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The technologies to examine the neuronal microenvironment label free remain critically underexplored. There is a gap in
our knowledge of underlying metabolic, biochemical, and electrophysiological mechanisms behind several neurological
processes at a cellular level, which can be traced to the lack of versatile and high-throughput tools to investigate neural
networks. In this paper, four label-free contrasts were explored as mechanisms to study neuronal activity, namely, scat-
tering, birefringence, autofluorescence from metabolic cofactors and molecules, and local biochemistry. To overcome
challenges of observing neuronal activity spanning three orders of magnitude in space and time, microscopes had to
be developed to simultaneously capture these contrasts quickly, with high resolution, and over a large FOV. We devel-
oped versatile autofluorescence lifetime, multiharmonic generation, polarization-sensitive interferometry, and Raman
imaging in epi-detection (VAMPIRE) microscopy to simultaneously observe multiple facets of neuronal structure and
dynamics. The accelerated computational-imaging-driven acquisition speeds, the utilization of a single light source to
evoke all contrasts, the simultaneous acquisition that provides an otherwise impossible multimodal dynamic imaging
capability, and the real-time processing of the data enable VAMPIRE microscopy as a powerful imaging platform for
neurophotonics and beyond. ©2024Optica PublishingGroup under the terms of theOpticaOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.532367

1. INTRODUCTION

Over a century ago, the neuron doctrine described the nervous
system as consisting of a complex network of individual neurons
that facilitate communication through the transfer of electrical
impulses. Yet, the intricacies of the neuronal environment remain
a mystery. This gap can be traced back to the lack of versatile and
high-throughput tools to functionally investigate neural networks.
Optical microscopy covers the vast spatiotemporal scales of neu-
ronal activity. This paper focuses on establishing multimodal
label-free optical tools for observing the activity of the neuronal
microenvironment in action in its native state to fill these criti-
cal knowledge gaps. Most applications of optical microscopy in
neuroimaging have been limited to the use of fluorescent labels
or optogenetics. Label-free optical microscopy is less invasive
and more versatile, and has a higher potential for future clinical
translatability, which leads to the question: what are the label-free

markers for the structural and functional dynamics of the neuronal
microenvironment?

The ion flux that induces the electrical signals in a cell creates
subtle changes to the cell refractive index and the local micro-
environment [1,2]. The mechanical action of these ion channels
also deforms the cell membrane, which changes the local birefrin-
gence [3]. While these changes are subtle, they can be measured
using optical interferometry combined with polarization imag-
ing. Second, active neurons have dynamic energy requirements;
therefore, they experience rapid changes to their metabolic states.
Cell metabolism involves several autofluorescent co-factors like
reduced nicotinamide adenine dinucleotide (NADH) and its
phosphorylated form (NADPH) or flavin adenine dinucleotide
(FAD). Since the fluorescence lifetime of NAD(P)H and FAD are
related to the metabolic state of the cells, fast fluorescence lifetime
imaging microscopy (FLIM) can track these metabolic changes

2334-2536/24/091352-16 Journal © 2024Optica PublishingGroup

https://orcid.org/0000-0001-9126-9491
https://orcid.org/0000-0003-0071-8509
https://orcid.org/0000-0002-9678-860X
https://orcid.org/0000-0002-3596-5799
https://orcid.org/0000-0002-3766-616X
https://orcid.org/0000-0001-9946-2659
https://orcid.org/0000-0002-9386-5630
mailto:boppart@illinois.edu
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://doi.org/10.1364/OPTICA.532367
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.532367&amp;domain=pdf&amp;date_stamp=2024-09-23


Research Article Vol. 11, No. 9 / September 2024 / Optica 1353

in real time [4–6]. There are also local changes to the chemical
environment because of neuronal electrical and metabolic activi-
ties; vibrational spectroscopy with coherent Raman imaging can
characterize these changes rapidly. Measuring these physical and
chemical changes using polarization imaging, functional optical
coherence microscopy (OCM), FLIM, and Raman scattering
microscopy provides an avenue for label-free optical measurement
of the electrical activity of neurons.

The metabolism of neurons is critical to their activity and
subsequent recovery. Metabolism and energy regulation in the
neuronal microenvironment involve several parallel processes,
such as the glucose transport and utilization for mitochondrial
metabolism in the neurons [7] and supporting glial cells [8],
the astrocyte-neuron lactate shuttle [9,10], the metabolism of
neurotransmitter synthesis, release, and uptake [11–13], and the
energy required to drive the ion pumps to maintain homeosta-
sis [14,15]. Understanding the intricate interplay between these
parallel processes is essential for unraveling the complexities of neu-
rometabolism and its implications for brain function and health.
Metabolic profiling techniques, such as mass-spectrometry-based
metabolomics, allow the comprehensive analysis of small-molecule
metabolites in biological samples [16,17]. While radiographic
and Raman probes such as 2-deoxyglucose [18] or deuterated
glucose [19] can track specific metabolic pathways, they lack the
versatility to observe multiple parallel processes. As an alternative
to imaging the glucose or lipid consumption, fluorescent redox
probes such as dihydroethidium [20], MitoSOX (for mitochon-
drial oxidative stress) [21,22], or nitroreductase-based probes
[23] are used for metabolic imaging of neurons on a cellular scale.
Redox pathways are involved in several metabolic processes in the
neuronal environment. Most tags are designed to be specific to
a small subset of these processes. However, imaging the cellular
autofluorescence intensity and lifetime from metabolic co-factors
such as NADH and FAD can also report on the redox state of the

biological samples [6,24–28] [Fig. 1(a)]. The role of these factors in
metabolism, their fluorescence properties, and the utility of FLIM
are described in Fig. S1 and Note S1 in Supplement 1.

Due to their lengths and large structures, neuronal metabolism
is compartmentalized, including the TCA cycle and the electron
transport chain (ETC) in mitochondria, glycolysis related to
membrane ion pumping, and glycolysis for pyruvate generation
for further aerobic metabolism. Previous studies have explored
the change in the NADH and FAD fluorescence intensity [29,30]
during electrical activity. A model proposed by Aubert et al . [31]
suggested a decrease in the NADH levels following activation,
followed by a prolonged increase to the overall NADH level before
a return to baseline over several dozen seconds. There is also a
notable change in the local lactate dehydrogenase (LDH) con-
centrations in neurons. Astrocytes were shown to not have this
initial decrease, but just an increase in response to stimulation of
neighboring neurons. There was also an overall increase in the
tissue lactate concentrations. This was validated experimentally
by Kasischke et al . [5] FAD autofluorescence intensity was shown
to have the opposite dynamics of NADH in neurons [4,32].
The shuttling of lactate between different cells in the neuronal
microenvironment was observed with the Peredox sensor, which is
sensitive to the cytosolic NAD+/NADH ratio [9].

The Raman microscopy method most conducive to being
combined with multiphoton imaging is coherent anti-Stokes
Raman scattering (CARS) microscopy. However, for hyperspectral
information, the detection must either be in the spectral domain
or the difference between the pump and Stokes energies must be
scanned in time or frequency. The former needs long acquisition
times and is not optimal for neuroimaging. The latter is typically
achieved using spectral focusing, which needs picosecond-long
pump pulses. However, the efficiency of multiphoton fluorescence
is severely reduced at picosecond pulse widths. A recent technique
called temporally optimized spectrally shaped (TOSS) CARS used

Fig. 1. Contrasts, spectral coverage, and system setup of VAMPIRE microscopy. (a) Illustration of the various physical, metabolic, and biochemical
changes in the neuronal microenvironment and how optical microscopy modalities can access these contrasts. (b) Simplified schematic of the single source
simultaneous detection in VAMPIRE microscopy. SC: supercontinuum, PCF: photonic crystal fiber, PMT: photomultiplier tube, HPD: hybrid photo-
detector, FTPS: Fourier transform pulse shaper. (c) Spectral coverage of the excitation and detection in VAMPIRE microscopy, where the colors correspond
to the colors of the light paths in (b).
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amplitude and phase pulse shaping of a supercontinuum to scan
and match different pump and Stokes spectral windows [33,34].
A variant of the technique was described for a femtosecond pump
pulse and a shaped supercontinuum Stokes pulse that could scan
different spectral windows within the CH stretching region. The
CH region has strong signals in biological samples and is useful
in imaging and separating protein and lipid components [35].
Considering the abundance of lipids in the brain [36], the addition
of CARS to this multimodal scope will unlock new avenues into
structural and dynamic imaging of the neuronal environment.

A prevalent technique for label-free imaging of neuronal activity
involves optical coherence tomography (OCT) and its correspond-
ing high-resolution variant OCM [1,37–47]. Individual action
potentials can be discerned from the light scattered at large angles
[48] or by differential detection of the membrane displacements
from brightfield microscopy [2]. Even long-term changes to the
cellular potential have been tracked by phase-sensitive interfer-
ometry [49–51]. Full-field interferometry, quantitative phase
imaging, and digital holographic microscopy have also been used
to balance the spatiotemporal range of the measured scattered
optical field [52–54]. Apart from changes to the refractive index,
changes to the local birefringence also report neuronal activity
[3,55–57]. Studies also found that changes to the birefringence
are larger than the changes to the backscattered light due to axonal
reorientation during changing membrane potentials, sometimes
up to an order of magnitude [58]. Certain fibers and matrix pro-
teins also have second harmonic generation (SHG) signals, which
arise from the nonlinear susceptibility of a material. SHG signal is
spectrally separable from autofluorescence in multiphoton micros-
copy and is commonly implemented as an additional color channel
in commercial microscopes [59,60].

The goal of this paper is to devise and establish a neuroimaging
tool that can capture the structure, metabolism, and biochemistry
of the neuronal environment over large scales and do so dynami-
cally on the same timescale as neuronal activities. The versatility of
this tool is ensured by engineering a single optical source to extract
all contrasts simultaneously, the microscale resolution and imag-
ing speed of each contrast, and the computationally accelerated
excitation or detection of each modality for real-time imaging. We
present versatile autofluorescence lifetime, multiharmonic gener-
ation, polarization-sensitive interferometry, and Raman imaging
in epi-detection (VAMPIRE) microscopy as a solution to this
problem [Fig. 1(b)]. VAMPIRE microscopy utilizes three orders
of light-matter interactions by evoking signals from the UV to the
NIR from six processes simultaneously with a single laser, each
accelerated using optoelectronic and computational techniques
for fast imaging. Fast FLIM was implemented with computational
photon counting on a field programmable gate array (FPGA)
for 4× compressed sensing, followed by real-time processing on
a graphical processing unit (GPU) (Note S2, Supplement 1).
Polarization-sensitive OCM in the spectral domain was achieved
using a single detector through polarization multiplexing, followed
by real-time processing on a GPU. Multispectral CARS with fem-
tosecond pulses was achieved using TOSS-CARS. Advances in
supercontinuum generation on a photonic crystal fiber, amplitude
and phase shaping on a Fourier transform pulse shaper, and effec-
tive utilization of the spectral windows were utilized to generate,
optimize, and combine the excitation for each modality [Fig. 1(c)].
First, dual-channel fast FLIM with computational photon count-
ing on an FPGA is demonstrated as an effective tool for imaging

neuronal metabolic dynamics. Next, we highlight the utility of
VAMPIRE microscopy to visualize the large-scale brain and retinal
microenvironments rapidly. Third, the dynamic images of the ex
vivo brain and the retina clearly show how the multidimensional
information can be effectively utilized as a “functional contrast”
for the components within the neuronal microenvironment,
which would not have been possible without fast or simultaneous
acquisition.

2. RESULTS

A. Metabolic Dynamics of Neurons in Response to
Optical Stimulation Captured with FPGA-Accelerated
Fast FLIM of NAD(P)H and FAD

We have previously shown that the photocurrent from a hybrid
photodetector can be converted to photon counts with count
rates of over 500% using a high-speed (GHz) digitizer, a hybrid
photodetector (HPD), and the single-and-multi-photon peak
event detection (SPEED) algorithm [61,62]. In this study, we
expanded our fast FLIM setup to two channels and utilized the
FPGA for compressed sensing (Fig. S2, Supplement 1). Since the
photocurrents are not used further for FLIM processing anywhere
in the pipeline, the compression can be considered lossless for its
intended application (Figs. S3 and S4, Supplement 1).

The experiments in this sub-section establish the dual-channel
fast FLIM of NAD(P)H and FAD as optimal tools for observing
neuronal metabolism dynamics. The simultaneous measurement
of fast FLIM of NAD(P)H and Ca2+ indicators is described in Figs.
S5 and S6 and Note S3 in Supplement 1. Primary hippocampal
neuronal cells transfected with CHETA-YFP [63] were imaged at
1.33 s per frame [Fig. 2(a)]. The sample was optically simulated
with wide-field continuous-wave 470-nm light (<3 mW) for 3 s
using a fiber-coupled LED. The NAD(P)H and FAD intensity
responses were PCA-filtered; the first eight components were
processed with a k-means clustering algorithm for each pixel
[Fig. 2(b)]. A cluster size of four was chosen because the mean
responses of no two clusters had a correlation coefficient of above
0.25, indicating no duplicates. The spatial arrangement of these
clusters clearly encompasses different cells within the field of view
(FOV), indicating a “functional contrast” between the cells from
their label-free temporal autofluorescence dynamics. First, the
pixels in cluster Sγ respond to the optical stimulation with an
initial dip to the NAD(P)H intensity, followed by a rise (black
arrow). A similar momentary dip is observed in their lifetime
values for each stimulation. This suggests that there is a transition
from NADH to NAD+ and FAD to FADH2 immediately after
neuronal stimulation. However, the trends in all contrasts are
reverted after ∼20− 30 s, which suggests alternative metabolic
pathways for these cells. This is likely from cluster Sβ, which only
responds to the first stimulation with an increase to the NAD(P)H
and FAD intensity. The increase in intensity in the NAD(P)H
channel in Sβ is not as much as the ones for cluster Sγ . The pixels
in this cluster also have a continuous decrease in their fluorescence
lifetimes following optical stimulation. This suggests a conversion
from NADH to NAD+ in the cytosol of these cells, which hap-
pens during pyruvate-to-lactate conversion. Astrocytes have been
shown to fulfill this role in the neuronal environment previously.
Similarly, the cluster Sα, which had higher initial NAD(P)H and
FAD lifetime values, has the opposite trend in intensity to the
cluster Sγ and has decreasing lifetime values following the optical
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Fig. 2. NAD(P)H and FAD dynamics in response to optical stimulation of neurons. (a) Mean NAD(P)H and FAD intensity and lifetime images over a
320-s period. (b) Results from clustering the PCA-filtered NAD(P)H and FAD intensity dynamics for the image series in a following stimulation with 470-
nm light 3 s on and 120 s apart. (c) Individual (transparent) and the average (solid and colored) FAD and NAD(P)H dynamics for each cluster in (b). The
gray lines indicate the instances of optical stimulation when the detection shutter was turned off to prevent damage to the HPD.

stimulation. This suggests a conversion from bound NADH to
NAD+ and FADH2 converted to FAD as the dominant processes
within these clusters. These trends happen during processes such as
pyruvate-to-lactate conversion and ROS (reactive oxygen species)
scavenging, respectively. This suggests that these cells support
the neuronal cells by performing alternative processes to ATP
production to support the neuronal cells in cluster Sγ . Finally,
there is an obvious background cluster with minimal changes to
the NAD(P)H of FAD intensities and no discernable lifetime
values due to the low insufficient photon counts. The response at
higher stimulation frequencies is described in Note S4 and Fig. S7
(Supplement 1). The NAD(P)H and FAD dynamics of neurons in
response to stimulation with glutamic acid are described in Note
S5 and Fig. S8 (Supplement 1).

These results confirm previous observations such as the initial
dip in NAD(P)H intensity following excitation or the glucose
depletion in neurons following repeated stimulation [5]. While
dual-channel fast FLIM was an optimal tool to image the redox
and metabolic dynamics associated with electrical activity, the two
modalities are not sufficient for holistic characterization of the
neuronal environment. The next sections explore the combination
of fast FLIM with OCM and CARS in VAMPIRE microscopy for
imaging of neural tissues.

B. Changes to Scattering and Autofluorescence in the
Ex Vivo Retina from Optical Stimulation

Figure 3 shows the mosaic and axial stack of different fields of view
in an isolated retina and with the various contrasts of VAMPIRE
microscopy. Freshly extracted retinae from a 3-month-old albino
mouse following euthanasia by CO2 asphyxiation were placed
in imaging dishes with freshly prepared and pH balanced Ames’
medium within a stage top incubator mimicking physiological
conditions. The retinal ganglion cells (RGCs) are abundant in the

inner layer beneath the vitreous humor and the limiting membrane
10–20 µm below the surface [Fig. 3(a)]. Due to the compartmen-
talization of metabolism in neuronal cells, the interface of the nerve
fiber layer (NFL) and the RGC layer, which contains the highest
density of axonal projections from the RGCs, is expected to have
the brightest signals in the autofluorescence channels, and be the
most informative for RGC metabolism under our microscope
[Fig. 3(c)]. From the axial stack shown in Fig. 3(b), the depths
between 10 and 30 µm show both neuronal fibers and cell bodies,
suggesting an interface between the retinal ganglion cells and
the nerve fibers. The fiber tracts are also apparent in the lifetime
images, with a typical lifetime of 1200 ps, compared to the back-
ground where the variation was higher. Nonetheless, the dynamics
presented in the section further were acquired at a depth of 10–
20 µm, which had the best structural contrasts and signal-to-noise
ratio. Figure S9 in Supplement 1 is the multimodal image of a
retina ex vivo acquired using VAMPIRE microscopy averaged over
the duration of imaging for dynamics. The cells are highlighted
with white arrows. While most of the RGCs help in processing the
visual information detected in the photoreceptor layer, a subset of
RGCs is intrinsically photosensitive and is expected to respond to
optical stimulation immediately. The presence of these neurons
also induces birefringence from the presence of neuronal fibers.
Figure S10 (Supplement 1) shows the percentage change to each
contrast and the intercept for 50 s following each excitation. The
shifts are not monotonically increasing or decreasing for the entire
FOV, negating the presence of any global trends. Within local
populations, the trends are consistent for every excitation pulse.

The response to optical stimulation was analyzed by extract-
ing the average slope and intercept for 25 samples following the
excitation pulse for each super pixel [Fig. 4(a)]. The mean trends
indicate that, despite changes to the fluorescence intensities in
both the NAD(P)H and FAD channels, the changes to the overall
fluorescence lifetimes, especially in the FAD channel, are minimal.
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Fig. 3. (a) Mosaic and (b) z-stack of a mouse retina imaged ex vivo between the nerve fiber layer and the ganglion cell layer. (c) Cartoon showing the ori-
entation of the retinal ganglion cells in the retina and the imaging plane for the results in Fig. 4.

Visually, some of the slopes in the OCM channel appear to be
similar to the changes in intensities. The slopes normalized to the
intercepts were used as inputs to the clustering algorithm. Cluster 1
(green) represents background responses, with minimal changes
to optical activation, except for some subtle changes to the FAD
intensity. Cluster 2 (yellow) represents responses from cells with
an immediate decrease in the NAD(P)H and FAD intensities
following optical activation, followed by recovery to the original
intensity values. Interestingly, the responses in the FAD channel are
repeatable for every optical activation, whereas the responses in the
NAD(P)H channel progressively decrease in magnitude for every
excitation pulse. A similar trend is observed in the OCM intensity
channel, which only shows a response for the first excitation pulse.

Clusters 3 (pink) and 4 (red) are from regions that show an imme-
diate increase in the fluorescence intensities of NAD(P)H and
FAD following each excitation and recovery to lower intensities.
The NAD(P)H intensities are expected to return to baseline values
in 218 s and 185 s, for clusters 3 and 4, respectively, and 267 and
140 s for clusters 3 and 4, respectively, for the FAD intensities.
Interestingly, the OCM intensities in both polarization states
also show responses to optical stimulation in response to each
excitation pulse. This also suggests a change to the overall cellular
morphology in these regions. The different fall times in the inten-
sities also suggest different metabolic states for these cells following
neuronal activations. Figure 4(c) also shows the various clusters
highlighted in the different modalities. First, cluster 3, in which
both the autofluorescence intensity and OCM intensity respond
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Fig. 4. Optical stimulation of retina ex vivo imaged with VAMPIRE microscopy. (a) Average normalized slopes. (b) k-means clustering results based on
the slopes and intercepts, and the interpretation in each modality. The regions that are prominent under cluster 2 (yellow) are highlighted as rhombuses,
cluster 3 (pink) are highlighted as rectangles, and cluster 4 (red) as circles. (c) The individual (transparent and colored) and median (black and solid) trends
of each contrast for each cluster are shown at the bottom.

to the optical excitation, appears to contain the ganglion cells with
a visible nucleus within the FOV. While cluster 4 has a similar
temporal response to cluster 3, it is made of sub-cellular (5-µm
large) structures with bright autofluorescence in both NAD(P)H
and FAD channels. Interestingly, cluster 2 appears similar to
cluster 3 structurally in the FAD channels as ganglion cells with
a bright nucleus. This highlights how imaging with VAMPIRE
microscopy can discern functional contrasts between neuronal
subtypes. It is important to note that when the clustering algorithm
was run on each individual channel, the “functional contrast”
was not as informative as utilizing the multimodal data (Fig. S11,
Supplement 1). The retina did not have sufficient CARS signals
at the imaging speeds. However, the neuronal microenvironment
of the brain is denser and has more lipids. The brain is also more
scattering than the retina, causing higher CARS signals in the
epi direction. This enables rapid characterization of the diversity
within the neuronal microenvironment of the cortex in the mouse
brain presented in the next section.

C. Multimodal Signature of the Mouse Brain
Microenvironment Imaged with VAMPIRE Microscopy

Figure 5(a) shows the various combinations of overlays of the con-
trasts obtained using VAMPIRE microscopy as a 36-panel mosaic.
Two regions are highlighted within this large area. Figure 5(b)
highlights a blood vessel in the field. The blood vessel content is
less scattering than the surrounding neuronal fibers in the OCM
channel and has minimal CARS signals. However, the individual
blood cells are apparent in the NAD(P)H and FAD channels. The
dense neuronal fibers are highlighted in Fig. 5(c). OCM can cap-
ture the micron-scale neuronal fibers within bundles; these regions
also have high birefringence compared to surrounding areas.
While some of these fibers are visible in the NAD(P)H channels, a
majority of the autofluorescence is localized to a few regions within
these tissues, which also coincides with the strong signals from the
CARS channels. This further reiterates the compartmentalized
metabolism of neuronal tissues. The speed and multidimensional
information available through VAMPIRE microscopy provide

https://doi.org/10.6084/m9.figshare.26928292
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Fig. 5. Images of a mouse brain slice near the cortex using the VAMPIRE microscope. (a) 6× 6 mosaic spanning 700× 700 µm with two regions
zoomed in highlighting a (b) blood vessel and (c) neuronal fibers. Each panel in the mosaic shown here is a 24-frame average (eight frames for each spectral
window in CARS).

immense and unique insights into the neuronal microenviron-
ment. Visualization 1 of the brain is also highlighted in Movie S1
and Figs. S12–S14 in Supplement 1.

Next, the dynamics of the brain within the cortex region were
explored. The neuronal microenvironment of the brain differs
drastically from that of the retina, especially apparent in the OCM
channels. The images in Fig. S15a (Supplement 1) were acquired in
the cortex region from brain slices. More neuronal fibers and bun-
dles are apparent within the FOV. A few cell bodies are apparent
in the NAD(P)H and FAD channels. The range of birefringence
was also larger than that of the retina, due to the ordered and denser
alignment of the neuronal fibers. Several lipid particles are appar-
ent in the CARS channel (as bright green dots), which coincide

with bright spots either in the NAD(P)H or the FAD channels.
They also have lower fluorescence lifetimes compared to the rest,
typical of lipids. The change to the slope in the brain appears to be
less than that in the retina (Fig. S15b, Supplement 1). Nonetheless,
the shifts are not monotonically increasing or decreasing for the
entire FOV, negating the presence of any global trends. The inter-
cepts are also fairly consistent across the entire time scale (Fig.
S15c, Supplement 1). This demonstrates the noninvasive nature
of VAMPIRE microscopy and its capability to observe the dynam-
ics of neurons over 1000 s. The average slopes normalized to the
intercepts are shown in Fig. 6(a).

Five distinct populations were observed in the clustering analy-
sis [Figs. 6(b) and 6(c)]. Clusters 1 and 3 had minimal changes
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Fig. 6. Fast imaging of neuronal activity in the brain using VAMPIRE microscopy. (a) Average normalized slopes. (b) k-means clustering results based on
the slopes and intercepts, and the interpretation in each modality. The regions prominent under cluster 1 (cyan) are highlighted as circles, cluster 2 (green) as
triangles, cluster 4 (pink) as rhombuses, and cluster 5 (red) as rectangles. (c) Individual (transparent and colored) and median (black and solid) trends of each
contrast for each cluster in (c).

throughout the fluorescence lifetime channels, although they had
opposing trends in the OCM intensity channel. However, this does
not appear to be a response to the addition of glutamate; rather,
it is an effect of continuous imaging due to tissue relaxation. The
average fluorescence lifetime of both clusters is also higher than the
other clusters. Clusters 2, 4, and 5 are initially silent and respond
after the addition of glutamate in both fluorescent intensities. The
response of cluster 2, a decrease in the fluorescence intensities of
FAD and NAD(P)H, is particularly delayed by over 200 s, sug-
gesting a delayed onset of the effect of glutamic acid addition. In
contrast, both clusters 4 and 5 respond to glutamate stimulation
within 20 s. There is also an overall change to the fluorescent
lifetime values. The most prominent changes are apparent in the
FAD intensity and OCM intensities, which are also apparent in
the slopes [Fig. 6(a)]. The molecular origins of these changes were
also investigated with CARS imaging. The CARS images were
acquired for five different spectral sub-bands of the Stokes beam
to generate CARS signals at 2830 cm−1, 2930 cm−1, 3030 cm−1,
2800− 3100 cm−1, and block (generated by creating destruc-
tive interference of all wavelength components in the 1045-nm
supercontinuum using the pulse shaper). Since the individual

responses in each frame were weak, the signals were analyzed
across four larger time bins. First, TOSS-HS-CARS in VAMPIRE
microscopy could image the brain biochemistry label free over long
durations (Fig. S16, Supplement 1). Second, the three different
vibrational bands captured highlight different parts of the sample
(Fig. S16a, Supplement 1). Third, with ratiometric analysis, there
is an increased occurrence of pixels with very low or very high
lipid-to-protein ratios (Figs. S16c, S16e, Supplement 1). Visually,
there appears to be an increase in the number of “green” dots in
Fig. S16d (Supplement 1) over time, suggesting an increase in lipid
production over this process.

The relationship between the time-series imaging, clustering
analysis, and the sample structures is presented in Fig. 6(c). The
cyan cluster (cluster 1) is prominent along a subset of the neuronal
fibers apparent in the OCM channel. In the CARS images, these
regions neither have a dominant protein peak nor a lipid peak.
These regions do not have strong autofluorescence either, sug-
gesting that these correspond to bundles of nerve fibers. Therefore,
the changes observed in the OCM channels in these regions could
be attributed to subtle shifts in the focal plane, where the scattering
of the fiber bundles could be different within a small axial range due
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to the thin aligned structures. While clusters 2, 4, and 5 responded
to glutamate stimulation, they have different biochemical and
metabolic properties. For instance, cluster 2 (green triangles) con-
tains strong lipid peaks observed in the CARS channel, which also
have strong NAD(P)H and FAD fluorescence. While clusters 4 and
5 appear alike in the OCM and autofluorescence channels, cluster
5 (red squares) has more lipid content than cluster 4 in the CARS
channel, though weaker than cluster 2. Tracking these regions in
the CARS channel across time in Fig. S16 (Supplement 1), it is
apparent that these lipid particles appear only in the later frames,
suggesting synthesis in response to neural activity. The results,
when the resolution was prioritized over the imaging speed, are
presented in Note S6 and Figs. S17–S19 (Supplement 1).

3. DISCUSSION

The incredibly complicated processes behind neuronal metabo-
lism arise from their high energy demand, diverse cellular
functions, specialized morphology, adaptation, and glial inter-
actions. Additionally, their dynamics are often subdued by the
inherent redox balance and neuroprotection. Neurons are highly
vulnerable to oxidative stress due to their high oxygen consump-
tion, abundant membrane lipids, and limited regenerative capacity
[64]. Maintaining redox balance and antioxidant defense mech-
anisms involves complex metabolic pathways to protect neurons
from oxidative damage and maintain cellular viability [65].
Additionally, neurons communicate with each other through
synapses, where neurotransmitters are released and received [4].
Synaptic transmission involves the reuptake, recycling, and syn-
thesis of neurotransmitters, which require energy and metabolic
resources. The regulation of neurotransmitter metabolism and
availability adds to the intricacy of neuronal metabolism. The
experiments in this paper only serve to establish the dual-channel
fast FLIM of NAD(P)H and FAD as optimal tools for observing
the dynamics of neuronal metabolism. These results confirm previ-
ous observations of the initial dip in NAD(P)H intensity following
excitation or the glucose depletion in neurons following repeated
stimulation [5]. A detailed understanding of neuronal metabolism
often requires measuring metabolite levels, enzyme activities,
and metabolic fluxes using complementary techniques such as
metabolomics or enzymatic assays [16]. Recent studies have shown
that FLIM could quantify the metabolite concentrations [66].
Furthermore, in this paper, the NADPH dynamics were assumed
to be minimal compared to the NADH dynamics in response to
neuronal activity. However, NADPH has been shown to play a
key role in neuronal nitric oxide synthase for communication and
plasticity [67], the neuronal antioxidant system [68], and neuronal
detoxification [69].

The metabolism of the RGCs is remarkably complex, where
each cellular compartment could have different responses to activa-
tion. The retina is also one of the most oxidative tissues in the body,
especially the inner retinal layers [70]. It is important to note that
most of the neurons in the retina are inhibitory. Also, intrinsically
photosensitive RGCs are, in fact, a minority, both in numbers
and their excitatory nature. The RCGs span several retinal layers,
starting from their dendritic projections within the inner plexiform
layer, the soma in the ganglion cell layer, and the unmyelinated
axons projecting onto the nerve fiber layer (innermost layer) ini-
tially, after which the myelinated parts of the axon join the optic
nerve back into the outer retinal layers [71] [Fig. 3(b)]. The results
in Fig. 4 were at the transition between the RGC soma and the

unmyelinated axons. The unmyelinated axons have been shown to
have varicosities rich in mitochondria [72], which supports their
unusually high energy demands. The NFL also contains elevated
levels of cytochrome c oxidase and Na+ K+ ATPase [73]. The
former is a critical component of the electron transport chain.
The elevated levels of the latter indicate an abundant degree of
depolarizing and repolarizing activities. For the dynamics observed
in Fig. 4, there were minimal changes to the fluorescence lifetime
in response to optical activation. Therefore, based on Fig. S1
(Supplement 1), clusters 3 and 4, where the NAD(P)H and FAD
intensities gradually decrease, are indicative of increased ETC.
This is also apparent in the bright regions (in the autofluorescence
channel) co-occurrent with the nerve fibers seen in the OCM
(cluster 4). These could indicate the cytochrome-rich regions in
the RGC axons responding to the increased energy demands from
neuronal activation. It is also interesting to note that this phenome-
non is only apparent in a small subset of cells and nerve fibers in this
layer. The responses of over 50% of the pixels in this region are not
synchronized to the optical stimulation. As a validation, a retina
was imaged at the layer consisting only of RGC soma (Fig. S20,
Supplement 1). The cell bodies are apparent in the fluorescence
channels. Also, the neuronal fibers seen in the previous region in
the OCM channel are absent here. None of the clusters appears
to have any dominating response to photoactivation in this FOV,
further highlighting the compartmentalization of the retinal
metabolic responses.

Due to the diversity among the retinal ganglion cells, the
molecular composition of the various cell types inferred from the
functional contrast could not be tagged with one or two markers
for validation. One avenue for this could be using advances in
spatial genomics after fixation to get the molecular profiles of
these cells [74]. While matching the FOV in sectioning will be
challenging, marking the adjacent regions with ablation could
help with this registration. For brain imaging, while the 770-nm
excitation does not excite popular fluorophores with emission
in the green-to-red spectral regions, the Stokes beam will excite
these wavelengths near their peak and their emission will overlap
with NAD(P)H and FAD spectra. Therefore, future studies could
sacrifice CARS imaging to validate the neuronal cell subtypes in the
brain to their functional responses. In brain imaging, the autofluo-
rescence changes were most prominent in lipid-rich regions in the
tissue. In this case, the interpretation of the autofluorescence trends
is complicated by the lipid autofluorescence that could be present
in both NAD(P)H and FAD channels. Cluster 5 was not from the
lipid-rich regions but showed a decrease in the FAD and NAD(P)H
intensities and an increase in the FAD lifetime in response to glu-
tamate stimulation. Together, from Fig. S1 (Supplement 1), one
could infer this as an increase in the ETC process within these cells.
However, since glutamate stimulation also causes oxidative stress
in the tissue, the changes to the NAD(P)H fluorescence could be
from NADPH dynamics as a ROS scavenger. These trends would
be difficult to interpret from the responses of any single imaging
modality of VAMPIRE microscopy.

A constant argument against simultaneous multimodal imag-
ing is sacrificing the synchronized acquisition and speed for the
sake of simplicity in system design. In this paper, we have clearly
established the utility of simultaneous, synchronized, and fast
multimodal acquisition. The analysis that was performed in Figs. 4
and 6 was rerun considering the slopes and intercepts of a single
contrast at a time and shown in Figs. S11 and S21 (Supplement 1).
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The dynamics in the retina during optical stimulation were more
pronounced than that in the brain for each contrast. Therefore,
the clustering when each contrast is considered has some visual
similarities to the results from when all contrasts are considered.
This is particularly highlighted when the NAD(P)H, FAD, and
OCM intensity trends are considered. However, each of these
results is harder to interpret and noisier than the clustering for
all contrasts. In the brain imaging results, this disparity between
considering all contrasts and one at a time is larger. Apart from the
FAD intensity channel, interpreting the clustering results to the
structure is difficult. The combination of these modalities, along
with the clustering analysis, not only serves as a method to get func-
tional contrasts between the different components of the tissue but
also helps interpret the metabolic trends more accurately with the
structural and biomedical contexts. The speed and non-invasive
nature enabled long-term fast imaging of neuronal tissues in their
physiological conditions label free and rapid characterization of
neuronal tissues over a larger FOV with sub-micron resolution
completely label free with a single tool. In this multimodal system,
the cost is dominated by the femtosecond tunable dual-output
laser. As an added advantage, the single source excitation, enabled
by recent advancements in supercontinuum generation and pulse
shaping, aids in synchronization and avoids the costs for additional
sources for the other modalities.

An ideal neurophysiology tool would be able to directly measure
electrical activity (as currents or potentials). However, the label-
free contrasts are not specific to just the changes to the electrical
activity. For instance, optical phase changes can be induced by
any phenomenon that causes a change to the cell shape, density,
volume, or refractive index. Even for action potentials, while the
sodium ion flux is prominent for the first few milliseconds, the
Ca2+ ion flux could last several seconds. Decoupling one effect
from the other needs additional information or simpler biological
models. Similarly, cellular motion will cause reorientation of the
cytoskeletal structures, and, consequently, changes to the birefrin-
gence. The autofluorescence characteristics are not only affected
by changes to the metabolic states of the cells and tissues, but also
by the changes experienced by NADPH or other flavoproteins
that respond to the changes to the microenvironment unrelated
to metabolism such as pH changes or neurotransmitter release, or
other autofluorophores not considered in the model, such as lipids
and LipDH. Additionally, the timescales of measurements are also
different for these modalities. Therefore, rather than concentrat-
ing on being able to extract the cellular potentials, this paper has
concentrated on exploring the changes in the label-free contrasts
because of neuronal activity. For the OCM setup in the VAMPIRE
microscope, the phase stability of each polarization state was low
due to the long optical paths. However, because of polarization
multiplexing, the overall phase difference between the two states
was stable across time with a standard deviation of<5 nm.

The autofluorescence from neurons and neuronal tissues is
weaker than other cell types. For instance, the average intensity
(in measured photon counts) in the NAD(P)H channel per single
laser pulse at the same power was 0.42 for a sample of a mouse
kidney, 0.81 for a sample of a rat tail, 0.33 for a sample of a mouse
heart, and<0.02 for mouse brain and retina. Similarly, for cancer
cells (MDA-MB-231 cell line) imaged with the same setup, the
average photon count ranged from 0.3 to 2.00 (up to 3.00) per
laser pulse [61,62], whereas, for the neuronal cells, it was between
0.015 and 0.05. This 20× reduction in the autofluorescence inten-
sity demands higher exposure times (more laser pulses incident

per pixel). Neurons are highly metabolically active and possess
efficient mitochondrial functions [75]. Neuronal mitochondria
exhibit efficient electron transport and lower levels of oxidative
stress, resulting in reduced autofluorescence from mitochondrial
fluorophores. Additionally, neuronal tissue has a relatively low
concentration of endogenous fluorophores compared to other
tissues [76,77]. The lower concentration of these fluorophores
in neurons results in reduced autofluorescence signals. The lower
autofluorescence intensity also creates issues in the estimation of
fluorescence lifetime values [78]; more photons have to be consid-
ered to accurately estimate the fluorescence lifetime. Therefore,
the imaging speed in this paper was between 0.05 and 1 Hz. This
is slow even for Ca2+ dynamics, although fast enough to capture
previously reported metabolic changes from neuronal activity.
While computational photon counting with SPEED for FLIM
improved the overall dynamic range of acceptable photon counts
and the imaging speeds, the fundamental limitation was the low
autofluorescence within the sample itself. In this study, the shortest
pulse width at the sample plane with the multiphoton laser was
170 fs. With better laser sources, this could be further compressed
to sub 100 fs for a 2− 4× improvement in the signal levels.

CARS microscopy of neurons had a similar limitation as aut-
ofluorescence. The signal levels were estimated to be between
0.05 and 0.2 photons per laser pulse, of which a non-negligible
portion is from the non-resonant background. Additionally, in
the prototype TOSS-HS-CARS setup in this paper, the maximum
power at the sample plane in each sub-band of the Stokes beam
was less than 3 mW. In this paper, the photonic crystal fiber (PCF)
was pumped at 60% of the maximum output of the laser because
pumping it at higher powers caused back reflections that caused
instabilities with the laser cavity. With better laser design and
isolation, this power could be increased further. Improving the effi-
ciency of supercontinuum generation and the pulse shaper could
help improve the signal levels of CARS and enable faster imaging.
Additionally, for hyperspectral data, the Stokes pulses were varied
between four to six patterns, thereby restricting the effective speed
of HS-CARS to be less than the other modalities. CARS micros-
copy was used to characterize the dynamics in the samples in this
paper. Raman scattering microscopy in the neurosciences is more
prevalent for studying the pathways behind neurodegeneration,
neuroinflammation, and injuries, which will be the focus of future
studies [79].

The weaker signals from these samples necessitated cumulating
responses from several individual pixels into super pixels. While
the structural imaging yielded images with diffraction-limited
resolution in each modality, the effective resolution of dynamic
imaging was reduced. For the same image dimensions, the effective
resolution could be improved by scanning a smaller field of view.
The fields of view in this paper were chosen to ensure minimal
photodamage during dynamic imaging such that the illumina-
tion is not persistent at any single location in the sample at the
specified optical powers. The tradeoff between the field of view
(and, consequently, the effective resolution) and the optical powers
could be tuned based on the application. For instance, for more
scattering samples or samples with higher CARS signals, the Stokes
and OCM powers could be reduced with a corresponding increase
in the pump power for stronger autofluorescence.

While the SHG channel was available for detection in the
current setup and was previously used to characterize collagen in
previous versions of the microscope [80], the SHG signals in the
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samples presented in this paper were negligible. However, SHG
has previously been used for imaging action potentials in single
neurons with labeling [81]. Matrix proteins like collagen and
elastin play important roles in the development and activation
of the nervous system [82]; future studies will utilize the SHG in
VAMPIRE microscopy to study these aspects.

The FPGA-accelerated compressed sensing and GPU-
accelerated processing were critical to maintaining fast imaging
speeds for long durations. The raw data throughput of VAMPIRE
is 20 GB/s for fast FLIM, 160 MB/s for PSOCM, and 320 kB/s
for CARS and SHG. Each 256× 256-pixel frame at 1024 laser
pulses per pixel was compressed at 16.78 GB down to 4.19 GB
after processing on the FPGA for NAD(P)H and FAD FLIM,
134.22 MB for PS-OCM, and 262.144 kB for SHG and CARS
(4.32 GB total). For sustained imaging, the overall frame rate had
to be less than 0.35 Hz (42% of the maximum frame rate based
on the exposure time per pixel and total number of pixels). If the
data throughput could be improved, along with the improvements
to the signals discussed in the previous section, faster dynamics
could be explored in the future. This also provides an opportunity
for future studies for a further degree of compression (to 2 bits)
if one does not expect more than three simultaneously arriving
photons for another 2× reduction to the data stream. PCIe speeds
of 4–6 GB/s can be sustained in the absence of any background
processes. However, with the data acquisition software used and
the other components such as the data acquisition (DAQ) card
and the GPU, the effective PCIe transfer speeds for over 2 min
of continuous streaming were measured to be 3.2 GB/s. The 2×
reduction to the data stream will help accelerate image acquisition
further.

To our knowledge, this is the first implementation of opti-
cal multimodal imaging with the combination of extracting the
polarization, scattering, autofluorescence lifetime, and coher-
ent Raman scattering at multiple vibrational energy levels. The
combination of two-photon FLIM with multispectral CARS
simultaneously has been a long-standing challenge at higher frame
rates since existing methods either need longer exposure times
if one were to use femtosecond pulses with spectrometer-based
CARS detection or weaker signals if one were to use picosecond
pulses for spectral-focusing CARS. The techniques in VAMPIRE
overcame this issue. Previous optical multimodal platforms could
do a subset of these contrasts, sometimes simultaneously. A table
comparing VAMPIRE microscopy to previous studies is sum-
marized in Table S1 and discussed in Note S7, Supplement 1
[28,83–89].

This paper sought out to explore the utility of label-free mul-
timodal optical microscopy for imaging neuronal structure and
activity. Several label-free contrasts, previously used to study
neural activity, were made faster, combined for co-registered
multimodality correlations, and optimized for imaging neu-
ronal samples across a large spatiotemporal scale. Although
quantitative electrophysiology with label-free imaging needs fur-
ther work, the techniques presented in this paper could observe
spontaneous activity, responses to chemical stimulation and sup-
pression, and responses to optical excitation. This is a key step
in the paradigm shift from low-throughput electrophysiology
to high-throughput optophysiology for fundamental neurosci-
ence and clinical applications. For instance, Alzheimer’s disease
(AD) is a neurodegenerative disorder known to progressively
cause memory deficits and broader cognitive impairment as the

disease progresses. Post-mortem, AD is verified by the presence of
hyperphosphorylated tau in neurofibrillary tangles and amyloid
beta (Aβ) plaques, detected by immunohistochemical staining
of the brain tissue. It is commonly believed that, collectively, the
accumulation of these in the brain impairs neuronal function and
communication, which eventually manifests into severe demen-
tia as patients age. Label-free optical imaging presents a unique
and convenient means for identifying these biomarkers, tracking
disease progression, and determining disease severity.

As a research system, the optical platform presented here can
be used for other applications, including cancer biology and for
biofilm imaging, since these label-free contrasts are ubiquitous
among biological samples. Additionally, we had demonstrated
the utility of adaptive optics in a similar multimodal system [89],
which can be adapted to VAMPIRE microscopy. This, combined
with the epi detection, also enables in vivo imaging experiments
with minimum modifications. While the individual modalities
are prevalent in clinical imaging, this paper highlights the advan-
tages of combining these modalities, with minimal additional
cost for the laser sources. The complexity in the optical design and
processing could be optimized based on application and making
the components more modular. While these additional advantages
are beyond the scope of the current study, they will be explored in
the future.

4. MATERIALS AND METHODS

A. Optical and Electronic System Setup

Excitation and emission for FLIM. We employ a titanium-
sapphire laser (Insight X3+, Spectra Physics) as the excitation
source for our multiphoton imaging system. The titanium-
sapphire laser (Insight X3+, Spectra-Physics) was operated at a
central wavelength of 770 nm and 80 MHz. The shortest pulse
width at the sample plane was measured to be 170 fs. A 605-nm
dichroic mirror (FF605-Di01, Semrock Inc.) was used to separate
the excitation and emission light, and a 505-nm dichroic mirror
(DMLP505R, Semrock Inc.) was used to separate the NAD(P)H
fluorescence from FAD or Calbryte 590 AM fluorescence. A pair of
633-nm short pass filters is placed in the detection path before the
505-nm dichroic to prevent any excitation light leaking into the
detector. When imaging Calbryte 590 AM fluorescence, a 665-nm
dichroic mirror (FF665-Di01, Semrock Inc.) and a 585-nm long
pass filter were used in the Calbryte 590AM detection path and a
450± 70-nm filter was placed in the NAD(P)H detection path.
This path can be discerned by following the pink, yellow, and
blue paths in Fig. 7. The SHG signal was detected using an analog
PMT (H10721-210, Hamamatsu), amplified by a transimpedance
amplifier (TIA-60, Thorlabs Inc.).

Excitation and interferometry for OCM. A part of the 770-
nm beam is used to pump a PCF (LMA-PM-5, NKT Photonics)
for an output power of 300 mW and a bandwidth of 120 nm (base-
to-base). The output of the PCF is collimated with a parabolic
mirror for an initial beam diameter of 12 mm and linearly polarized
with a linear polarizer. This beam is directed into the interferom-
eter directly after passing through a quarter-wave plate and 0.2×
magnification. The OCM beam is combined with the Stokes and
pump beams using a cube beam splitter. Polarization-sensitive
OCM was enabled using polarization delay multiplexing in the
reference arm. This can be discerned by following the gray path in
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Fig. 7. System setup for VAMPIRE microscopy. HWP: half-wave plate, PBS: polarizing beam splitter, GT: Glan-Thompson polarizer, SLM: spatial
light modulator, BS: beam splitter cube, LP 1,2: linear polarizer, Galvo: galvanometer scanning mirror, PMT: photomultiplier tube, HPD: hybrid photo-
detector, # SP/LP: short pass/long pass filter with cutoff at # nm.

Fig. 7. The combined OCM beam underfilled the back aperture of
the objective lens by design for higher depth of field.

Excitation and emission for CARS. The differences between
spectral focusing CARS and TOSS CARS, and the advantages of
the latter, are discussed in detail in Yang et al. [33]. A brief descrip-
tion is summarized in Note S8 (Figs. S22–S24) in Supplement 1.
A supercontinuum spanning 200 nm base-to-base was generated
by 1.3 W of 1045-nm output coupled into a photonic-crystal
fiber (PCF, LMA-PM-10, NKT Photonics). The custom FTPS
(Fourier transform pulse shaper) consists of a diffraction grating,
an achromatic half-wave plate, a cylindrical lens, and a 2D spatial
light modulator (SLM). The shaped Stokes beam was coupled
into the pump path using a dichroic mirror after matching both
polarizations using a half-wave plate. The collimation of the Stokes
beam was adjusted to ensure that the focal spot of the two beams
was at the same plane in the sample. An optical delay line (ODL)
was inserted between the PCF and the FTPS to delay the shaped
Stokes beam by one laser pulse period (12.5 ns for 80 MHz) com-
pared to the pump. We matched the path lengths by maximizing
the sum-frequency-generated response from the interaction of the
pump and the Stokes beam for a BBO crystal placed at the sample
plane. The CARS emission was separated by a 665-nm dichroic.
A 665-nm short pass filter (633SP, Semrock Inc.) is placed in the
detection path for CARS and a 612/69-nm filter was used before
the detector. This can be discerned by following the cyan and
orange paths in Fig. 7.

Scanning and detection. The beam is scanned by a pair of
galvanometer mirrors (6220H, Cambridge Technology) and
focused through a 25× objective lens (Olympus Inc.). The fluores-
cence photons were detected using a pair of hybrid photodetectors
(R10467U-40, Hamamatsu Inc.) that had a sub-500-ps rise
and fall time. The photocurrents were amplified using a tran-
simpedance amplifier (TIA, HSA-X-2-20, Femto). The OCM
interferogram was captured using a fiber-based spectrometer
(Cobra S 800, Wasatch Photonics) and one of two-line scan

cameras (OctoPlus, Teledyne e2v; or Sprint spL4096-140 km,
Basler Inc.). The CARS signal was detected using an analog PMT
(H16722P-40, Hamamatsu), amplified by a transimpedance
amplifier (TIA-60, Thorlabs Inc.).

The output photovoltages were measured with a 5-GHz two-
channel digitizer (ADQ7WB, Teledyne SP Devices) purchased
with the additional development kit offering access to the onboard
FPGA. The FPGA was programmed with Vivado 11 (Xilinx).
A PCIe-based DAQ card (NI 6353, National Instruments) was
used to generate the clocks, triggers, and the analog waveforms to
control beam scanning. The same DAQ was used to capture the
SHG and CARS signals through analog inputs. Both the digitizer
and the DAQ card were synchronized to the laser using a 10-MHz
reference clock derived from the internal photodiode of the laser
passed through a clock divider (PRL-260BNT, Pulse Research
Lab) and a fanout buffer (PRL414B, Pulse Research Lab). Since
5 GHz is not divisible by 80 MHz, there are 125 samples collected
per two laser periods and are processed together for phasor analysis
for two cycles of the laser period. The OCM camera was connected
to a PCIe-based frame grabber (NI 1433, National Instruments)
and synchronized with the DAQ card for each line scan. This is
summarized in Fig. S25 (Supplement 1). The transverse resolu-
tions of the fluorescence channels were 0.4 and 1.2 µm for CARS,
limited by the NA of the objective lens. The transverse resolution
of OCM was 1 µm (since the back-aperture was underfilled) and
the axial resolution was 2.9µm in the immersion medium (limited
by the spectral bandwidth of the OCM source).

Data acquisition. A custom LabVIEW acquisition software
was used to acquire the data, with custom C-based programs to
control the digitizer and the GPU modules. The software consists
of three asynchronous modules. The first module generates the
clocks, controls the motorized sample stages, handles the analog
inputs for the SHG and CARS signals, and monitors for errors
in the subsequent modules. The second asynchronous module
controlled the digitizer and real-time display for FLIM, and the
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third module for OCM acquisitions. Queue buffers were set up
on LabVIEW to asynchronously pass each line from the digitizer
memory to the GPU memory via the RAM for both FLIM and
OCM. Separate streams on a single GPU (GeForce 2080 RTX,
NVIDIA Corporation) were used for real-time processing of the
photon counts to fluorescence lifetime values based on the algo-
rithm described in Sorrells et al. [61,62] for each channel using
phasor analysis and OCM reconstruction using matrix multipli-
cation using the CUBLAS library. The fluorescence decay for each
channel, the phasor components, the intensity, and the lifetime
were saved for each channel as binary files. The raw OCM data
and the analog input voltages (as 16-bit integers) were also saved in
binary files. Custom MATLAB scripts were used to read in these
images for generating the images displayed in the paper and for
further analysis. A screenshot of the software is shown in Fig. S26
(Supplement 1).

Optical stimulation. An electronic shutter was placed in the
detection path, which could be triggered with an external micro-
controller (LabJack U12). The microcontroller was also used to
control a fiber-based LED (470-nm, Thorlabs) pointed at the
sample such that the turning on of the LED was synchronized to
the closing of the shutter and vice versa.

Cell culture. The procedure for preparing the NE-4C cells was
previously described in Iyer et al. [89]. The hippocampal neuronal
culture was purchased as kits from (KTC57EDHP, Transnetyx
by BrainBits) and the provided protocols were followed. The
cells were grown on a No. 0 glass-bottomed imaging dish coated
with Poly-D-Lysine (MakTek). The hippocampal cultures were
transfected with CHETA-GFP (Addgene) by incubating it with
∼4× 1010 viral particles per imaging dish. The NE-4C cells were
labelled with Calbryte 590AM by adding a working solution in
DMSO and the cell medium of a dye for a final concentration of
100 nM per imaging dish and 1 µL for F125-Pluronic acid per
imaging dish. The dye was washed off after 30 min of incuba-
tion with the neuronal culture external solution. Approximately
1 h before imaging, the NbActiv4 medium was replaced by the
neuronal culture external solution prepared using the protocol
described previously [90]. A stage top incubator (OkoLabs) was
placed above the objective lens to ensure that the cells are main-
tained at 37◦C with 5% CO2 throughout their growth and during
imaging.

The primary hippocampal neuronal cells transfected with
CHETA-YFP [63] were imaged at 1.33 s per frame for 160× 160
pixels with 640 incident laser pulses for each pixel. An electronic
shutter was placed in the detection path, which could be triggered
with an external microcontroller (LabJack). The microcontroller
was also used to control a fiber-based LED (470-nm, Thorlabs)
pointed at the sample such that the turning on of the LED was
synchronized to the closing of the shutter and vice versa. Since the
autofluorescence signals were weak for the primary neuronal model
as well, the responses from an 8× 8 superpixel were accumulated
for the FLIM images.

Retinal imaging. All animal procedures were conducted in
accordance with protocols approved by the Institutional Animal
Care and Use Committee at the University of Illinois Urbana-
Champaign. All experiments in this study were conducted in
compliance with the ARRIVE guidelines. Freshly extracted retinae
from a 3-month-old albino mouse following euthanasia by CO2

asphyxiation were placed in imaging dishes with freshly prepared
and pH balanced Ames’ medium within a stage top incubator

mimicking physiological conditions. The images were acquired at
0.3 Hz. A 470-nm LED (M470F1) was focused onto the sample
over a circular region of 5-mm radius for a total power of 10 mW,
triggered using a microcontroller (Lab Jack U12). The same con-
troller was used to trigger the shutter placed in front of the HPDs to
block the light to the detectors when the LED is turned on. Images
were acquired over 1000 s with six optical excitations in between
(10 s on time and 140 s between two excitation pulses).

For a more detailed analysis, the relative slopes were input as
an N-dimensional feature vector for k-means clustering. The
number of clusters varied between three and eight; the value of
four was chosen because it was the maximum number of clusters
where no two median responses in more than three channels had an
absolute correlation coefficient greater than 0.5. The four clusters,
therefore, yield four unique responses within the sample.

Brain imaging. The mice (3-month-old females) were eutha-
nized with isoflurane overdose and decapitation, following which
the brain was removed and placed in a cutting solution. The brain
was sliced into 0.5-mm-thick slices and placed in an external solu-
tion for electrophysiology. The slices were placed in a stage-top
incubator with physiological conditions (37◦C and 5% CO2).
The slices were imaged within 1 h of extraction. The images were
acquired in two different imaging conditions: high speed and high
resolution. The high-speed images were acquired at 0.20 frames
per second, and the high-resolution images were acquired at 0.055
frames per second, each spanning 200× 200 µm. The same pro-
cedures described for the imaging and processing of the retina were
used here for the brain. 25-µM glutamic acid (prepared by adding
glutamic acid crystals to the external solution on the day of the
experiment and preconditioned to physiological conditions in an
incubator) was added to the dish at t = 100 s (for fast imaging) and
t = 300 s (for high-resolution imaging).

B. Data Analysis

FLIM and SPEED. The ADQ7WB (Teledyne SP Devices) dig-
itizer can sample at 5 GS/s for two channels and has an onboard
open FPGA. While the acquisition clock operates at 5 GHz for
two channels, the FPGA clock operates at 312.5 MHz. Therefore,
16 samples are available for processing at each falling edge of the
FPGA. Since SPEED needs three consecutive samples for detecting
the local peak, two 16-bit shift registers are set up as the memory to
remember the last two samples from the previous cycle. Every clock
cycle of the FPGA utilizes 18 consecutive 16-bit analog samples per
channel to derive 16 instances of 4-bit photon counts. To maintain
the same data size through the bus for the downstream modules of
the FPGA (until the sample-skip module), four-packed copies of
the photon counts are created such that the FPGA can be operated
with a sample skip factor of four. The 16-bit photocurrents are
converted to 4-bit photon counts leading to a 4×data compression
factor.

SPEED, as seen in Fig. S3 (Supplement 1), relies on finding
the local peaks by comparing each digitized sample to its nearest
neighbors on either side and comparing it to photon thresholds
(five thresholds for HPD, two threshold values for PMT). If both
conditions are satisfied, N photons (depending on the threshold)
are assumed to have arrived at that sampling instant. After this,
the photons within each laser period are coherently aligned and
summed for all laser pulses in a pixel (for the 80-MHz setup with
hundreds of pulses per pixel) or a single line in a frame (for setups
with lower repetition rates). The laser pulse is assumed to have
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occurred at the peak of this summed decay profile. All photons are
aligned to this inferred laser pulse digitally and cumulated across
the response of all laser pulses for the pixel and across frames to
build the histogram for fluorescence decay. The lifetime values can
be estimated using a curve fitting to an exponential or using phasor
analysis [91]. The latter was used throughout this paper and was
performed in real-time on a GPU.

Since the photon counts from neurons were weak, the decays
from each pixel were binned for 8× 8 superpixels and used to
derive the intensity and lifetime values. Each pixel in the sample
had approximately two to 10 fluorescent photons and the binning
size was chosen to ensure sufficient photons for lifetime estimation
in each super-pixel. The intensity and lifetime values from any
superpixel with fewer than 70 photons were rejected for all further
analysis. The MATLAB functions corrcoef(), pca(), kmeans(), and
fit(. . . ,. . . ,“poly2”) were used for correlation coefficient calcula-
tion, for principal component analysis, for k-means clustering,
and for fitting, respectively. The NAD(P)H and FAD intensities
were normalized to the average intensity of each frame. The Ca2+

dynamics were also normalized by subtracting and dividing by the
average fluorescence intensity of the superpixel during the first 20
frames.

OCM processing. The supercontinuum-based OCT/OCM
system had artifacts along the axial direction not corrected by
traditional methods of OCT/OCM image reconstructions. Since
existing algorithms were insufficient to correct this dispersion
mismatch, a solution called DISCOTECA (dispersion correction
techniques for evident chromatic anomaly) was devised, which also
provided a universal paradigm for OCT/OCM reconstruction.
This algorithm is detailed in Iyer et al. [92].

Processing retinal imaging data. Since the average photon
counts of the NAD(P)H and FAD channels were less than two
photons per frame, all quantitative metrics were calculated after
binning 16× 16 pixels with an 8-pixel overlap; a minimum of
1000 photons were used for calculating the fluorescence lifetime
values. The birefringence images were binned using a circular mean
algorithm. For 50 s after each optical excitation, the responses col-
lected from each superpixel for each contrast were fit to a first-order
polynomial function. The relative slope for each contrast following
each stimulation was used as the input to a k-means clustering
algorithm. The median responses of each cluster were visualized.
All intensity values were normalized to the median intensity of
each superpixel across all 1000 s before clustering. The value of k
was chosen such that no two clusters had an absolute correlation
coefficient greater than 0.7.

Processing brain imaging data. Instead of calculating the
slopes and intercepts after each excitation pulse, the slopes and
intercepts were calculated for every 120-s duration.
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