MATH 257 Exam 1 CARE Review

Please join the queue!

https://queue.illinois.edu/q/queue/955

In-Person Resources

4pm-10pm 7pm-10pm

CARE Drop-in tutoring: 7 days a week on the 4th floor of Grainger Library! Sunday - Thursday 12pm-10pm Friday & Saturday 12-6pm				Monda Tuesda Wedne Thurso Instructors: Chuan Hirani:	ce hours: ays - Thursdays ays: Gregory 3 ays: English 69 esdays: Gregory 3 days: Gregory 3 days: Gregory 3 ag: M 2-3PM in M 3:30-4:30p ky: M 1-2pm ir	07 9 ry 317 307 CAB 233 m in Altgelo	d 375
Subject 🔶	Sunday 🔶	Monday 🔶	Tuesday 🔶	Wednesday 🔶	Thursday 🔶	Friday 🔶	Saturday 🔶
Math 257	12pm-2pm	12pm-6pm	2pm-10pm	3pm-8pm	2pm-4pm	12pm-	1pm-6pm

5pm-6pm

4pm

6pm-10pm

Topic Summary

- Linear systems
 - Solving systems with matrices
- Reduced row echelon form
 - Pivot columns: basic and free variables
- Elementary matrices
 - Elementary row operations
- Vectors and spans

- Matrix operations
 - Addition, subtraction, scalar multiplication, linear combinations
 - Transposition
- Matrix multiplication
 - Properties of matrix multiplication
- Matrix inverses
 - What matrices are invertible?

Linear Systems

$$a_1x_1+\ldots+a_nx_n=b$$

and matrices

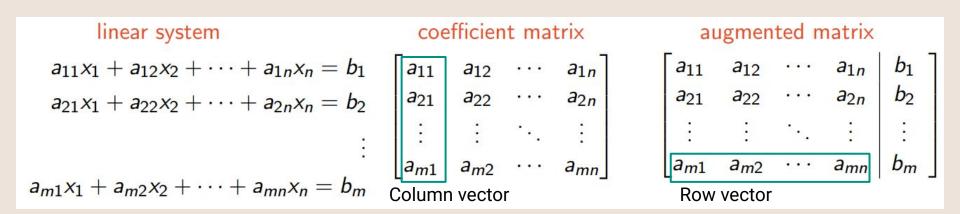
	a ₁₁	a ₁₂ a ₂₂	 	a _{1n} a _{2n}	
A =		: a _{m2}	••. 	: a _{mn} _	

Linear systems must have either:

- 1. One unique solution
- 2. Infinite solutions
- 3. No solutions

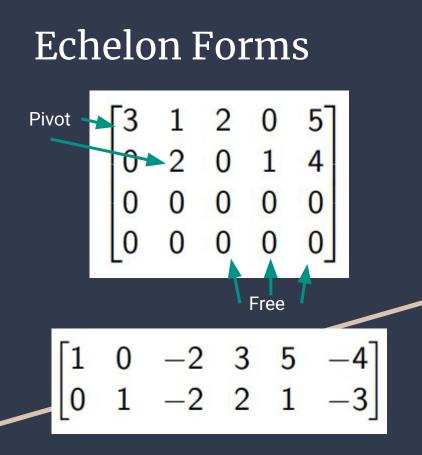
Equivalent linear systems have the same set of solutions.

You can represent a linear system with matrices...



We often define a matrix in terms of its columns or its rows:

$$\mathbf{a}_{n} \text{ are all column vectors} \qquad \begin{array}{c} \mathbf{R}_{1} \\ \mathbf{R}_{2} \\ \mathbf{R}_{m} \text{ are all row} \\ \mathbf{R}_{m} \text{ are all row} \\ \mathbf{R}_{m} \end{array} \qquad \begin{array}{c} \mathbf{R}_{n} \\ \mathbf{R}_{m} \end{array}$$



Row Echelon Form (REF):

- All nonzero rows above rows of all zeros
- Leading entry (leftmost nonzero number) is strictly to the right of the leading entry of the row above
 Reduced Row Echelon Form (RREF):
- Leading entries of nonzero rows are all 1
- 2. Each leading entry is the only nonzero entry in the column

Gaussian Elimination (for a general solution)

It's an algorithm!

- 1. Write down the augmented matrix.
- 2. Find the RREF of the matrix.
- 3. Write down linear equations based on the RREF.
- 4. Express pivot variables in terms of free variables (unless there are no free variables).
- Solve only if there are no free variables and the matrix is consistent. (This means the solution is unique!)

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix} \leftarrow$$

 $0 = 0 \quad \checkmark$

0 = 2 ×

Dependent AKA consistent

Inconsistent

Inconsistent systems have no solutions.

Elementary Row Operations

Elementary operations do not change the solution set of a system.

There are three kinds:

- 1. Replacement $(R_1 \rightarrow R_1 + a^*R_2)$
- 2. Scaling $(R_1 \rightarrow a^*R_1)$
- 3. Interchange $(R_1 \rightarrow R_2)$

All elementary operations are reversible. Two matrices are **row equivalent** if elementary operations can turn one into the other.

Matrix Operations

a) The sum of $A + B$ is								
				$a_{1n} + b_{1n}$				
$a_{21} + b_{21}$	a_{21} a_{2}	$a_{22} + b_{22}$		$a_{2n} + b_{2n}$				
:		:		÷				
$a_{m1} + k$	o _{m1} a _m	$2 + b_{1}$	m2 · · ·	$a_{mn} + b_{mn}$				
b) The product <i>cA</i> for a scalar <i>c</i> is								
ca11	са ₁₂ са ₂₂	• • •	ca1n					
<i>ca</i> ₂₁	ca222	•••	ca _{2n}					
÷	÷	·	:					
	ca _{m2}							

Addition: only defined for matrices with the same dimensions

Subtraction: the same as addition

Scalar multiplication: every entry is multiplied by the scalar

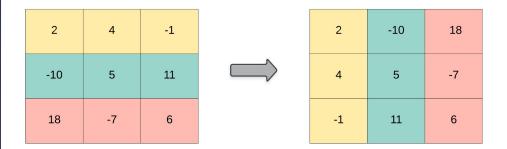
- Scalar = any real number

Linear combinations: any mixture of scalar multiplication and addition/subtraction of matrices

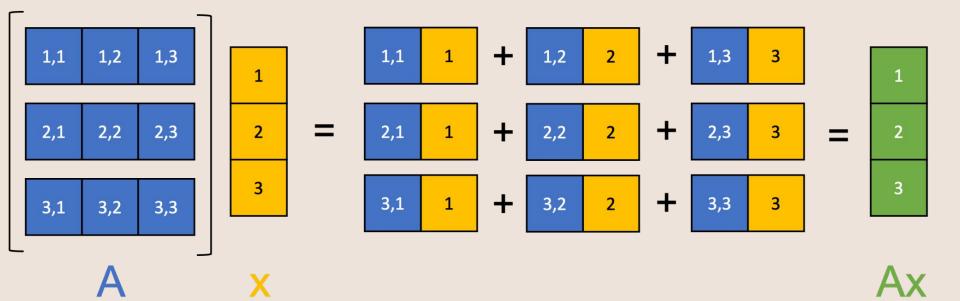
span(a,b) is a set of ALL the possible linear combinations of **a** and **b**

Matrix Operations (cont.)

Transpose: switch rows and columns



Matrix-vector multiplication: $A\mathbf{x} = x_1\mathbf{a_1} + x_2\mathbf{a_2} + ... + x_n\mathbf{a_n}$ which means you multiply the **entries** of the vector with the **columns** of the matrix



Matrix-vector multiplication The number of entries in x must match the number of columns in A

Matrix multiplication

Only defined for two matrices A and B if

- A has the dimensions m x n and B has the dimensions n x p
- A^k (exponent) is only defined for a square matrix

Each entry of AB is a dot product of a **row of A** with a **column of B**.

 $AB = \begin{bmatrix} \mathbf{R}_1 \mathbf{C}_1 & \dots & \mathbf{R}_1 \mathbf{C}_p \\ \mathbf{R}_2 \mathbf{C}_1 & \dots & \mathbf{R}_2 \mathbf{C}_p \\ \mathbf{R}_m \mathbf{C}_1 & \dots & \mathbf{R}_m \mathbf{C}_p \end{bmatrix} \text{ and } (AB)_{ij} = \mathbf{R}_i \mathbf{C}_j = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}.$

Properties of Matrix Multiplication

(a) A(BC) = (AB)C (associative law of multiplication)
(b) A(B + C) = AB + AC , (B + C) A = BA + CA (distributive laws)
(c) r(AB) = (rA)B = A(rB) for every scalar r,
(d) A(rB + sC) = rAB + sAC for every scalars r, s (linearity of matrix multiplication)
(e) I_mA = A = AI_n (identity for matrix multiplication)

Transpose Theorem: $(AB)^T = B^T A^T$

Matrix multiplication is NOT COMMUTATIVE: AB \neq BA

Elementary Matrices

Identity Matrices

1×1	[1]		
2 × 2	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	
3 × 3	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	0 1 0	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$
etc.			

Any matrix that can be formed from the identity matrix with **one** elementary row operation.

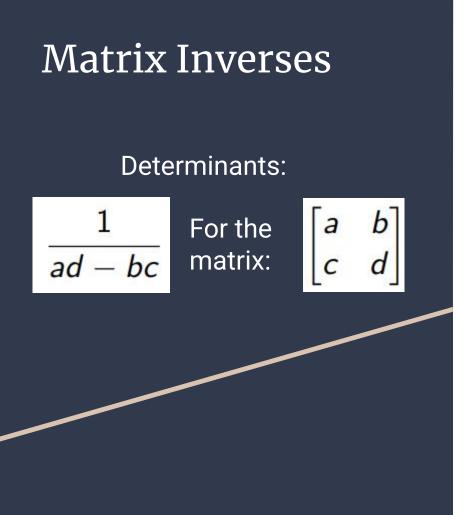
Ex. $\begin{array}{c|cccc} 0 & 1 & 0 & & \\ 0 & 0 & 1 & & R_2 \leftrightarrow R_3 \end{array}$

Elementary Matrices (cont.)

Multiplying an elementary matrix (E) with another matrix (A) is the same as performing the elementary row operation on A.

This means you can represent putting a matrix in RREF as a sequence of matrix multiplications:

 $E_n...E_2E_1A = B$ where A is the original matrix and B is the RREF form



Definition of an inverse:

 $AC = I_n$

Requirements for a matrix to be invertible:

- 1. It has to be square
- 2. The determinant of the matrix cannot be 0 or
- 3. The RREF of A is the identity matrix or
- 4. A has as many pivots as columns/rows

Statements 2, 3, and 4 mean the same thing.

Calculating an Inverse

For 2x2:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Elementary Matrix strategy:

$$A^{-1}=E_mE_{m-1}\ldots E_1=E_mE_{m-1}\ldots E_1I_n.$$

OR: set up an augmented matrix with the identity and reduce to RREF

$$\begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \mid 1 & 0 & 0 \\ -3 & 0 & 1 \mid 0 & 1 & 0 \\ 0 & 1 & 0 \mid 0 & 0 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 0 \mid \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \mid 0 & 0 & 1 \\ 0 & 0 & 1 \mid \frac{3}{2} & 1 & 0 \end{bmatrix}$$

Works for any square matrices of any size

Properties of Matrix Inverses

(a) A^{-1} is invertible and $(A^{-1})^{-1} = A$ (i.e. A is the inverse of A^{-1}). (b) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$. (c) A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$.

Inverses are unique! Every invertible matrix only has one inverse.

Multiplying by a matrix inverse is the closest we get to dividing matrices.

Theorem 14. Let A be an invertible $n \times n$ matrix. Then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Python Coding Tips

Remember to **import** numpy and math! import numpy as np from math import *

Check for **syntax errors** (missing parentheses and brackets, spelling)

 Read your error message! It usually tells you exactly where it went wrong

You have to use **np.** or **np.linalg.** for most functions

Study coding problems from the homework (hint: they tend to pull questions from there!)

Python Functions to know

Useful functions to know: np.array([[1, 1, 1], [2, 2, 2]]) $\rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$

np.linalg.solve(a, b) \rightarrow solves a system where a is the coefficient matrix and b is the scalars on the right side of the =

np.linalg.inv(a) \rightarrow gives you the inverse if a is invertible

Ways to multiply matrices:

a (a) b \leftarrow this is always matrix multiplication

 $a * b \leftarrow don't$ use this unless a or b is a scalar

np.dot (a, b) \leftarrow gives the dot product

In-Person Resources

4pm-10pm 7pm-10pm

CARE Drop-in tutoring: 7 days a week on the 4th floor of Grainger Library! Sunday - Thursday 12pm-10pm Friday & Saturday 12-6pm				Monda Tuesda Wedne Thurso Instructors: Chuan Hirani:	ce hours: ays - Thursdays ays: Gregory 3 ays: English 69 esdays: Gregory 3 days: Gregory 3 days: Gregory 3 ag: M 2-3PM in M 3:30-4:30p ky: M 1-2pm ir	07 9 ry 317 307 CAB 233 m in Altgelo	d 375
Subject 🔶	Sunday 🔶	Monday 🔶	Tuesday 🔶	Wednesday 🔶	Thursday 🔶	Friday 🔶	Saturday 🔶
Math 257	12pm-2pm	12pm-6pm	2pm-10pm	3pm-8pm	2pm-4pm	12pm-	1pm-6pm

5pm-6pm

4pm

6pm-10pm

Questions?

Join the queue to see the worksheet!