PHYS211 Exam 2 Prep

0

https://queue.illinois.edu/q/queue/847

CARE / CARE PHYS 211 Exam Review

Overview Quick bits of info to know 0 0

Forces

- Conservative
 - Weight (gravity)
 - Spring Force: $F_s = -k \Delta x$

- Equal & Opposite Forces
- X and Y components still apply, especially for ramp problems

- Nonconservative
 - Normal: Perpendicular to an object's surface by below surface
 - Tension: points away from object
 - Friction: $f = \mu N$

Work

- Work-Energy Theorem: The work done on a system by the sum of forces acting on it is equal to the change of kinetic energy of the system, Δ KE = $W_{tot} = \frac{1}{2} mv_f^2 \frac{1}{2} mv_i^2$
- b W=F*d
- $W= -\Delta$ PE (for work done in a conservative field, such as dropping a ball with no air resistance)

$$W = \int \mathbf{F} \cdot \mathbf{dl}$$

$$W = \mathbf{F} \cdot \Delta \mathbf{r} = F \Delta \mathbf{r} \cos \theta$$

Work and Mechanical Energy

- For Δ E, you can choose whichever two points you want for the initial and final energy (E_f E_i)
- Don't mix up potential energy equations with work equations
 - i.e. $U_{\text{spring}} = kx^2/2$, but $W_{\text{spring}} = -k(x_f^2 x_i^2)/2$
- Work and Energy are intimately related, using the theorems and conservation laws will help a lot!
- ▷ Total mechanical energy: $\Delta KE + \Delta PE = W_{NC}$

Momentum and Impulse

- ⊳ p=mv
- \rightarrow F_{net, external} = dp_{total}/dt
 - When F_{ext} = 0, dp/dt = 0, momentum is conserved
- Is conserved in both the x and y direction
- Impulse : change in momentum
 - $I = F_{\Delta VG} \Delta t = \Delta p$

- Inelastic
 - KE is <u>not</u> conserved
 - Perfectly Inelastic Objects stick together
 - Elastic
 - Momentum + KE is conserved
 - Objects bounce apart

Center of Mass + Frames

- For a system of objects, we treat them as point masses
- More massive object has more influence on center of mass

$$X_{CM} = \frac{\sum m_i x_i}{\sum m_i}$$

$$V_{CM} = \frac{\sum m_i v_i}{\sum m_i}$$

$$A_{CM} = \frac{\sum m_i a_i}{\sum m_i} = \frac{F_{Net,External}}{M_{Total}}$$

- <u>Lab</u> Reference Frame
 - Observe from outside system
- Center of Mass Reference Frame
 - Observing from inside system

Transformation to the CM Frame

$$\vec{v}_{object,B} - \vec{v}_{CM,B} = \vec{v}_{object,CM}$$

Problem Solving Some Steps to Follow If You're Lost

Momentum

How to Identify:

- Collisions
- Explosions
- Impulse

Momentum

~~\/\~

- List given variables
 - In both x and y directions if necessary
- Identify if momentum is conserved (no external forces)
- List all initial momentums and all final momentums
- Solve for missing variable
- *You will almost never need to use Kinematics, think of Energy,
 - **Work, or Momentum** instead*
- Impulse:
 - ► / Use F <u>average</u>

CoM + Frames

How to Identify:

- "In _ ref frame"
- Canoe/Plank
- Usually says "center of mass"

Center of Mass + Frames

 $-\sim$ \sim

- Center of Mass
- Identify X_{CM}, V_{CM} if necessary
 - Pay attention to x and y direction

$$V_i^* = V_i - V_{CM}$$

$$V_i^* = -V_f^*$$

$$V_f = V_f^* + V_{CM}$$

- Think Reference Frames
- List variables and their frames
 - ► V_{lab}, V_{cm}, etc.
- Solve for the variable you're looking for

Work/Energy

- Conservation of Energy: E_i=E_f
- ▷ Work-KE Theorem: $W_{NFT} = W_C + W_{NC} = \Delta KE$
- ▷ Conservation of Mechanical E: $W_{NC} = \Delta E = \Delta K + \Delta U$
 - Nonconservative Forces: Friction, Normal, Tension
- Choose one of the above paths and plug in your variables
- Make sure you have the right <u>SIGN</u> for work!
 - ▶ Remember, opposing Force and Distance → -W

Momentum Concept Question

How will the carts position change?

Which brick will fall over and why?

SOLUTION: Momentum Concept Question

How will the carts position change?
Will move to the **right**

Which brick will fall over and why? **A**, it has a larger impulse moment

CoM and Reference Frames Concept Question

Which case has the higher center of mass?

What is the momentum in the center of mass frame?

SOLUTION: CoM and Reference Frames Concept Question

Which case has the higher center of mass?

Case 2

What is the momentum in the center of mass frame? **Zero!**

Work and Energy Concept Questions

What is the net work done on the apple?

In what direction does the work due to static friction point?

SOLUTION: Work and Energy Concept Questions

What is the net work done on the apple?

Zero, no change in KE

In what direction does the force due to static friction point? **To the left**

Worksheet Time!

Enter Queue with your name and net ID:

By entering the queue, you help us:

-Reserve a big enough space at the

next review session

-Assign enough tutors for everyone

to have access to help

Thank you!

