

PHYS 211 Exam 1 Prep

1. Overview

Quick Bits of info to know

Newton's Laws

- 1st Law: Velocity of an object is constant if the sum of forces on the object is zero,
 F=0 ⇔ dv/dt=0 ⇔ a=0
- 2nd Law: The net force on an object is equal to its mass times its acceleration,
 F=ma
- 3rd Law: Any forces acting on an object will have an equal and opposite reaction,
 F_{a,b} = -F_{b,a}

*These equations are true for all interactions in Phys 211! Note that the forces and acceleration are vectors; direction matters

1-D, 2-D Kinematics:

Equations associated with Kinematics:

$$\star$$
 v = v_o + at

$$\star$$
 r = r_o + v_ot + $\frac{1}{2}$ at²

o r is the position in x or y (at time t)

$$\star$$
 $v^2 = v_0^2 + 2a(x-x_0)$

Kinematics Assumptions

Projectile Motion:

- X-direction: v is constant; a=0
- Y-direction: v at top = 0; a = g
- Remember, time is the same in both x and y
- Break up velocity components if needed

Circular Motion

- Acceleration always points inward
- $v = \omega r$ (and is tangential to the path)
- Direction of individual forces can be different in different positions of the circle

phone is at 1%

me running to get the charger :

phone is at 1%

me running to get the charger in the north west direction:

me realizing I also have mass:

Relative, Circular Motion

- The Centripetal force is a fictitious force, meaning that it is a result of other forces acting on a system to make it go in circular motion
- Centripetal acceleration, for circular motion, is always radially inwards and the velocity is tangential to the path

Forces

Conservative

- Weight (Gravity)
- Spring Force: $F_s = -k \Delta x$

Nonconservative

- Normal:

 Perpendicular to an object's surface by below surface
- Tension: points away from object
- Friction: f = μN,
 opposes motion

Forces

- Equal and Opposite Forces
- X and Y components still apply, especially for ramp problems
- Free Body Diagrams:
 - The net force is NOT drawn on the free body diagram
 - Only draw external forces acting on the object

Friction

Friction is a force that opposes the direction of motion

Kinetic Friction

Static Friction

2. Problem Solving

Some Steps to Follow If You Are Lost

Kinematics

How to Identify:

- Projectile Motion
- Given x/v/a
- Relative Motion

Kinematics

- List given variables
 - In both x and y directions
- Match up to kinematics equations on equation sheet
- Remember to watch out for Relative Motion

students in high school who just learned kinematic equations :

Forces

How to Identify:

- Springs Mass Slidings
- Ramps
- Strings

Forces

- ▶<u>ALWAYS</u> start with Free Body Diagrams
- Write F=ma equations
 - ► In both x and y directions
 - ► Pay close attention to the <u>SIGNS</u> of your variables!
- Solve for the unknown variable(s) in the problem

Box on a slanted ramp

Which direction does the normal force point?

- 1. Straight up
- 2. Up and right
- 3. Straight down
- 4. Down and right

Box on a slanted ramp

Which direction does the normal force point?

- 1. Straight up
- 2. Up and right
- 3. Straight down
- 4. Down and right

Box on a spring in compression

Which direction does the spring force point on the

box?

- 1. Up
- 2. Down
- 3. Left
- 4. Right

Box on a spring in compression

Which direction does the spring force point on the

box?

- 1. Up
- <u>2. Down</u>
- 3 Left
- 4. Right

Two boxes connected with a rope

Which direction does the tension force point on M2?

- 1. Up
- 2. Down
- 3. Left
- 4. Right

Two boxes connected with a rope

Which direction does the tension force point on M2?

- 1. Up
- 2. Down
- 3. Left
- 4. Right

Worksheet Time!

Enter Queue with your name and net ID: By entering the queue, you help us:

- -Reserve a big enough space at the next review session
- -Assign enough tutors for everyone to have access to help

Thank you!

