Exam 1 Review Session Math 231E

Please join the queue for attendance!

Outline

- 1. Please join the queue -----
- 2. Mini review of some topics covered
- 3. Practice! \rightarrow CARE Worksheet, Practice Exams
 - a. Please raise hands for questions rather than put them in the queue

	<u>Need extra help? — 4th Floor Grainger Library</u>								
Subject 🔶	Sunday 🔶	Monday 🔶	Tuesday 🔶	Wednesday 🔶	Thursday 🔶	Friday 🔶	Saturday 🔶		
Math 231 (E)	4pm-10pm	1pm-5pm 8pm-10pm		1pm-5pm 8pm-10pm	6pm-8pm		2pm-4pm		

Content Review

Complex Numbers

- Numbers of the form: z = x + yi
- Modulus: $|z| = \sqrt{x^2 + y^2}$
- Operations:
 - Addition: $z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i$

- Multiplication:
$$z_1z_2=(x_1x_2-y_1y_2)+(x_1y_2+x_2y_1)i$$
 (think of FOIL)

- Division:
$$\frac{z_1}{z_2} = \frac{z_1 \bar{z_2}}{|z_2|} = \frac{(x_1 + y_1 i)(x_2 - y_2 i)}{x_2^2 + y_2^2}$$

- Euler's Theorem: $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

Taylor Series

- Taylor series help approximate complicated functions into polynomials that are easier to evaluate

$$f(a) + f'(a)(x-a) + f''(a)\frac{(x-a)^2}{2!} + f'''(a)\frac{(x-a)^3}{3!} + \dots + f^{(n)}(a)\frac{(x-a)^n}{n!}$$

- a is the value our Taylor series is evaluated at
 - Maclaurin series $\rightarrow a = 0$

- Big O Notation: indicates which term of the Taylor series is being "cut-off"
 - If we evaluate around a certain value, then any term put into the Big O Notation is insignificant to the polynomial overall

Common Functions to Use Taylor Series

Function	Taylor Series
e^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$
$\cos(x)$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \dots + \frac{x^{2n}}{(2n)!}$
$\sin(x)$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots + \frac{x^{2n+1}}{(2n+1)!}$
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots + x^n$
$\ln(1+x)$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{(n+1)} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^n \frac{x^{n+1}}{(n+1)}$

TY OF

U R B A N A - C H A M P A I G N

Uses and Applications of Taylor Series

- 1) Deriving other Taylor Series from the most common
 - a) Substitution
 - b) Derivatives
 - c) Integrals

2) Evaluating limits with Taylor Polynomials versus the initial functions

3) Determining convergence or divergence of integrals and series \rightarrow later in the course

Limits

- As we approach closer and closer to some value "a" from both the left and right hand side, the function gets closer and closer to "L":

$$\lim_{x \to a} f(x) = L$$

1

- Epsilon-delta definition: For any $\epsilon > 0$, there is a $\delta > 0$ such that if $0 < |x a| < \delta$, then $|f(x) L| < \epsilon$.
 - $a \rightarrow$ "target input"
 - Delta \rightarrow "allowable deviation from the target input"
 - Epsilon → "output tolerance"
 - $L \rightarrow$ "target output value"

- Infinite Limits:
$$\lim_{x \to \infty} f(x) = \lim_{x \to 0^+} f(\frac{1}{x})$$

Limit Laws

Operations

- Addition:
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

Functions

- **Constant:** $\lim_{x \to a} c = c$

- Subtraction:
$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$
 - Linear: $\lim_{x \to a} x = a$

- Multiplication:
$$\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
 - Power: $\lim_{x \to a} x^n = a^n$

- Division:
$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
 (given the limit of the denominator is not 0)

- Root:
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$

- Scaling by a constant: $\lim_{x \to a} (cf(x) = c \lim_{x \to a} f(x))$

- Exponentiating: $\lim_{x \to a} (f(x)^n) = (\lim_{x \to a} f(x))^n$

These laws can be combined to make finding limits easier!

Squeeze Theorem

- We have three functions such that near x: $f(x) \leq g(x) \leq h(x)$

- If
$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$
, then $\lim_{x \to a} g(x) = L$

- Great to use for functions that are hard to evaluate with limit laws

Continuity, Discontinuities, and Intermediate Value Theorem

- A function is continuous at *a* if $\lim_{x \to a} f(x) = f(a)$ $f(a) = \int_{x}^{x \le 0} \int_{x}^{x \ge 0} \int$
 - Types of discontinuities: removable/point, jump, infinite

Intermediate Value Theorem: If a function f(x) is continuous on a closed interval [a,b] where f(a) and f(b) are different, there is a value z between f(a) and f(b) with some value c such that a < c < b and f(c) = z

Derivatives

- Interpretation: the derivative of a function f(x) at *a* represents the instantaneous rate of change at *a*
 - Slope of tangent line at $a: y_a = f'(a)(x a) + f(a)$

- Power Rule:
$$\frac{\mathrm{d}}{\mathrm{d}x}x^n = nx^{n-1}$$

- Product Rule: $\frac{\mathrm{d}}{\mathrm{d}x}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$
- Quotient Rule: $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$
- Chain Rule: $rac{\mathrm{d}}{\mathrm{d}x}f(g(x))=f'(g(x))\cdot g'(x)$ (unwrap the layers of the function)

Implicit Differentiation and Differentials

Implicit Differentiation

- Used when functions are defined in terms of both x and y
- Take the derivative of everything with respect to x
 - What is $\frac{dx}{dx}$? What is $\frac{dy}{dx}$?

Differentials

- For a small change in input Δx , the function will change proportionally to the rate of change:

