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ABSTRACT 

Otitis media (OM) is primarily a bacterial middle-ear infection prevalent among children worldwide. 

In recurrent and/or chronic OM cases, antibiotic-resistant bacterial biofilms can develop in the 

middle ear. A biofilm related to OM typically contains one or multiple bacterial strains, the most 

common include Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, 

Pseudomonas aeruginosa, and Staphylococcus aureus. Optical coherence tomography (OCT) 

has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study 

used OCT to compare microstructural image texture features from primary bacterial biofilms 

in vitro and in vivo. The proposed method applied supervised machine-learning-based 

frameworks (SVM, random forest (RF), and XGBoost) to classify and speciate multiclass bacterial 

biofilms from the texture features extracted from OCT B-Scan images obtained from in vitro 

cultures and from clinically-obtained in vivo images from human subjects. Our findings show that 

optimized SVM-RBF and XGBoost classifiers can help distinguish bacterial biofilms by 

incorporating clinical knowledge into classification decisions. Furthermore, both classifiers 

achieved more than 95% of AUC (area under receiver operating curve), detecting each biofilm 

class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms 

through texture analysis of OCT images and a machine-learning framework, which could provide 

additional clinically relevant data during real-time in vivo characterization of ear infections.  
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INTRODUCTION 

Otitis media (OM) is a pervasive middle ear disease in children, with over 15 million cases 

annually in the US alone1,2. Primary concerns for managing OM include fever and otalgia (ear 

pain), which can be severe and require intervention by a clinician3. Treatment for acute OM is one 

of the most common reasons for prescribed antibiotics4, where physicians must manage concerns 

of antibiotic resistance5. Secondary to repeated or persistent infections is fluid retention (effusion), 

which can cause a loss in hearing acuity and subsequent speech and language delays6. For 

severe and persistent infections, myringotomy and tympanostomy under general anesthesia are 

required to surgically insert a drainage grommet into the tympanic membrane (TM) to restore 

middle ear conditions. In total, OM represents approximately $4 billion USD in yearly cost (est. 

2014 and 2018) to the healthcare system1,7. 

       Receiving effective treatment is dependent on an accurate diagnosis by a physician. As 

physical symptoms can be non-specific, diagnostic methods for OM rely on specific acoustic tests 

and otoscopy observations to determine the presence, extent, and type of fluid, and the potential 

impact on hearing. Otoscopes use an ear speculum to provide an unobstructed, illuminated, and 

magnified view of the eardrum. Interpretation of visual diagnostic criteria can be difficult, as many 

OM states look visually similar, and fidgety patients do not always allow for a stable view. Average 

diagnostic accuracy using otoscopy ranges from ~50% in pediatricians to ~75% in 

otolaryngologists and otoscopy experts, on average8. As a correct diagnosis is the basis for 

efficient treatment, providing accurate diagnostic criteria is of primary focus. Subsequently, an 

accurate diagnosis will prevent over-prescription of antibiotics in cases where it is not indicated. 

New diagnostic tools and techniques that provide physicians with such criteria and a clearer 

overall understanding of infection status are needed.  

        Detection and speciation of bacteria can be achieved through a range of techniques, but 

often require invasive sampling. Quantitative PCR (qPCR) and fluorescence microscopy of 
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invasively sampled effusions remain the gold standard for clinicians and biomedical research9. 

However, there are many advanced and noninvasive optical techniques in various stages of 

development and deployment10 whose capabilities provide additional forms of contrast and 

characterization of both structural and functional properties of bacteria and biofilms. Optical 

coherence tomography (OCT) is one such technique that provides label-free 2D cross-sectional 

images of samples and tissue. OCT has been widely used in the eye (retina)11 and heart12 for 

diagnostics and visualization, and for imaging biofilms to characterize biofilm growth, porosity, 

and mechanical properties13,14 on both the bench15 and in vivo16.  

        Our group has developed several portable imaging systems for enhanced OM diagnosis 

based on OCT17-19. OCT in the ear allows for a depth-resolved view of the eardrum and adjacent 

middle ear cavity space, with the capability to identify and quantify thicknesses and other optical 

properties of tissue (attenuation, scattering, refractive index) that often change with infection and 

disease20. In addition, we have demonstrated the capacity to assess and stratify the presence of 

fluid and its properties, as well as biofilm presence and distribution across major OM infection 

states (AOM, RAOM, CSOM, OME, etc.)3,16. To further advance this work, we developed21 and 

improved22 a classification platform to automate the classification of these images. OCT data can 

also be integrated alongside the physicians’ notes and video otoscopy images of the ear into the 

clinical decision-making process, with the goal to allow a non-expert user to utilize the OCT 

device, collect an image, and receive a probable classification state of OM. We have also 

integrated other optical imaging techniques in other complementary studies, notably Raman 

spectroscopy18,23,24,  to increase the data dimensionality of these platforms and provide a more 

complete clinical and imaging-based status of the ear. 

        OM infections follow a progression of symptoms and corresponding OCT image 

characteristics. Acute OM often presents with fluid build-up and inflammation within the middle 

ear cavity. In OCT images, this can be quantified morphologically as the presence of low-
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scattering fluid in the ear cavity and an increased thickness of the eardrum22. As the infection 

progresses and physical symptoms become more severe, the fluid often becomes more purulent, 

and/or a middle ear biofilm forms adherent to the TM and throughout the middle ear cavity25. The 

most chronic and recurrent or severe cases have thick, purulent fluid but lack the acute 

inflammatory response26. Middle ear fluid in this state often is highly scattering and absorptive 

compared to the low-scattering acute fluid, with the scattering pattern significantly changing due 

to the increased number of immune cells, bacteria, mucous, biofilm, and debris27. 

        In our previous machine learning platform, we quantified and integrated the above 

characteristics into a classification pipeline22. However, one set of metrics not yet fully explored 

in this domain is the image-based texture features of the TM and middle ear fluid under normal 

and diseased conditions. While most effusion particulates are sub-resolution, they play a key role 

in the light-tissue scattering environment collected by OCT28. In other applications, different tissue 

types, as well as differences between healthy vs. abnormal tissues, were distinguished using 

OCT-based texture features29-33. Our previous work in this area has linked the biological 

composition of the fluid to its imaging properties in OCT and to different states of OM27. However, 

none of these studies have investigated how OCT image-based texture and features can be used 

to uniquely and noninvasively identify and differentiate the bacterial species responsible for 

forming the biofilms present within the middle ear.  

         Thus, this study demonstrates the development of noninvasive, quantitative metrics and 

associated machine learning models. A biofilm associated with OM usually comprises one or 

more types of bacteria, with the most prevalent being Haemophilus influenzae, Streptococcus 

pneumoniae, Moraxella catarrhalis, Pseudomonas aeruginosa, and Staphylococcus aureus. In 

this study, OCT was utilized to compare microstructural image texture features from primary 

bacterial biofilms in vitro and in vivo. For this, three main texture analysis techniques were used: 

Intensity level distribution34, Gray level co-occurrence matrix (GLCM)35-37, and Rotation-invariant 
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local binary pattern (RILBP)38-39. In this study, we identified OCT image-based texture metrics that 

can differentiate infection state and species of bacteria in the biofilm, and compared in vitro biofilm 

metrics with those from in vivo data collected from human research participants.  

 
RESULTS 
 
The implementation of the proposed texture-based OCT image detection model for OM-causing 

biofilms was developed using cross-sectional OCT images acquired from in vitro lab-grown 

bacterial biofilms and previously acquired in vivo human middle ear biofilms25.  

Dataset Description: 

Eight datasets (Table 1) were used to evaluate the performance of texture-based machine-

learning models. All biofilm images were obtained either in vitro or in vivo, as shown in Figure 1. 

For in vitro studies, OCT images of mono and mixed species biofilms were used. For in vivo 

studies, human OCT images of the TM and middle ear cavity were used. The goal for using these 

groups was to develop a classifier that can identify the specific strain(s) of bacteria present. 

Dataset 1 has five mono biofilm group labels: HFB, MCB, PAB, SAB, SPB. Dataset 2 has two 

mono biofilm group labels of HFB, SPB, and two mixed biofilm group labels of HFB-SPB and 

SPB-HFB. For in vitro data, the class label was known based on the stock source used, and 

confirmed using bacterial morphology. The class label of each in vivo dataset was identified 

according to the qPCR reports obtained for the corresponding specimen25. Dataset 3 has three 

mono biofilm group labels: HFB, MCB and SPB. Dataset 4 has four mixed biofilm group labels: 

HFB-MCB, HFB-SPB, MCB-SPB and HFB-MCB-SPB. Figure 2 shows the texture-based feature 

extraction block diagram and the flowchart for developing machine learning-based classifier 

models for biofilms. Regions of interest (ROIs), which include in vitro lab biofilms or in vivo human 

biofilms, were cropped, and labeled manually using a custom-designed MATLAB script, as shown 

in Figure 2a. In this experiment, 100x100 pixel ROIs were used for in vitro studies, and 50x50 
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pixel ROIs were used for in vivo studies, to avoid the impact of image dimension during the feature 

extraction process from each sample.  

Table 1: Dataset descriptions used in this study. 

No. Description of dataset 

Dataset 1 In vitro mono biofilms (HFB, MCB, PAB, SAB, SPB) 
Dataset 2 In vitro mono and mixed biofilms (HFB, SPB, HFB-SPB, SPB-HFB) 
Dataset 3 In vivo mono biofilms (HFB, MCB, SPB) 
Dataset 4 In vivo mixed biofilms (HFB-MCB, HFB-SPB, MCB-SPB, HFB-

MCB-SPB) 
Dataset 5 In vitro HFB biofilms for 1-3 days 
Dataset 6 In vitro SPB biofilms for 1-3 days 
Dataset 7 In vitro mono biofilms (HFB, MCB, SPB) as training; Dataset 3 as 

testing 

Dataset 8 Combination of Datasets 1 and 3, i.e., training and testing with 
both in vitro and in vivo mono biofilms 

HFB = H. influenzae biofilm, MCB = M. catarrhalis biofilm, PAB = P. aeruginosa biofilm, SAB = 

S. aureus biofilm, SPB = S. pneumoniae biofilm 

 
OCT image speckle that forms the basis of the texture features is generated by the optical 

interference of waves with random phases, which subsequently forms dark and bright spots with 

varying patterns in the cross-sectional OCT images. In the statistical approach, texture 

quantitatively provides the spatial distribution of the gray-level intensities of the pixels in an image. 

This set of measurements is called a feature vector. In total, 34 features were extracted from each 

ROI image. The features used in this work are listed in Table 2, and their details are described in 

the Methods section. 

 
Table 2: Summary of texture features extracted from a cross-sectional OCT image. 
 
Feature category Features Number of 

features 

Intensity level distribution 
(ILD) 

Mean, standard deviation, skewness, kurtosis, 
energy, entropy 

6 

Grey-level co-occurrence 
matrix (GLCM) 

Autocorrelation, contrast, correlation, cluster 
prominence, cluster shade, energy, entropy, 
homogeneity, maximum probability, variance, 
sum of average, sum of variance, sum of 
entropy, inverse difference normalization, inverse 
difference moment normalization, difference of 
entropy information measure of correlation1, 
information measure of correlation2 

18 
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Rotation-invariant local 
binary pattern (RILBP) 

Histogram 10 

Total number of features: 34 
 
The performance of the classifier models was evaluated from three aspects: performance 

evaluation of test datasets, effectiveness improvement analysis with post-ad hoc feature 

importance analysis by SHAP40, and feature distribution visualization using raincloud/violin 

plots41, as shown in Figure 2b.  

 
Performance Evaluation: 
 
Cross-validation accuracy for each training dataset was computed and displayed in Table 3 for 

the six best classifiers on training Datasets 1-4. The complete list of performance analyses of all 

15 classifiers can be found in the Supplementary section (Table S1). The SVM-RBF optimized 

classifier shows the highest cross-validation accuracy for Datasets 1-3 (91%, 92%, and 99%, 

respectively), whereas the optimized XGBoost shows the best performance for Dataset 4 (97%). 

Table 3: Cross-validation accuracy of the six best classifiers on the training dataset. 

No. Classifiers Cross-validation accuracy (mean ± std) 
Dataset1 Dataset2 Dataset3 Dataset4 

1. SVM- RBF (Gaussian) 0.79 ± 0.15 0.61 ± 0.14 0.94 ± 0.04 0.80 ± 0.06 
2. SVM- RBF optimized 0.91 ± 0.05 0.92 ± 0.03 0.99 ± 0.002 0.89 ± 0.05 

3. Random forest (RF) 0.86 ± 0.1 0.77 ± 0.06 0.96 ± 0.02 0.91 ± 0.07 
4. RF optimized 0.86 ± 0.12 0.77 ± 0.06 0.96 ± 0.02 0.92 ± 0.06 
5. XGBoost 0.83 ± 0.11 0.74 ± 0.04 0.93 ± 0.03 0.94 ± 0.05 
6. XGBoost optimized 0.89 ± 0.09 0.83 ± 0.04 0.97 ± 0.01 0.97 ± 0.02 

 
For the test dataset, a confusion matrix was generated (Figure 3), and performance metrics, such 

as precision, sensitivity, F-1 score, overall test accuracy, and Matthews correlation coefficient 

(MCC)42-44, were calculated using equations (7 - 14), as described in the Methods, to measure 

the performance of the six classifiers to distinguish among various class labels of the 

in vitro/in vivo mono and mixed biofilms. Table 4 shows the summary of test performance metrics 

(in average value ± standard deviation) of the six best pre-trained classifiers on the testing 

Datasets 1-4. The complete list of test performance analyses of these classifiers can be found in 
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the Supplementary section (Table S3 – S6). Comparing all five metrics, SVM-RBF optimized 

outperforms all other classifiers with an average F-1 score, overall accuracy, and MCC of 0.92, 

0.92, and 0.91, respectively, for Dataset 1, 0.96, 0.96, and 0.95, respectively, for Dataset 2, and 

0.97, 0.97 and 0.95, respectively, for Dataset 3. XGBoost optimized shows satisfactory 

performance for classifying among all class labels of the in vitro mono and mixed biofilms with 

90% and 91% of overall detection accuracies and 89% of F-1 score and MCC for Dataset 1 and 

91% of F-1 score and MCC of 87% for Dataset 2. For the in vivo mixed biofilm Dataset 4, XGBoost 

optimized outperforms all other classifiers with an F-1 score, overall accuracy, and MCC of 0.97, 

0.97, and 0.96, respectively, for Dataset 4. On the other hand, RF provides average F-1 scores 

of 0.90, 0.86, 0.97, and 0.89 for Datasets 1 – 4, respectively. 

We also performed statistical hypothesis testing using McNemar’s test45 and calculated 

the p-values between the combination of two classifiers. Based on the p-values of the test results, 

the difference between the SVM-RBF optimized and XGBoost optimized classifiers are not 

statistically significant (p-value = 0.09 for Dataset 1 and p-value = 0.06, for Datasets 3 and 4), 

which further implies that both classifiers attribute similar performance while distinguishing among 

all mono-biofilms in vitro/ in vivo and four mixed biofilms in vivo. However, the test results are 

statistically significant between the SVM-RBF optimized and XGBoost optimized classifiers for 

Dataset 2 (p-value < 0.05). 

Table 4: Overall performance metrics of Dataset 1 - 4  

No. Classifiers Test performance metrics for Dataset 1 

Precision Sensitivity 
Or Recall 

F1-score Accuracy MCC 

1. SVM- RBF (Gaussian) 0.81 ± 0.13 0.80 ± 0.14 0.80 ± 0.12 0.80  0.76 

2. SVM- RBF optimized 0.93 ± 0.08 0.92 ± 0.07 0.92 ± 0.03 0.92  0.91 
3. Random forest (RF) 0.90 ± 0.05 0.89 ± 0.11 0.89 ± 0.06 0.90  0.87 
4. RF optimized 0.90 ± 0.05 0.90 ± 0.12 0.89 ± 0.06 0.90  0.87 
5. XGBoost 0.87 ± 0.05 0.87 ± 0.13 0.87 ± 0.10 0.87  0.84 
6. XGBoost optimized 0.90 ± 0.05 0.90 ± 0.09 0.89 ± 0.05 0.90  0.89 
  Test performance metrics for Dataset 2 
1. SVM- RBF (Gaussian) 0.73 ± 0.18 0.71 ± 0.17 0.71 ± 0.15 0.71  0.62 
2. SVM- RBF optimized 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.01 0.96  0.95 
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3. Random forest (RF) 0.87 ± 0.08 0.86 ± 0.06 0.87 ± 0.04 0.86  0.82 
4. RF optimized 0.86 ± 0.08 0.86 ± 0.06 0.85 ± 0.04 0.85  0.81 
5. XGBoost 0.87 ± 0.07 0.87 ± 0.05 0.87 ± 0.05 0.87  0.82 
6. XGBoost optimized 0.92 ± 0.05 0.91 ± 0.05 0.91 ± 0.03 0.91  0.87 
  Test performance metrics for Dataset 3 

1. SVM- RBF (Gaussian) 0.95 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 0.95  0.93 
2. SVM- RBF optimized 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97  0.95 
3. Random forest (RF) 0.97 ± 0.02 0.97 ± 0.03 0.97 ± 0.02 0.97  0.96 
4. RF optimized 0.97 ± 0.02 0.96 ± 0.03 0.96 ± 0.03 0.96  0.95 
5. XGBoost 0.92 ± 0.07 0.91 ± 0.08 0.91 ± 0.05 0.91  0.87 
6. XGBoost optimized 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 0.97  0.97 

  Test performance metrics for Dataset 4 

1. SVM- RBF (Gaussian) 0.81 ± 0.05 0.81 ± 0.08 0.81 ± 0.03 0.81  0.75 
2. SVM- RBF optimized 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.95  0.94 
3. Random forest (RF) 0.90 ± 0.08 0.89 ± 0.09 0.89 ± 0.02 0.89  0.87 
4. RF optimized 0.90 ± 0.07 0.89 ± 0.09 0.89 ± 0.02 0.89  0.87 
5. XGBoost 0.95 ± 0.05 0.95 ± 0.05 0.95 ± 0.05 0.95  0.93 
6. XGBoost optimized 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97  0.96 

 

Additionally, Figure 4 represents the class prediction error bar46 that shows the support for each 

class and visualizes the misclassified classes in the fitted classification model as a stacked bar. 

Each bar represents an aggregated measure of predicted classes to show the distribution of the 

classes for each class. Compared to all other classifiers, a minimal class prediction error occurs 

for the optimizable XGBoost classifier, as shown in Figure 4 (a3 – d3). While the optimizable 

XGBoost classifier appears to be good at correctly predicting PAB, HFB, and SPB based on the 

features of these biofilms, it often labels SAB as HFB and mistakes MCB as SAB, as shown in 

the class prediction error for the optimizable XGBoost classifier (Figure 4(a3)). For the optimized 

SVM-RBF classifier, as shown in Figure 4(a1), SPB and PAB were correctly predicted based on 

the features of these biofilms. However, it labels SAB as MCB and mistakes a few MCB, HFB, 

and PAB samples as SAB, as shown in the stacked bar. As a result, the mean AUC of SVM-RBF, 

RF, and XGBoost optimized classifiers are 0.95, 0.99, and 0.99, respectively. Similarly, for 

Figure 4(b3), the optimized XGBoost classifier could not identify mixed HFB and SPB biofilms 

and labeled them as HFB (AUC = 0.98). For the RF optimized classifier, 4 - 5% HFB are 

misclassified with AUC of 0.96 (Figure 3a2) and 0.95 (Figure 4b2). However, the class prediction 
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error is minimal for in vivo biofilm datasets, as shown in Figure 4(c1 – c3, d1, and d3) for all three 

optimizable classifiers. 

Visualization by SHAP: 
 
Moreover, in addition to performance metrics and class prediction error bar plots, we employed  

the SHAP (SHapley Additive exPlanations)40 approach as a post hoc interpretation technique to 

identify important feature variables for discriminating mono and mixed biofilms in vivo and in vitro 

by ranking the importance of each feature within the XGBoost classifier. Figure 5 shows the SHAP 

summary plot for the multiclass classification with the ten most key features used for each dataset. 

In this plot, the impact of a feature as a mean SHAP value on the classes is stacked to create the 

feature importance plot. For in vitro mono and mixed biofilms, cluster prominence (GLCM4), 

cluster shade (GLCM5), and kurtosis play a vital role for the XGBoost classifier (Figure 5 a1 – 

b1), whereas the RMS feature dominates for the in vivo mono and mixed biofilms (Figure 5 c1 – 

d1) for the multiclass classification of XGBoost classifier. 

           Moreover, to interrogate the model predictions of differentiating among various class 

labels, Figure 5 (a2 – d2) shows the 2D feature-space visualization of each test dataset using t-

SNE48 -49. Biofilms with similar texture features were clustered close to each other according to 

the t-SNE. Noticeably, most of the data of each class are separated into in vitro mono (Figure 5a2) 

and in vivo mono and mixed biofilms, as shown in Figure 5 (c2 and d2). However, Dataset 2 

contains in vitro HFB, SPB, and mixed biofilms of H. influenzae and S. pneumoniae. Hence, mixed 

biofilm clusters significantly overlap with their corresponding mono biofilms, as shown in 

Figure 5b2, when projected onto the t-SNE.  

Furthermore, a few more aspects, such as variations of optical texture properties of mono 

and mixed biofilms and the effect of texture features on the progression of biofilm growth, were 

investigated and discussed in the following sections. 
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Effect of texture features on mono and mixed biofilms: (SPB, HFB, SPB-HFB in vitro and 

in vivo) 

In the t-SNE plot of mono HFB and SPB and mixed biofilm of H. influenzae - S. pneumoniae 

(HFB-SPB) in Figure 5b2, we observed significantly overlapping clusters, which were further 

investigated using SHAP analysis and raincloud plots. In SHAP analysis, the ten most dominant 

features are extracted, and two SHAP summary plots of multiclass classification of HFB, SPB, 

and HFB-SPB with the impact of a feature as a mean SHAP value on the classes were generated 

(Figure S1) from the in vitro and in vivo mono and mixed biofilm datasets. Cluster prominence, 

kurtosis, cluster shade, standard deviation (SD), and skewness were the five most important key 

features for the HFB, SPB, and HFB-SPB in vitro datasets. RMS, LBP histogram coefficients of 

1,2,5,8 (LBP1, LBP2, LBP5, LBP8) were the five most important key features for the HFB, SPB, 

and HFB-SPB in vivo dataset. Next, in Figure 6, five major key feature components obtained from 

the SHAP summary plots (Figure S1) for each biofilm were compared using raincloud plots. In a 

mixed colony biofilm, HFB-SPB biofilms retain similar texture features as the mono-colony for 

HFB or SPB (cluster prominence and kurtosis for in vitro, p-value = 0.1 and 0.2, respectively). In 

contrast, some new and different signatures (cluster shade and skewness, and SD for in vitro and 

all five features for in vivo with p-values < 0.05) were also observed for the mixed biofilms that 

were somewhere between the two mono colony signatures. 

 
Effect of texture features on the progression of biofilms: (SPB, HFB, and SPB-HFB in 24-

72 hours, in vitro, Datasets 5 and 6) 

Next, we observed the longitudinal textural changes of in vitro mono and mixed biofilms over a 

time period of one to three days. Thirty-four features were extracted from biofilm images with 

dimensions of each biofilm texture database of 3600 rows and 34 columns. First, t-SNE (perplexity 

= 50, number of iterations = 5000) was applied to see how the data varied over the days. 
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S. pneumoniae biofilms (SPB1 and SPB2) grown over 24 hrs and 48 hrs perfectly overlap 

(Figure 7b), which implies that texture-based changes are not visible for these initial two days. 

For S. pneumoniae, biofilms grown for 72 hrs (SPB3) formed a slightly shifted cluster from the 

SPB1 and SPB2 when projected onto the t-SNE. However, for H. influenzae biofilms (HFB1, 

HFB2, and HFB3), multiple distinct clusters (t-SNE visualization) were observed for all three days 

(Figure S2b). For mixed biofilms of H. influenzae and S. pneumoniae (HFB-SPB1, HFB-SPB2, 

and HFB-SPB3), overlapping clusters were observed up to 48 hrs, whereas mixed biofilms at 

72 hrs generated multiple distinct small clusters onto the t-SNE plot as shown in Figure S3b. 

Furthermore, Figure 7C shows the ten most key features in distinguishing these biofilms using 

SHAP analysis. The four key features are cluster prominence (GLCM4), energy (GLCM6), the 

sum of variance (GLCM12), and kurtosis with mean SHAP values of 0.20, 0.13, 0.11, and 0.10, 

respectively (Figure 7c) for S. pneumoniae biofilms. For H. influenzae biofilms (Figure S2 c – g), 

cluster prominence (GLCM4), kurtosis, RMS, and cluster shade (GLCM5) with mean SHAP 

impact of 0.22, 0.15, 0.15, and 0.13, respectively, were the four major features in distinguishing 

biofilms grown over several days. 

We further investigated the raincloud plots to visualize these four essential features. 

Raincloud plot distributions for SPB of days 1 and 2 are similar for all four feature vectors (p-

value > 0.5), whereas, for day 3, the sum of variance (GLCM12) showed two peaks, and the 

energy (GLCM6) distribution was different for SPB3. The data was also right-skewed, as shown 

in Figure 7 (d - g). For HFB, we observed various combinations, as shown in Figure S2 (d - g). 

For example, cluster prominence (GLCM4) and kurtosis have a similar distribution for day 2 and 

day 3 H. influenzae biofilms. However, RMS and cluster shade (GLCM5) vary for all three days 

of biofilms.  

Moreover, we also observed the changes in texture features for the mixed biofilms of 

H. influenzae and S. pneumoniae using raincloud plots, as shown in Figure S3. Primary key 
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features identified by SHAP are RMS, kurtosis, cluster shade (GLCM5), and maximum probability 

(GLCM9). Distribution of these features was observed through raincloud plots. 

Combination of in vivo and in vitro datasets (Datasets 7 and 8)  

Additionally, two more datasets (Datasets 7 and 8) were generated, combining mono-bacterial 

biofilms of H. influenzae, S. pneumoniae, and M. catarrhalis species in vitro and in vivo. In 

Dataset 7, texture features from the in vitro mono biofilms were used as training, and features 

from the in vivo mono biofilms were used as testing. On the other hand, in Dataset 8, all the 

features obtained from the three mono-biofilms mentioned above, in vitro and in vivo, were used 

as training and testing datasets. Table S7 indicates the cross-validation accuracy of these trial 

datasets (as Trial-1 and Trial-2), which display better performances for the optimized SVM-RBF 

and the optimized XGBoost classifiers. Tables S8 – S9 show the summary of test performance 

metrics of the six pre-trained classifiers on the testing Datasets 7 and 8. Comparing these results, 

we can observe that all these classifiers outperform the Trial-2 datasets over the Trial-1 datasets. 

In vivo and in vitro data were collected using two different OCT systems: an 800 nm wavelength 

SD-OCT for in vivo and a 1300 nm wavelength SD-OCT system for in vitro. Moreover, significant 

texture differences were observed between these two datasets, as shown in Figure S4. In 

addition, multiple distinct biofilm clusters were observed in the t-SNE plot (Figure S4a). From the 

SHAP summary plot in Figure S4b, the five key texture features are RMS, kurtosis, cluster 

prominence (GLCM4), cluster shade (GLCM5), and the sum of variance (GLCM12). Figure S4 (c 

- e) compares these five key texture features between the in vitro and in vivo mono biofilms of 

H. influenzae, S. pneumoniae, and M. catarrhalis in three violin plots. 

DISCUSSION  

This study leveraged and tested multiple supervised machine learning classification algorithms 

(SVM-RBF, RF, and XGBoost and the optimized versions of these classifiers) that utilize OCT 
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images of in vitro lab-grown biofilms and clinical in vivo human middle-ear biofilms to predict and 

identify several OM-causing bacterial biofilms in mono and mixed bacterial species environments. 

Our findings show that optimized SVM-RBF and XGBoost classifiers can help distinguish bacterial 

biofilms into classification decisions. For the independent test sets, our SVM-RBF classifier, while 

maintaining a higher F-1 score, achieved more than 92% sensitivity for all four test datasets. On 

the other hand, optimized XGBoost shows 90% and 97% sensitivities for the in vitro and in vivo 

datasets, respectively. Furthermore, both classifiers achieved more than 95% of AUC detecting 

each biofilm class. To our knowledge, this is the first study that applied ML-based models on two 

separate cohorts (in vitro and in vivo) to predict bacterial biofilms of various OM-causing bacterial 

species using texture analysis of OCT data. 

         Additionally, optimizable RF provides average F-1 scores of 0.89, 0.85, 0.96, and 0.89 for 

Datasets 1 – 4, respectively. It is worth mentioning that hyperparameter tuning of SVM-RBF and 

XGBoost classifiers improved the classification accuracies and F-1 scores (15 – 30% for SVM-

RBF optimized and 3 – 6% for XGBoost optimized classifiers) significantly. However, 

hyperparameter tuning for RF is of lesser value due to the low improvement of the classification 

accuracies and F-1 scores (less than 1% for the RF optimized classifier).  

Our study also includes a post hoc interpretation with SHAP analysis to identify the 

important feature variables for discriminating mono and mixed biofilms in vivo and in vitro for the 

XGBoost classifier. In total, 34 features (Table 2) were extracted from each ROI image using 

histogram-based intensity-level distribution (ILD), second-order gray-level co-occurrence matrix 

(GLCM), and rotation invariant local binary pattern (RILBP) methods. In most cases, features from 

GLCM, which uses second-order statistics to capture the spatial relationship between two pixels 

within the ROI for an offset vector (d = displacement distance, θ = angle), play a vital role in the 

classification of each biofilm class. For in vitro mono and mixed biofilms, cluster prominence and 

cluster shade, which characterize the tendency of clustering of the pixels in the ROI, and kurtosis, 
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also known as the fourth-order central moment of intensity distribution which measures the 

closeness of the intensity distribution, are the best-discriminating features selected for the 

classification of OCT biofilm images for the XGBoost classifier (Figure 5). Meanwhile, the RMS 

feature dominates the in vivo mono and mixed biofilms for the multiclass classification of the 

XGBoost classifier, as shown in Figure 5. 

Moreover, biofilms with each class label are separated into in vitro mono (Figure 4a2) and 

in vivo mono and mixed biofilms, as shown in Figure 5 (c2 and d2). However, similar texture 

features were clustered close to each other in the t-SNE. For example, Dataset 2 contains in vitro 

HFB, SPB, and mixed biofilms of H. influenzae and S. pneumoniae. Hence, mixed biofilm clusters 

of HFB-SPB significantly overlap with their corresponding mono HFB and SPB, as shown in 

Figure 5b2 in the t-SNE. From the SHAP summary and raincloud plots, cluster prominence, 

kurtosis, and cluster shade are the key features for the HFB, SPB, and HFB-SPB in vitro datasets, 

whereas RMS, LBP2, and LBP8 are the key features for the HFB, SPB, and HFB-SPB in vivo 

datasets. As shown in Figure 6, in a mixed colony biofilm, HFB-SPB biofilms retain similar texture 

features as the mono-colony for HFB or SPB (cluster prominence and kurtosis for in vitro, p-value 

= 0.1 and 0.2, respectively). In contrast, some new and different signatures (cluster shade and 

skewness, and SD for in vitro and all five features for in vivo with p-values < 0.05) are also 

observed for the mixed biofilms between the two mono colony signatures. 

Furthermore, we observed the textural changes of in vitro mono and mixed biofilms for 

three consecutive days using t-SNE and raincloud plots. Texture features obtained from 

S. pneumoniae biofilms (SPB1 and SPB2) and mixed biofilms H. influenzae and S. pneumoniae 

(HFB-SPB1, HFB-SPB2) grown for two days perfectly overlapped (Figures 7b and S3b) with each 

other, implying no significant texture-based changes visible for these two days. However, 

S. pneumoniae biofilms grown for 72 hrs (SPB3) formed a slightly shifted cluster from the SPB1 

and SPB2 when projected onto the t-SNE. Meanwhile, H. influenzae biofilms (HFB1, HFB2, and 
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HFB3) displayed multiple distinct clusters (t-SNE visualization) for all three days, as shown in 

Figure S2b. Cluster prominence, energy, the sum of variance, and kurtosis (Figure 7c) were 

dominant features for S. pneumoniae biofilms, and cluster prominence, kurtosis, RMS, and cluster 

shade were dominant features for H. influenzae biofilms (Figure S2 c - g), in distinguishing biofilms 

grown over several days. For the mixed biofilms of H. influenzae and S. pneumoniae, key features 

identified by SHAP are RMS, kurtosis, cluster shade, and maximum probability, measuring the 

maximum likelihood of producing the pixels of interest. Distribution of these features was 

observed through raincloud plots. 

In this study, we considered some additional factors that are worth mentioning. First, 

standardized protocols, as mentioned in the Methods section, were followed consistently to 

maintain the optimal and uniform growth of bacterial biofilms, and to minimize the influence of 

external factors such as temperature, humidity, CO2 level, etc. Second, we have a limited 

availability of previously acquired clinical in vivo datasets. Increasing the number of in vivo OCT 

images would likely lead to improved performance. Third, in OCT imaging systems, the signal-to-

noise ratio (SNR) for deeper layers of a sample degrades due to multiple scattering and overall 

attenuation in biological tissues. In this experiment, a region-of-interest (ROI) of each dataset was 

selected to build a robust classification model, excluding data with low SNR. ImageJ was used to 

detect the upper boundary of the ROI, and 50-150 pixels below the upper boundary were selected 

for extracting the texture features from each sample. Fourth, though texture analysis of OCT 

images demonstrates excellent potential, some statistical texture features are not easy to 

interpret, which may challenge understanding how various OM biofilms are characterized 

differently from in vivo and in vitro datasets. However, compared to black-box deep learning 

models, statistical-based texture features are significantly more interpretable and easier to 

compute since they are based on mathematical definitions.  
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Herein, we computed texture features using statistical approaches. However, other data-

driven feature extraction techniques, such as wavelet transform and deep learning models, need 

to be investigated, which may offer their own performance metrics of the classifiers. In addition, 

data augmentation techniques can be applied to the limited clinical dataset to increase the training 

dataset and enhance the model performance. Moreover, investigations of various texture features 

of the TM and various effusion samples, and the comparison of TMs and effusions with and 

without the presence of biofilms, may also be helpful to investigate these metrics for clinically 

assessing OM patients. 

Overall, these AI/ML methods are useful for computing quantitative features from OCT 

images of biofilms, in addition to the advantages of using OCT over other medical imaging 

modalities for the in vivo assessment of the middle ear. These extracted statistical features are 

easy to compute and contain valuable information relevant to detecting biofilms and speciating 

the bacteria that formed them. It should be noted that using standard otoscopy methods, it is not 

possible to visualize the presence of a middle-ear biofilm, let alone determine which mono or 

mixed bacteria species may be present. Moreover, feature selection using SHAP is ultimately 

helpful in finding the subset of features that contain the most information relevant to detecting and 

speciating biofilms from OCT images to reduce computational complexity and enhance accuracy. 

In conclusion, our results demonstrate that with the help of an appropriate ML classifier, 

OCT texture-based features can be used to effectively differentiate among various bacterial 

biofilms grown in mono/mixed biofilm forms both in vitro and in vivo. With further study and 

refinement, the diagnostic capabilities of noninvasive probe-based OCT combined with this 

texture-based ML platform can enhance the positive impact on clinical decision-making and 

provide real-time decision support for the assessment of OM patients. Long-term, this improved 

data on the bacterial species present will help improve the usage of appropriate narrow-spectrum 

antibiotics in the future and reduce the rise of antibiotic resistance in the clinical management of 

OM. 
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METHODS 

Materials 

Haemophilus influenzae (Gram-negative, ATCC 49766), Streptococcus pneumoniae (Gram-

positive, ATCC 6301), Moraxella catarrhalis (Gram-negative, ATCC 49143), Pseudomonas 

aeruginosa (Gram-negative, ATCC 14203) and Staphylococcus aureus (Gram-positive, Non-

GFP, Newman) were all purchased from American Type Culture Collection (ATCC). Brain heart 

infusion (BHI) media, agar, and H. influenzae test media (HTM) were purchased from Fisher 

Scientific.  

Biofilm formation  

ATCC-recommended propagation methods were used to prepare each of the five bacterial 

species. Briefly, bacterial colonies were grown on agar plates with incubation at 37° C under 5% 

CO2. BHI was used as culture media for M. catarrhalis, S. pneumoniae, P. aeruginosa, and 

S. aureus. Chocolate agar plates and H. influenzae test media (HTM, ThermoScientific Remel) 

were used to culture H. influenzae bacterial colonies and biofilms, respectively.  

Biofilms (n = 10) for each of the five OM bacterial species were prepared using the static 

biofilm culture method47. For biofilm formation, using a sterile stick, a single colony from the single 

colony plate was picked up and placed into 10 mL of appropriate broth media, and then the broth 

culture was incubated overnight at 37 °C under 5% CO2. Using sterile media, the resulting 

bacterial suspension was diluted 1:6 (pipet ~1 ml of the bacteria broth + 5 ml of prewarmed media) 

and was incubated at 37 °C with 5% CO2 for approximately 3 hrs to reach the mid-log phase. 

Next, the mid-log growth suspension was diluted 1:2500 (pipet 10 µl of the bacterial broth + ~ 

24.99 ml of prewarmed media), and some bacterial broth samples were transferred into each well 

of poly-d-lysine coated chamber slide/glass-bottom dishes (Azer Scientific) and were incubated 
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at 37 °C with 5% CO2 for 1- 3 days. For the biofilm plates incubated for more than 24 hrs, media 

was changed daily by aspirating the old medium from the corner of each slide/dish and adding 

the fresh, prewarmed medium without disrupting the biofilm to maintain bacterial viability in the 

biofilm. Excess media from the biofilms in the slides/dishes was removed for the OCT 

measurements. 

Clinical in vivo sample collection  

OCT image data of in vivo human TMs and middle ear biofilms from a previous study25 were used. 

The class label of each in vivo data was identified according to the qPCR reports obtained for the 

corresponding specimen. More detailed information about the clinical in vivo sample collection 

procedure has been previously described in detail by Monroy et al25. In brief, an 800 nm center-

wavelength based spectral-domain OCT (SD-OCT) handheld probe and portable cart system was 

used to image 20 pediatric subjects identified as having in vivo middle ear biofilms affixed to the 

mucosal surface of the TM. Thirty (30) sequential depth-resolved B-mode frames from the middle 

ear biofilm datasets were collected from 20 in vivo human ears (in vivo image data) using an 800 

nm handheld probe-based SDOCT system (axial resolution = ~2.4 µm and transverse resolution 

= 15 µm, in air) immediately after a surgical incision procedure in the TM (myringotomy) in a 

clinical setting25. Samples of suspected microbial infection–related structures were collected 

through the myringotomy incision. Quantitative polymerase chain reaction (qPCR) was performed 

for microbiological characterization and verification of bacterial species for those samples. 

In vitro image acquisition and data collection 

Biofilm datasets were collected using two different OCT systems (Figure S5 – two OCT systems) 

to compare the texture analysis between different OCT systems. A 1300 nm benchtop spectral-

domain OCT (SD-OCT) system (axial resolution = ~8 µm and transverse resolution = 16 µm, in 

air) was used to capture 100 sequential depth-resolved B-mode frames from 130 in vitro biofilm 

samples, at three different locations from each biofilm. A total of 1200 blocks (100×100 pixels for 
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in vitro and 50×50 pixels for in vivo) of ROIs were selected, to avoid the impact of image dimension 

during the feature extraction process from each biofilm group using ImageJ and MATLAB, and 34 

texture features were extracted from each ROI image, as shown in Figure 2A.  

Feature extraction  

In total, 34 features (Table 2) were extracted from each ROI image using intensity-level 

distribution (ILD), second-order gray-level co-occurrence matrix (GLCM), and local binary pattern 

(LBP) methods. The details of these features are described below. 

A. Features extracted from the intensity level distribution (ILD): 

An intensity-level distribution (ILD) feature extraction method uses the histogram of an image to 

extract texture features. However, it does not show any interrelationships among pixels. Six 

quantitative shape descriptors (Eqs. 1–6) of a first-order histogram can be measured from the ILD 

method: mean measuring average intensity values of the pixels within the ROI; standard deviation 

computing the variations exist from the mean; skewness measuring asymmetry of the distribution 

of the pixel intensities within the ROI; kurtosis measuring the heavy or light tails of the distribution; 

energy computing the uniformity of the image; and entropy measuring randomness34. 

Mean: 𝐹𝑚𝑒𝑎𝑛 =  �̅� =  ∑ 𝑥𝑃(𝑥)𝐿−1𝑥=0                                                                                                        (1) 

Standard deviation: 𝐹𝑆𝐷 =  𝜎𝑥 =  √∑ (𝑥 − �̅�)𝑃(𝑥)𝐿−1𝑥=0                                                                      (2) 

Skewness: 𝐹𝑠𝑘 =  1𝜎𝑥3 ∑ (𝑥 − �̅�)3𝑃(𝑥)𝐿−1𝑥=0                                                                                         (3) 

Kurtosis: 𝐹𝐾 = [ 1𝜎𝑥4  ∑ (𝑥 − �̅�)4𝑃(𝑥)] − 3𝐿−1𝑥=0                                                                                     (4) 

Energy: 𝐹𝐸 =   ∑ [𝑃(𝑥)]2𝐿−1𝑥=0                                                                                                             (5) 

Entropy: 𝐹𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑃(𝑥)𝑙𝑜𝑔2 [𝑃(𝑥)]𝐿−1𝑥=0                                                                                   (6) 
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where L denotes the gray level, and P(x) represents the probability of occurrence of a gray value 

in an image. 

B. Features extracted from the gray-level co-occurrence matrix (GLCM): 

GLCM35-37 uses second-order statistics to capture the spatial relationship between two pixels 

within the ROI for an offset vector (d, θ) with two parameters: displacement distance (d) and 

angle (θ). Here, we used a 256-quantization level with d selected as one pixel along with four 

distinct orientations (θ = 0°- horizontal, 45°- diagonal, 90°- vertical, and 135° -off-diagonal). In this 

work, 18 features were computed for each direction, i.e. autocorrelation measuring of the degree 

of similarity, contrast measuring the local variations, correlation measuring the joint probability of 

occurrence, cluster prominence and cluster shade for characterizing the clustering tendency of 

the pixels in the ROI, energy measuring uniformity of local grey scale distribution, entropy 

measuring the texture randomness, homogeneity measuring the closeness of the distribution, 

maximum probability measuring the maximum likelihood of producing the pixels of interest, 

variance computing the dispersion (with regard to the mean) of the grey-level distribution, sum of 

average measuring the mean of the grey-level sum distribution, sum of variance measuring of the 

dispersion of the grey-level sum distribution, sum and difference of entropies measuring the 

disorder related to the grey-level distribution, inverse difference normalization measuring the local 

homogeneity, inverse difference moment normalization measuring the local minimal changes, 

and two information measures of correlation measuring the dependency between two random 

variables. Then features from all four directions were averaged to obtain eighteen GLCM features.  

C. Features extracted from the local binary pattern (LBP): 

Local binary pattern (LBP)38,39 compares the pixels of a selected ROI from an image by 

thresholding each pixel's neighborhood and generating the result as a binary number. In our 

experiment, a rotation-invariant descriptor was generated involving eight sampling points on a 

circle with a radius of one pixel to create a histogram with ten bins. The frequency of each bin 
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was used as one feature, leading to ten features extracted from the rotation invariant local binary 

pattern (RILBP) algorithm. 

Overview of the classifier’s setup for baseline comparison 
 
This experiment used 12 machine learning classifiers to build the in vitro / in vivo mono and mixed 

bacterial biofilm classification models. To verify the performance of these models, we divided the 

baseline models into two groups: the traditional machine learning group (decision tree, k-nearest 

neighbor (KNN) with medium, coarse, cosine, and cubic kernels, support vector machine (SVM) 

with quadratic, cubic, and gaussian kernels), and the ensemble learning group (AdaBoost, 

random forest (RF), subspace KNN ensemble, and extreme gradient boost (XGBoost)).  

In building the predictive model, four mono and mixed bacterial biofilms in vitro / in vivo 

datasets were used. Dataset 1 was applied to differentiate among five in vitro mono-species OM-

causing bacterial biofilms. In Dataset 2, several trained classifier models were employed to 

classify mono and mixed biofilms of H influenzae and S. pneumoniae in vitro. Additionally, trained 

classifiers were utilized in two in vivo clinical OM datasets (Datasets 3 and 4) to detect the mono 

and mixed biofilms of the infectious human OM groups. 

For Datasets 1 to 4, each data set (1200 samples per category) was randomly split into a 

training set (1000 samples) and a testing set (200 samples). The training process also conducted 

30% of the training datasets for validation datasets, employed 5-fold cross-validation, and 

computed the cross-validation accuracy for evaluating the performance of each machine learning 

classifier model. From them, we selected the three algorithms that had the best performance for 

our datasets: SVM, RF, and XGBoost. During the training stage, the model parameters were 

adjusted with hyperparameter tuning (GridsearchCV, Scikit-learn) for these three classifiers to 

optimize the models for all four training datasets. The parameters of these baseline models are 

described in the supplementary section (ST2). During the testing stage, the testing features were 

fed into the six trained models (SVM-RBF, SVM-RBF optimized, RF, RF optimized, XGBoost, and 
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XGBoost optimized) to obtain the predicted classification measure of each test sample. Finally, 

the confusion matrix and performance metrics (precision, sensitivity, classification accuracy, F1-

score, and Mathew’s correlation coefficient (MCC)) on the testing set were computed to compare 

the classification models, as shown in Figures 3 and 4. The complete performance evaluation 

metrics of all classifiers are enlisted in the supplementary section (ST1, ST3 - 6). 

Additionally, texture analysis of the development of a single-species biofilm over time was 

also investigated for H. influenzae and S. pneumoniae biofilms (Datasets 5 and 6) to address the 

structural changes of biofilms over time during growth. 

Model performance evaluation metrics 

Five-fold cross-validation was applied upon each training dataset, and cross-validation accuracy 

was computed for each training dataset, as shown in Table 3. The multiclass classification task 

calculated overall classification accuracy and F1- score metrics (Eqs. 7–10). In addition, 

sensitivity and specificity were computed (Eqs. 11–12) to evaluate the model performance on test 

data (Table 4). Also, the area under the ROC curve (AUC) was employed on both training and 

testing datasets to evaluate a given model's overall performance in the classification.  

Accuracy = 
𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁                                                                                                              (7) 

F1-score = 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙                                                                                                       (8) 

Precision = 
∑ 𝑇𝑃𝑖𝑛𝑖=1∑ 𝑇𝑃𝑖𝑛𝑖=1 + ∑ 𝐹𝑃𝑖𝑛𝑖=1                                                                                                            (9) 

Recall = 
∑ 𝑇𝑃𝑖𝑛𝑖=1∑ 𝑇𝑃𝑖𝑛𝑖=1 + ∑ 𝐹𝑁𝑖𝑛𝑖=1                                                                                                              (10) 

Sensitivity = 
𝑇𝑃𝑇𝑃+𝐹𝑁                                                                                                                     (11) 

Specificity = 
𝑇𝑁𝑇𝑁+𝐹𝑃                                                                                                                     (12) 

Where TP, TN, FP, and FN indicate true positives, true negatives, false positives, and false 

negatives, respectively. 
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Matthew’s correlation coefficient 

Matthew’s correlation coefficient (MCC)42-44, also known as the discrete case for the Pearson 

correlation coefficient to a confusion matrix, was computed in the multiclass classification task 

between actual and predicted values. MCC can be computed as follows: 

𝑀𝐶𝐶 =  (𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)                                                                                       (13) 

Where TP, TN, FP, and FN indicate true positives, true negatives, false positives, and false 

negatives, respectively. 

The MCC value ranges from -1 to +1, where a high positive MCC score indicates the classifier's 

better accurate class detection ability to differentiate among the multiclasses.  

t-SNE visualization 

The t-distributed stochastic neighbor embedding (t-SNE)48-49 is a statistical dimensionality 

reduction method for visualizing multi-dimensional data into a two or three-dimensional map. t-

SNE generates multiple distinct clusters for classification. In this experiment, we selected the 

perplexity parameter of 50 for 5000 iterations of each dataset. 

SHAP analysis 

The SHAP (SHapley Additive exPlanations)40 approach is a post hoc interpretation technique to 

identify dominant feature variables for discriminating the class labels in the machine learning 

classifier model. SHAP generates the mean absolute SHAP value for each feature across all data 

and creates a SHAP summary plot by ranking the importance of each feature within the classifier. 

In the plot, the impact of a feature as a mean SHAP value on the classes is stacked to create the 

feature importance plot. Features with higher mean absolute SHAP values significantly impact 

the classification. 
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Raincloud plots 

Raincloud plots41 were used to visualize the raw data, the distribution of the data, and the key 

summary statistics simultaneously. These are hybrid plots consisting of a halved violin plot, a box 

plot, and raw data. 

Statistical analysis 

McNemar's hypothesis test45 was used to check the statistical significance of the improvement in 

prediction for each classifier. The p indicates the p-value for the hypothesis test, and the 

improvement of the classifier was considered statistically significant at p < 0.05. The term 

h = 1 indicates rejection of the null hypothesis at the 5% significance level, 

whereas h = 0 indicates not rejecting the null hypothesis at the 5% level. The statistical analysis 

was performed using MATLAB. 

Computational hardware and software 

 All data processing and model development for this study was conducted on an HP Spectre x360 

laptop with an Intel(R) Core (TM) i7-10750H CPU (2.6 GHz), 16 GB DDR4-2933 SDRAM 

memory, 1 TB of Intel SSD local storage, and a dedicated GTX 1650 (NVIDIA GeForce, 4 GB 

GDDR6). The operating system in the workstation uses Windows 11. ImageJ software (1.53t) 

was used to generate 1200 blocks of images from the processed 2D OCT images of 1024 × 512 

(rows and columns) pixels processed in the MATLAB (R2020a) environment. The MATLAB 

(R2020a) platform was also used to prepare the feature datasets, implement the KNN, decision 

tree, AdaBoost, and subspace KNN ensemble classifiers, and calculate the performance 

evaluation metrics of all classifiers. Moreover, the SVM-RBF, RF, and XGBoost classifiers were 

implemented on the Python 3.7.6 platform. Several Python libraries like NumPy, Pandas, 

Matplotlib, Seaborn, YellowBrick, and Sckit-learn were used for the data analysis (TSNE, SHAP 

analysis, violin, raincloud, and pair plots) of these classifiers.  
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Reporting summary 

Further information on the research design is available in the Nature Research Reporting 

Summary linked to this article. 
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Figure 1: Images used for texture features extraction: in vitro mono biofilms – (a) H. influenzae, (b) S. pneumoniae, (c) M. catarrhalis, (d) P. aeruginosa, (e) S. aureus, and in vitro 
mixed biofilms of (f) H. influenzae - S. pneumoniae and (g) S. pneumoniae and H. influenzae; in vivo mono biofilms – (h) H. influenzae, (i) S. pneumoniae, (j) M. catarrhalis, and in 
vivo mixed biofilms of (k) H. influenzae - S. pneumoniae, (l) H. influenzae - M. catarrhalis, (m) S. pneumoniae - M. catarrhalis, and (n) H. influenzae - S. pneumoniae - M. catarrhalis. 
The lower left insets show photos of each sample and white dashed lines indicates the physical location on the TM where the optical coherence tomography scan was taken.
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Figure 2: Overview of the feature extraction and classification model from the biofilms: (a) Initial dataset preparation and feature extraction from the OCT images of in vivo and in vitro 
biofilms, (b) flowchart for the machine learning based classifier model with data visualization techniques and performance metrics evaluation. Numbers above in arrows indicate the 
order processes: (1) biofilm sample imaging process, (2) 34 features extraction using  intensity level distribution (ILD), grey-level co-occurrence matrix (GLCM), and rotation-invariant 
local binary pattern (RILBP), (3) initial Dataset 1, (4) preprocessing of initial Dataset 1 by z-score standardization, (5) random splitting of data into train and test sets, (6) Five-fold cross 
validation of training data into 70% training and 30% validation sets, (7) model construction  using various learning algorithms: decision tree (DT), support vector machine (SVM), 
random forest (RF), extreme gradient boosting (XGBoost) and (8) hyperparameter tuning of these models using GridSearch, (9) estimation of the cross-validation accuracy, (10) apply 
test data on the trained model, and (11) obtain the predicted class labels, (12) performance evaluation of the classifier model by computing precision, recall, F1 score, overall accuracy 
and statistical hypothesis test by Matthews correlation coefficient (MCC) and McNemar’s test, and (13) identify and visualize the dominant features for multiclass biofilm classification 
using t-SNE, SHAP analysis and raincloud data distribution plots.
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Figure 3: Confusion matrix for datasets 1-4 :(a1) – (d1) are using SVM-RBF optimized classifier (Peach and blue colors), (a3) – (d3) are using RF optimized classifier (yellow and mint 
colors) and (a3) – (d3) are using XGBoost optimized classifier (gray and dark green colors). Dataset 1 represents the texture features from five mono biofilms in vitro, Dataset 2 represents 
two mono biofilms and two mixed biofilms in vitro, Dataset 3 represents three mono biofilms in vivo, and Dataset 4 represents four mixed biofilms in vivo. SPB = S. pneumoniae biofilm, 
SAB = S. aureus biofilm, PAB = P. aeruginosa biofilm, MCB = M. catarrhalis biofilm, HFB = H. influenzae biofilm, HFB-SPB = mixed biofilms of H. influenzae and S. pneumoniae, SPB-
MCB = mixed biofilms of S. pneumoniae and M. catarrhalis, HFB-MCB = mixed biofilms of H. influenzae and M. catarrhalis, HFB-MCB-SPB = mixed biofilms of H. influenzae, M. 
catarrhalis and S. pneumoniae. cl stands for clinical in vivo. The term ‘cl’ is skipped for the predicted class labels of Dataset 4 for the space constraint. 
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Figure 4: Class prediction error for Datasets 1-4 :(a1) – (d1) are using SVM-RBF optimized classifier, (a3) – (d3) are using RF optimized classifier and (a3) – (d3) are using 
XGBoost optimized classifier. Dataset 1 represents the texture features from five mono biofilms in vitro, Dataset 2 represents two mono biofilms and two mixed biofilms in vitro, 
Dataset 3 represents three mono biofilms in vivo, and Dataset 4 represents four mixed biofilms in vivo. SPB = S. pneumoniae biofilm, SAB = S. aureus biofilm, PAB = P. 
aeruginosa biofilm, MCB = M. catarrhalis biofilm, HFB = H. influenzae biofilm, HFB-SPB = mixed biofilms of H. influenzae and S. pneumoniae, SPB-MCB = mixed biofilms of S. 
pneumoniae and M. catarrhalis, HFB-MCB = mixed biofilms of H. influenzae and M. catarrhalis, HFB-MCB-SPB = mixed biofilms of H. influenzae, M. catarrhalis and S. 
pneumoniae. cl stands for clinical in vivo. 



Figure 5: Ten important features from the SHAP analysis: (a1) – (d1) for XGBoost classifier using dataset 1-4, respectively, and TSNE plots of Dataset 1-4 [(a2) – (d2)]. Dataset 1 represents 
the texture features from five mono biofilms in vitro, Dataset 2 represents two mono biofilms and two mixed biofilms in vitro, Dataset 3 represents three mono biofilms in vivo, and Dataset 4 
represents four mixed biofilms in vivo. SPB = S. pneumoniae biofilm, SAB = S. aureus biofilm, PAB = P. aeruginosa biofilm, MCB = M. catarrhalis biofilm, HFB = H. influenzae biofilm, HFB-
SPB = mixed biofilms of H. influenzae and S. pneumoniae, SPB-MCB = mixed biofilms of S. pneumoniae and M. catarrhalis, HFB-MCB = mixed biofilms of H. influenzae and M. catarrhalis, 
HFB-MCB-SPB = mixed biofilms of H. influenzae, M. catarrhalis and S. pneumoniae. GLCM1 = Autocorrelation, GLCM2 = Contrast, GLCM3 = Correlation, GLCM4 = Cluster prominence, 
GLCM5 = Cluster shade, GLCM6 = Energy, GLCM9 = Maximum probability, GLCM10 = Variance, GLCM12 = Sum of variance, GLCM15 = Information of measurement correlation1, 
GLCM16 = Information of measurement correlation2, LBP1-10 are the ten histogram features extracted from the LBP algorithm.
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Figure 6: Comparison of mono H. influenzae and S. pneumoniae biofilms with their mixed biofilms in vitro and in vivo: (a1 – e1) raincloud plots for five most important features of in vitro 
biofilms and (a2 – e2) raincloud plots for five most important features of in vivo biofilms. SPB = S. pneumoniae biofilm, HFB = H. influenzae biofilm, HFB-SPB = mixed biofilms of H. 
influenzae and S. pneumoniae. All these feature values are standardized. cl stands for clinical in vivo dataset, SD stands for standard deviation and , LBP1,2,5,8 are the four histogram 
features extracted from the LBP algorithm.
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Figure 7: Progression of S. pneumoniae biofilms (SPB) over time: (a) Cross-sectional OCT images of mixed SPB biofilms grown in (i) Day 1, (ii) Day 2, and (iii) Day 3, (b) TSNE plot of SPB 
biofilms in days 1-3, (c) 10 most important features for Day 1 – 3 SPB, (d - g) raincloud plots for 4 most important features. SPB1, SPB2, SPB3 indicate S. pneumoniae biofilms grown in 1, 2 
and 3 Days, respectively. GLCM1 = Autocorrelation, GLCM4 = Cluster prominence, GLCM5 = Cluster shade, GLCM6 = Energy, GLCM9 = Maximum probability, GLCM10 = Variance, 
GLCM12 = Sum of variance. All these feature values are standardized.
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Supplementary figures



Figure S1: Ten important features from the SHAP analysis: (a) mono H. influenzae (HFB), S. pneumoniae biofilms (SPB), and mixed biofilms of H. influenzae and S. pneumoniae 
(HFB-SPB) in vitro, (b) mono H. influenzae (HFB-cl), S. pneumoniae biofilms (SPB-cl), and mixed biofilms of H. influenzae and S. pneumoniae (HFB-SPB-cl) in vivo.
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Figure S2: Progression of H. influenzae biofilms (HFB) over time: (a) Cross-sectional OCT images of mixed HFB biofilms grown in (i) Day 1, (ii) Day 2, and (iii) Day 3, (b) TSNE plot of HFB 
biofilms in Days 1-3, (c) 10 most important features for day 1 – 3 HFB, (d - g) raincloud plots for 4 most important features. HFB1, HFB2, HFB3 indicate H. influenzae biofilms grown in 1, 2 
and 3 days, respectively. GLCM1 = Autocorrelation, GLCM4 = Cluster prominence, GLCM5 = Cluster shade, GLCM6 = Energy, GLCM9 = Maximum probability, GLCM10 = Variance. All 
these feature values are standardized.
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Figure S3: Progression of mixed biofilms of S. pneumoniae biofilms (SPB) and H. influenzae biofilms (HFB) over time: (a) Cross-sectional OCT images of mixed HFB-SPB biofilms grown in 
(i) Day 1, (ii) Day 2, and (iii) Day 3, (b) TSNE plot of mixed biofilms in Days 1-3, (c) 10 most important features for day 1 – 3 HFB-SPB, (d - g) raincloud plots for 4 most important features. 
GLCM4 = Cluster prominence, GLCM5 = Cluster shade, GLCM6 = Energy, GLCM9 = Maximum probability, GLCM10 = Variance, GLCM11 =Sum of average , GLCM12 = Sum of variance. 
All these feature values are standardized.
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Figure S4: Comparison of texture features between mono biofilms in vitro and in vivo: (a) TSNE plot of six bacterial biofilms, (b) ten most important features using SHAP analysis, and (c - e) 
violin plots of five most dominant features of biofilms. HFB = H. influenzae biofilm, SPB = S. pneumoniae biofilm, MCB = M. catarrhalis biofilm. Cl indicates clinical in vivo. 
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Figure S5: (a) Schematic of 1300 nm SD-OCT system23, (b) Photo and schematic of 800 nm portable SD-OCT system22.
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