP1 signal relative to DAPI (n = 5) and size of LAMP1 positive 
lysosomes (n = 20 dots). Each data point corresponds to the intensity of LAMP1 signal per field of view and size of lysosomes. (B) Confocal microscopy 
analysis of Cathepsin B in cells indicating an increase in intensity of Cathepsin B protein in cells. Scale bar, 10 um. Right graph: quantification of 
Cathepsin B signal relative to DAPI (n = 4). Each data point corresponds to the intensity of Cathepsin B per field of view. (C) Western blot analysis of a 
lysosomal protease, Cathepsin B in cells indicating an increase in the unprocessed form of Cathepsin B on treatment with 27HC. (D) Western blot 
analysis of Cathepsin B in equal volumes of vesicle-free media indicating an increase in Cathepsin B in media. (E) Quantitative PCR of Cathepsin B 
(CTSB) indicating an increase in mRNA (n = 4). (F) Confocal microscopy analysis of autophagy marker LC3bin cells indicating an increase in intensity of 
LC3b positive autophagosomes in cells. Scale bar, 10 μm. Right graph: quantification of LC3b signal relative to DAPI (n = 6). Each data point corresponds 
to the intensity of LC3b per field of view. Statistical analyses were performed using a Student t test. ****P value < .0001, **P value < .01, *P value  
< .05. Data are presented as mean+/-SEM. Original confocal images were used for analysis and representative images depicted here were brightness 
adjusted.
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(Fig. 4B). Importantly Bafilomycin A treatment increased the 
secretion of both small and large EVs (Fig. 4C and 4D), 
mirroring what we observed with 27HC treatment (Fig. 1). 
Our findings that Bafilomycin A treatment recapitulated the 
effects of 27HC lends strong support to our hypothesis that 
27HC increases EV secretion by altering lysosomal function, 
decreasing MVB degradation by lysosomes, and ultimately 
shifting them toward secretion as EVs.

Recent studies have shown that a decrease in ATP6V1A 
mRNA levels leads to an impairment of lysosomal 
acidification and an increase in EV secretion (15, 45). If the 
pro-EV-secretory effects of 27HC were via ATP6V1A, we 
would expect 27HC to decrease its mRNA levels. However, 
when we examined the effect of 27HC on ATP6V1A mRNA 
levels, we observed no change in its expression in RAW 
264.7 cells and an increase in expression in J774A.1 cells 

A B

C D E

F

Figure 4. 27HC impairs acidification of lysosomes which leads to increased EV secretion. (A) Confocal microscopy analysis of number of acidic 
organelles (lysosomes) using LysoTracker Deep Red showing a decrease in signal on treatment with 27HC, indicating decreased acidic organelles. 
Scale bar, 20 µm. Right graph: quantification of LysoTracker signal relative to Hoesht, per field of view (n = 4). (B) Treatment of cells with Bafilomycin 
A1, an inhibitor of the lysosomal V-ATPase pump ATP6V1A, lead to a decrease in number of acidic organelles (n = 4), and (C-D) an increase in secretion 
of EVs and MVs (n = 3). (E) Quantitative PCR of ATP6V1A indicating that 27HC does not significantly change the mRNA expression of ATP6V1A in 
RAW264.7 cells, but it does increase it in J774.1 cells (n = 4). (F) Overexpression of murine ATP6V1A in RAW264.7 or J774A.1 cells decreases EV 
secretion. While 27HC increases EV secretion in cells transfected with a control plasmid, it fails to do so in cells overexpressing ATP6V1A. Statistical 
analyses were performed using a Student t test except in (F) where 1-way ANOVA followed by a Šídák post hoc analysis was performed. ****P value  
< .0001, **P value < .01, *P value < .05. Data are presented as mean ± SEM. Original confocal images were used for analysis and representative 
images depicted here were brightness adjusted.
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(Fig. 4E). ATP6V1A upregulation appears to be a response 
to compensate for disrupted lysosomal homeostasis. Thus, 
27HC likely acts upstream of, and not directly on the lyso-
some, to impair lysosomes.

To more directly evaluate whether disruption of lysosomal 
acidification was responsible for the 27HC-mediated increase 
in EV secretion, we overexpressed murine ATP6V1A in 
RAW264.7 or J774A.1 cells. As expected based on previous 
reports (15, 45), overexpression alone led to a decrease in se-
creted EVs (Fig. 4F). Importantly, 27HC failed to increase EV 
secretion in cells overexpressing ATP6V1A and presumably 
maintaining their ability to acidify lysosomes (Fig. 4F). 
Thus, these data support the hypothesis that 27HC increases 
EV secretion by interfering with lysosomal acidification.

27-Hydroxycholesterol Increases Intracellular 
Oxidative Stress and Causes Mitochondrial 
Dysfunction
Our data thus far support a mechanism whereby 27HC 
disrupts normal lysosomal homeostasis, which leads to a de-
creased degradation of MVBs and an increase in the secretion 
of EVs. Our next step was to determine what contributes to 
this impairment of lysosomal function. Several studies have 
shown that elevated levels of reactive oxygen species (ROS) re-
sult in impaired lysosomal function (53, 54). Interestingly, ele-
vated ROS has also been found to increase EV secretion (55, 
56).

27HC treatment of cells increased levels of total cellular 
ROS (Fig 5A). This suggests that the mechanism by which 
27HC disrupts lysosomes and subsequently increases EV se-
cretion is via the initial production of ROS. Elevated levels 
of ROS can be a result of several factors including mitochon-
drial dysfunction (57-59). Further, altered mitochondrial 
function has been demonstrated to disrupt the structure and 
function of lysosomes in a ROS dependent manner (60-62). 
Therefore, we studied the effect of 27HC on mitochondrial 
function. 27HC-treated cells had decreased total mitochon-
dria or decreased MitoTracker signal as measured using 
MitoTracker dye (Fig. 5B), although altered redox or mito-
chondrial fusion may confound this interpretation (63). 
Performing GO analysis on differentially expressed genes 
between vehicle- and 27HC-treated bone marrow–derived 
macrophages revealed enrichment of 2 gene sets in the 
Cellular Components database that were highly related to 
mitochondrial function: mitochondrial matrix, and mito-
chondrial protein–containing complex (RNA-seq dataset de-
scribed in (35), Supplementary Fig. S2A (36)). Therefore, we 
more closely probed the expression of select genes related to 
mitochondrial function and oxidative phosphorylation were 
surveyed. The majority of genes assessed did not change 
upon treatment with 27HC, or changes were inconsistent be-
tween cell types (RAW264.7 vs J774A.1 cells) (Supplementary 
Fig. S2B (36)). However, expression of 3 genes were changed: 
PGC1α, NRF1, and NDUFS1. PGC1α is a master regulator of 
oxidative phosphorylation and, as such, coordinates ROS 
scavenging (64, 65). PGC1α was upregulated by 27HC, which 
is likely a compensatory response to the increased ROS ob-
served after 27HC treatment (as in, PGC1α was upregulated 
in response to ROS, not causative of it). Both NRF1 
(Nuclear respiratory factor 1) and NDUFS1 (NADH:ubiquin-
one oxidoreductase core subunit S1) were downregulated by 
27HC. NRF1 is a central node regulating response to redox 

balance and loss of NRF1 is known to increase in ROS (66). 
NDUFS1 catalyzes the first step of NADH oxidation and 
is critical for maintaining mitochondrial stability. Loss of 
NDUFS1 is also associated with increased mitochondrial 
ROS (67). Thus, 27HC downregulation of NRF1 and/or 
NDUFS1 may be upstream mediators of the observed in-
creases in ROS. Further studies are required to probe these 
mechanisms. TMRM staining indicated that there was also 
a decrease in mitochondrial membrane potential (Fig. 5C). 
Finally, we observed an increase specifically in mitochondrial 
ROS using the MitoSOX stain (Fig. 5D). ROS has been dem-
onstrated to increase lysosome exocytosis and loss of mito-
chondrial function impairs lysosomes (60, 68). Therefore, 
cellular exposure to 27HC leads to mitochondrial dysfunction 
and increased ROS; the ROS potentially disrupting lysosome 
homeostasis and thus increasing EV secretion.

27-Hydroxycholesterol Alters Mitochondrial 
Metabolism
Elevated mitochondrial ROS correlates with alterations in 
mitochondrial bioenergetics and overall cellular metabolic 
output (69). To study the simultaneous effects of 27HC on 
oxidative phosphorylation, TCA cycle, and glycolysis within 
the cell, we used 2 techniques: simultaneous label-free auto-
fluorescence multiharmonic (SLAM) microscopy, and real- 
time cell metabolic analysis (Seahorse Assays).

In a label-free manner, SLAM microscopy measures auto-
fluorescence emitted by FAD and NAD(P)H in live cells. A de-
crease in the FAD:(FAD + NAD(P)H) ratio corresponds to an 
increase metabolic activity in the cells (27, 70). We observed 
that 27HC treatment leads to an increase in the FAD:(FAD  
+ NAD(P)H) ratio in RAW 264.7 cells (Fig. 6A). This would 
be reflective of a decrease in metabolic activity in the cells.

To more specifically assess metabolic flux, we measured 
oxygen consumption rate (OCR; an estimate of oxidative 
phosphorylation) and extracellular acidification rate (ECAR; 
an estimate of glycolytic activity), using these to calculate 
the proton efflux rate (PER). For both RAW 264.7 and 
J774A.1 cells, 27HC decreased OCR, with smaller changes 
observed in ECAR and PER (Seahorse ATP Rate Assay kit; 
Supplementary Fig. S3A-C (36)). Using these values, mito-
chondrial vs glycolytic ATP production can be estimated. 
Notably, 27HC robustly decreased mitochondrial ATP pro-
duction in both cell models, while increasing glycolytic ATP 
production in RAW 264.7 cells but not significantly changing 
glycolytic ATP production in J774A.1 (Figure 6B). This 
was also reflected in the total ATP production rate in an inde-
pendent experiment using the Seahorse Mito Stress kit 
(Supplementary Fig. S3D and S3E (36)). Likewise, in an inde-
pendent experiment using the Glycolytic Rate Seahorse Assay, 
a potential compensatory increase in estimated glycolysis 
was observed in RAW 264.7 cells, treated with 27HC, 
while no significant differences were found in J774A.1 cells 
(Supplementary Fig. S3F and S3G (36)). 27HC led to de-
creased maximum respiration rate and a reduced coupling ef-
ficiency, indicated by the Seahorse Mito stress test (Fig. 6C
and 6D). Collectively, these data demonstrate that mitochon-
drial oxidative phosphorylation is robustly disrupted, suggest-
ing that impaired mitochondria are responsible for the 
observed increases in ROS. Therefore, our data demonstrate 
a connection between mitochondrial function, lysosomal 
function, and EV secretion; 27HC resulted in impaired 
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mitochondrial function, increased ROS, disrupted lysosome 
homeostasis and thus a buildup of MVBs that are shunted to-
ward secretion as EVs.

A Mitochondria-Targeted Antioxidant Attenuates 
the 27HC-Mediated Increase in EV Secretion
Our evidence thus far implicates mitochondrial ROS as the up-
stream initiator of the effects of 27HC on EV biogenesis. 
Therefore, we co-treated cells with 27HC and a mitochondria- 
targeted antioxidant Mitoquinol (MitoQ). MitoQ is a potent 
antioxidant consisting of coenzyme Q10 linked to a lipophilic 
triphenylphosphonium cation to enable its accumulation in 
the mitochondria, which blocks the generation of ROS and pre-
vents mitochondrial oxidative damage (71, 72). We would thus 
expect MitoQ cotreatment to rescue the lysosomal damage. 

In support of our model, MitoQ was able to normalize 
LysoTracker signal after a 24-hour treatment with 27HC 
(Fig. 7A). Importantly, MitoQ was also able to attenuate the 
27HC-mediated increase in EV secretion over a 48-hour culture 
period (Fig. 7B). Therefore, we conclude that ROS is the up-
stream mediator of 27HC-stimulated EV secretion and use of 
an antioxidant can attenuate the increased EV secretion.

Discussion
EVs play an important role in maintaining regular cell-to-cell 
communication. EVs have also been strongly implicated as 
critical messengers in tumor progression and metastasis, in 
addition to other factors such as chemokines and growth fac-
tors (10, 73). These EVs influence cancer progression by trans-
porting molecules that can initiate several pathophysiological 

A

C D

B

Figure 5. 27HC increases intracellular oxidative stress and causes mitochondrial dysfunction. (A) Confocal microscopy analysis of intracellular reactive 
oxygen species (ROS) using CellROX Deep Red indicating an increase in signal on treatment with 27HC, indicating increased levels of intracellular ROS. 
Scale bar, 20 µm. Right graph: quantification of CellROX signal relative to Hoesht, per field of view (n = 4). (B) Confocal microscopy analysis of 
mitochondria using MitoTracker Deep Red indicating a decrease in signal on treatment with 27HC, indicating decreased mitochondrial mass. Scale bar, 
20 µm. Right graph: quantification of MitoTracker signal relative to Hoesht, per field of view (n = 4). (C) Confocal microscopy analysis of mitochondrial 
membrane potential using TMRM Deep Red indicating a decrease in signal on treatment with 27HC, indicating decreased mitochondrial membrane 
potential. Scale bar, 20 µm. Right graph: quantification of TMRM signal relative to Hoesht, per field of view (n = 4). (D) Confocal microscopy analysis of 
mitochondrial ROS using MitoSOX Deep Red indicating an increase in signal on treatment with 27HC, indicating increase mitochondrial ROS 
production. Scale bar, 20 µm. Right graph: quantification of MitoSOX signal per relative to Hoesht, per field of view (n = 4). Statistical analyses were 
performed using a Student t test. ****P value < .0001, ***P value < .001, **P value < .01, *P value < .05. Data are presented as mean ± SEM. Original 
confocal images were used for analysis and representative images depicted here were brightness adjusted.
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processes, such as vascular leakiness, angiogenesis, and for-
mation of the premetastatic niche (11, 12). They also play a 
role in drug resistance, where the cells can directly efflux drugs 
via EVs (74). How or what factors regulate EV biogenesis and 
secretion is still poorly understood, although certain physio-
logical stressors (eg, hypoxia) and various metabolic factors 
have now been found to regulate EV secretion and/or cargo 
(3). The regulation of EV secretion is important to understand 
since it represents a promising strategy for the treatment of 
various diseases, including cancer.

Previous work has shown that treatment of myeloid im-
mune cells with the cholesterol metabolite 27HC leads to an 
increase in the secretion of EVs, and these EVs promote tumor 
growth and metastasis (26). Given that there is an increase in 
the number of EVs and these EVs have pro-tumorigenic ef-
fects, understanding the mechanisms by which their secretion 
is increased would provide a unique opportunity to develop 
intervention strategies to prevent metastatic progression. We 
have demonstrated here that 27HC increases EV secretion 
by a cascade of alterations in cellular metabolism, character-
ized by impaired mitochondrial function, increased cellular 
oxidative stress, and altered lysosomal function.

The biogenesis of EVs of endosomal origin involves the 
maturation of endosomes to form multivesicular bodies 
(MVBs) containing intraluminal vesicles which either fuse 
with the lysosome and get degraded or fuse with the plasma 
membrane and get secreted as EVs (3). Therefore, the lyso-
somes determine the fate of MVBs—toward degradation 
and recycling, or toward secretion as EVs. Lysosomes help 
maintain cellular homeostasis by degrading and recycling cel-
lular components. The impairment of lysosomes leads to the 
inability of the cell to recycle cellular components which are 
generated via the endosomal-multivesicular body pathway, 
leading to the secretion of these contents as EVs. We have 

observed here that 27HC shifts lysosomal homeostasis as 
measured through increased lysosomal size, decreased num-
ber of lysosomes/acidic organelles and increased secretion of 
cargo such as EVs. This disrupts their inability to degrade mul-
tivesicular bodies and instead leads to the secretion of their 
contents as EVs. Several other groups have also demonstrated 
that lysosomes determine the fate of MVBs. One report has 
shown that hypoxia promotes EV secretion by impairing lyso-
somal acidification (15). Another study found that a decrease 
in SIRT1 levels impairs lysosomal acidification and leads to se-
cretion of EVs (45).

To further study what causes the observed change in lyso-
somal homeostasis, we studied the effect of 27HC on cellular 
ROS, since elevated levels of ROS results in impaired lyso-
somal function (53, 54). We observed that 27HC increases lev-
els of cellular ROS. A majority of the ROS produced in the cell 
is produced by mitochondria and dysfunctional mitochondria 
produce elevated levels of ROS (61, 71). We have observed 
that 27HC impairs mitochondria and increases levels of mito-
chondrial ROS. Finally, since the upstream mediator for the in-
creased EV secretion is the production of mitochondrial ROS, 
we co-treated the cells with a mitochondria-targeted antioxi-
dant, Mitoquinol (MitoQ), and observed that MitoQ was 
able to rescue the lysosomes and attenuate the effects of 
27HC on increased EV secretion.

Therefore, we have demonstrated that 27HC impairs mito-
chondrial function, which leads to elevated production of 
ROS. This elevated ROS in the cell disrupts the ability of lyso-
somes to degrade MVB cargo and leads to an increase in EV se-
cretion. The use of antioxidants such as MitoQ can rescue these 
effects, by restoring lysosomal function and MVB degradation. 
Several in vitro and in vivo studies have demonstrated that 
MitoQ is protective against multiple diseases, including cancers 
(71, 75-78). Therefore, potential intervention strategies to 

A B

C D

Figure 6. 27HC alters mitochondrial metabolism in myeloid cells. (A) SLAM microscopy in cells indicating an increase in FAD:(FAD + NAD(P)H) ratio 
in cells. (B) Seahorse ATP production assay indicating a decrease in mitochondrial ATP production (n = 6). (C) Seahorse Mito stress test indicating 
a decrease in levels of maximal respiration (n = 6). (D) Seahorse Mito stress test showing decreased coupling efficiency in 27HC-treated cells  
(n = 6). Statistical analyses were performed using a Student t test ****P value < .0001, ***P value < .001, **P value < .01. Data are presented as  
mean ± SEM.
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attenuate the 27HC induced increase in EVs could include the 
use of MitoQ or other antioxidants that can prevent oxidative 
damage.

Cancer progression involves crosstalk between various cells 
in the tumor microenvironment, including immune cells, stro-
mal cells, and fibroblasts. A vast majority of studies relating 
EVs and cancer progression involve the study of EVs derived 
from cancer cells and their influence on the functions of other 
cells in the tumor microenvironment (79-81). The role of im-
mune cells in tumorigenesis is a double-edged sword. On one 
hand, immune cells help to enhance the antitumor immune re-
sponse and act to eliminate cancer cells; while on the other, 
immune cells can be corrupted by cancer cells and become 
pro-tumorigenic. As a result, EVs from these cell types also 
play an important role in cancer progression. EVs from mye-
loid cells have been implicated in stimulating pro-metastatic 
properties, mediated by their interaction with other immune 
cells to form a suppressive tumor microenvironment (11, 82, 
83). In the context of elevated cholesterol and breast cancer, 
we have seen that EVs derived from 27HC treated neutrophils 
promote breast cancer progression (26). Other studies involv-
ing immune cell–derived EVs have revealed that EVs contain-
ing miR-501-3p derived from tumor associated macrophages 
(TAMs) are involved in cell migration and invasion leading to 

the progression of pancreatic cancer and the suppression 
of this miRNA in cells can inhibit this progression (84). 
TAMs can also promote invasion of breast cancer cells by 
transfer of miR-223 via the Mef2c-β-catenin pathway (85). 
Macrophage-derived EVs can reverse breast cancer cell qui-
escence and induce proliferation, leading to re-emergence 
from dormancy (86).

Altered cholesterol metabolism has been strongly associ-
ated with the progression of various diseases. Interestingly, 
several miRNAs have been implicated in the regulation of 
cholesterol homeostasis (87). Furthermore, cholesterol deriv-
atives other than 27HC have also been found to alter EV secre-
tion with altered cargo. For example, dendrogenin A was 
found to stimulate cancer cells to secrete EVs carrying altered 
cargo that increased dendritic cell maturation and Th1 T 
lymphocyte polarization (88). When considering our work 
along with other published studies, it becomes clear that 
EVs play an important role in the progression of cancer, but 
that more insights into their regulation are required for clinic-
al translation of this knowledge.

Understanding the mechanisms that cells use to modulate 
EV secretion has been a long-standing goal in understanding 
normal cellular physiology, as well as changes in diseases 
such as cancer. Overall, a more comprehensive understanding 

A

B

Figure 7. A mitochondria-targeted antioxidant attenuates the 27HC-mediated increase in EV secretion. (A) Confocal microscopy analysis of number of 
acidic organelles (lysosomes) using LysoTracker Deep Red indicating that cotreatment with MitoQ normalizes the number of acidic organelles. Scale 
bar, 20 µm. Right graph: quantification of LysoTracker signal relative to Hoesht, per field of view (n = 4). (B) Nanoparticle tracking analysis of EVs 
obtained after 48 hours of treatment indicating that cotreatment with MitoQ attenuates the 27HC mediated increase in EV secretion (n = 3). Statistical 
analyses were performed using one-way ANOVA with Dunnett’s multiple comparisons test. **P value < .01. Data are presented as mean ± SEM. 
Original confocal images were used for analysis and representative images depicted here were brightness adjusted.
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of the regulation of EV secretion will help open avenues in 
identifying targets that can be modulated to rescue the in-
crease in EV secretion. Our work has demonstrated the effect 
of elevated levels of a cholesterol metabolite, 27HC, in in-
creasing EV secretion. This knowledge will help identify tar-
gets or metabolites in patients as prognostic markers for 
diseases such as cancer and other metabolic diseases and act 
as druggable targets as a therapeutic strategy.
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