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A B S T R A C T

The DNA damage response (DDR) is a fundamental readout for evaluating efficacy of cancer therapeutics, many
of which target DNA associated processes. Current techniques to evaluate DDR rely on immunostaining for
phosphorylated histone H2AX (γH2AX), which is an indicator of DNA double-strand breaks. While γH2AX im-
munostaining can provide a snapshot of DDR in fixed cell and tissue samples, this method is technically
cumbersome due to temporal monitoring of DDR requiring timepoint replicates, extensive assay development
efforts for 3D cell culture samples such as organoids, and time-consuming protocols for γH2AX immunostaining
and its evaluation. The goal of this current study is to reduce overall burden on assay duration and development
in non-small cell lung cancer (NSCLC) organoids by leveraging label-free multiphoton imaging. In this study,
simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy was used to provide rich intracel-
lular information based on endogenous contrasts. SLAM microscopy enables imaging of live samples eliminating
the need to generate sacrificial sample replicates and has improved image acquisition in 3D space over con-
ventional confocal microscopy. Predictive modeling between label-free SLAM microscopy and γH2AX immu-
nostained images confirmed strong correlation between SLAM image features and γH2AX signal. Across multiple
DNA targeting chemotherapeutics and multiple patient-derived NSCLC organoid lines, the optical redox ratio and
third harmonic generation channels were used to robustly predict DDR. Imaging via SLAM microscopy can be
used to more rapidly predict DDR in live 3D NSCLC organoids with minimal sample handling and without
labeling.

1. Introduction

Cancer treatments can selectively target tumor tissues by inhibiting
synthetically lethal pathways for DNA repair [1,2]. In vitro screening for
synthetically lethal drugs exploits the formation of phosphorylated
histone H2AX (γH2AX) at sites of DNA double-strand breaks (DSBs) to
evaluate DNA damage response (DDR) induced by drug candidates.

γH2AX formation precedes localization of repair proteins to sites of DSBs
and can be labeled via immunostaining [3]. While this labeling
approach is suitable for screening programs using 2D cultured cells,
γH2AX labeling and analysis in 3D organoids requires significant assay
optimizations such as removing Matrigel content and chemical clearing
[4,5]. Moreover, the need for sacrificial fixation and immunostaining
adds significant time and resource challenges when performing
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longitudinal assays, especially in complex in vitro models such as
organoids.
Recently, advances in label-free, multiphoton microscopy have

enabled endpoint predictions such as apoptosis via fluorescence lifetime
imaging [6] and DNA damage using Raman micro-spectroscopy [7].
These multiphoton microscopy techniques rely on endogenous molec-
ular signals, avoiding the need to process the sample and have improved
signal acquisition through thicker samples than for single photon mi-
croscopy techniques such as confocal microscopy [8]. Studies using
label-free microscopy often leverage the unique fluorescence profiles of
endogenous flavin adenine dinucleotide (FAD) and reduced nicotin-
amide adenine dinucleotide phosphate/nicotinamide adenine dinucle-
otide (NAD(P)H) to assess cell metabolism [9–11]. FAD and NAD(P)H
are metabolic enzymes that enable ATP generation by shuttling elec-
trons through the electron transport chain via oxidation of NAD(P)H to
NAD(P)+ and FADH2 to FAD. Since only NAD(P)H and FAD endoge-
nously emit fluorescence, the ratio between FAD and NAD(P)H fluo-
rescence can be used to inform the cell redox state, also known as the
optical redox ratio (RR). Changes in the RR indicate shifts between
glucose catabolism and oxidative phosphorylation and is linked to DDR
through metabolism of NAD(P)+ via enzymatic action of poly-ADP
ribose polymerase (PARP) which also reduces levels of NAD(P)H
[12–15]. Measurements of the RR have been used to track cell differ-
entiation [16], therapeutic response to cancer treatment [17], and
informmetastatic potential of cancer cells [11]. While prior studies have
shown that DDR results in altered redox homeostasis [12–14], no studies
to our knowledge have used label-free optical readouts such as RR to
predict DDR.
In this study, a label-free prediction model is developed for patient

derived tumor organoids which are 3D in vitro cellular platforms that
retain the molecular signatures of the original donor while preserving
patient specific drug resistances [18–21]. Recent approaches towards
predicting biological outcomes of organoids have utilized cell paint
which uses fluorescently labeled organelles to generate a phenotypic
profile for predictions [5,22]. However, this approach can be resource
intensive in complex in vitro models due to the need to generate sample
sets for each timepoint. In this study, a label-free phenotypic approach
via SLAMmicroscopy is devised for prediction of DDR by live imaging of
treatment naïve non-small cell lung cancer (NSCLC) organoids.
The prediction was trained using extracted label-free SLAM features

and γH2AX quantifications from 2D organoids. The use of 2D organoids
was central to model training because 2D organoids remain spatially
fixed during the immunofluorescent labeling process enabling label-free
SLAM imaging across a field-of-view (FOV) followed by γH2AX labeled
immunofluorescence imaging on the same FOV. This produces label-free
and labeled image pairs with accurate spatial representations and co-
registration which can be used train a prediction model to understand
how label-free SLAM microscopy features indicate DDR through -H2AX
expression in 3D organoids. The implementation of a prediction model
trained on 2D organoids and then implemented on 3D organoids was
facilitated by the optical sectioning and improved z-depth penetration
inherent in multiphoton microscopy techniques such as SLAM
microscopy.
Previous studies using SLAM microscopy have been used to identify

optical signatures of breast cancer tissue in histological sections [23],
quantify tumor microenvironment cellular and extracellular vesicle
compositions [24], and 3D real-time histology of unprocessed human
and rat tissue [25]. Here, SLAM microscopy was used to capture the
metabolic signatures of organoids via 2-photon autofluorescence (2PF)
of FAD and 3-photon autofluorescence (3PF) of NAD(P)H, and third
harmonic generation (THG) for structural features [26–28]. Second
harmonic generation (SHG) was also captured but since organoids have
limited birefringence or collagen, little to no SHG signal was present.
SLAM microscopy uses a near-infrared laser source, improving light
penetration through thick samples and decreasing thermally induced
photodamage to the sample by relying on multiphoton interactions at

focal volumes. SLAM microscopy relies on autofluorescence which
Matrigel proteins do not emit enabling organoids in Matrigel to be
imaged without additional processing, better preserving the micro-
structure and the imaging properties between 2D and 3D organoid
platforms and enabling implementation of SLAM-based prediction
models derived from data on 2D organoids to be applied to 3D
organoids.

2. Materials and methods

2.1. Organoid culture

Treatment naïve NSCLC organoids which were derived from three
independent donors (HUB-07-B2-047, HUB-07-B2-065, and HUB-07-B2-
133 referred to as HUB047, HUB065, HUB133 respectively), were
originally obtained from Hubrecht Organoid Technology (Utrecht,
Netherlands). The human biological samples were sourced ethically and
their research use was in accord with the terms of the informed consents
under an IRB/EC approved protocol. After thawing from a cryovial, 500
μL of organoid suspensions were centrifuged at 4 ◦C at 1500 rpm and
resuspended in 100 μL of 80% growth factor-reducedMatrigel (Corning,
356231) and plated on 24-wellplates (Greiner, 662160) at three 10 μL
droplets per well. The droplets were gelled at 37 ◦C in a cell culture
incubator for 30min and 500 μL of culture media was added. The culture
media was refreshed every other day and consisted of Advanced Dul-
becco’s Modified Eagles Medium with Nutrient Mixture F-12 Hams
(ThermoFisher, 12634028), 2 mM GlutaMax (ThermoFisher,
35050038), 10 mM HEPES (ThermoFisher, 35050038), 1.25 mM N-
Acetyl cysteine (Sigma Aldrich, A9165-25G), 500 nM A83-01 (Tocris,
2939-10 mg), 1x B27 supplement (ThermoFisher, 17504044), 25 ng/mL
FGF7 (Peprotech, 100-19), 100 ng/mL FGF10 (Peprotech, 100-26), 50
ng/mL Noggin (Peprotech, 120-10C), 5 mM Nicotinamide (Sigma
Aldrich, N0636-100G), 50 μg/mL Primocin (InvivoGen, ANT-PM-2),
250 ng/mL Rspondin-3 (R&D Systems, Bulk 3500-RS/CF), 500 nM
SB202190 (Sigma Aldrich, S7076-25 mg), and 5 μM Y-27632 (Sigma
Aldrich, NC1632222). At confluency, organoids were passaged accord-
ing to protocols based on the work by Pleguezuelos-Manzano et al. [29].
Organoids used in this study were at passage 2 after thawing from
cryovials.
Two-dimensional organoids were cultured from 3DNSCLC organoids

derived from treatment naïve patients using protocols used to generate
2D organoids of epithelial tissue [30]. Briefly, 3D organoids cultured in
wellplates were collected with surrounding media in 0.5 mM EDTA in
PBS (ThermoFisher, AM9260G) and centrifuged at 1500 rpm at 8 ◦C for
5 min. The supernatant was removed, and the pellet was digested in 1
mL of 0.05 % Trypsin-EDTA (Thermofisher, 25-300-054) for 4 min. The
trypsin was inactivated by adding 1 mL of culture media and the orga-
noid suspension was mechanically disrupted by pipetting 50 times
through a P1000 tip. The organoid suspension was then passed through
a 40 μm strainer (Falcon, 352340) and then centrifuged again at 1500
rpm at 8 ◦C for 5 min. After removing the supernatant, the pellet con-
taining organoid-derived single cells was resuspended in complete cul-
ture media. A 40 μL volume of the organoid suspension at 2-3 × 105

cells/mL was plated in each well of a 384 wellplate (PerkinElmer,
6057308) to establish 2D organoids.

2.2. Compound addition

Etoposide (CAS ID: 33419-42-0), bortezomib (CAS ID: 179324-69-7),
olaparib (CAS ID: 763113-22-0), and cisplatin (CAS ID: 15663-27-1)
were initially diluted to 10 mM DMSO (dimethyl sulfoxide) stocks and
frozen. Compounds were thawed and added to phenol-free complete
media to final concentrations prior to experiment start. Total volume of
DMSO added to organoid complete media during this step and with
vehicle control remained constant between experiments. 2D and 3D
organoids were treated by replacing the complete culture media with the
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compound-laden culture media. The media with treatment was replaced
prior to label-free imaging, occurring every two or three days, resulting
in a continuous treatment regimen.

2.3. SLAM microscopy

The SLAM microscopy technique was first developed and demon-
strated by You et al. [26]. The optical imaging hardware used in this
study for SLAM microscopy was previously described by Lee et al. [31].
Briefly, a high peak power femtosecond laser centered at 1040 nm
(Spectra-Physics, Femtotrain) was operated at a 10 MHz pulse repetition
rate. The laser beamwas used to pump a nonlinear photonic crystal fiber
(NKT Photonics, LMA-PM-15) to generate a supercontinuum which was
then sent to a pulse shaper (Biophotonics Solutions Inc., FemtoJock-D)
to tailor the pulses to a bandwidth from 980 nm to 1100 nm. The
beam was delivered to a 25x, 1.05 NA water-immersion objective lens
(Olympus, XLPLN25XWMP2) with an average power of 10 mW at the
sample plane. Four sequential sets of dichroic beam splitters and
bandpass filters (Semrock) were used to separate the collected signal
(334–404 nm for THG, 405–504 nm for 3PF, 542–566 nm for SHG,
593–700 nm for 2PF). A 2D piezoelectric stage (SmarAct,
SLC-24150-LC) was used to collect images from the sample. The FOV
was set to 180 μm × 180 μm. Samples were cultured in phenol-free
media for the duration of the experiment to avoid signal interference
from phenol autofluorescence, and imaged while enclosed in a stage-top
incubator (TOKAI HIT Co., STXF-WSKMX-SET).
In addition to the benchtop SLAM microscope, a portable SLAM

imaging system (LiveBx LLC, Model: FreeView) was used to capture
images of organoids monolayers for dose response experiments in this
study. The laser source in this system was a femtosecond laser (Satsuma,
Amplitude) centered at 1030 nm with a pulse duration of 300 fs and a
pulse repetition rate of 5 MHz. The laser pulses were passed through a
photonic crystal fiber (NKT Photonics, LMA-25) to generate the super-
continuum needed for SLAM microscopy. A motorized half-wave plate
was used to adjust the output power level at the sample, and a pulse
compressor (Swamp Optics LLC, BOA-1050) was used to compensate for
the dispersion introduced by the system optics and to compress the
pulses down to 40 fs for efficient multiphoton excitation. The output
light from the pulse compressor was directed towards a silicone im-
mersion 30x, 1.05 NA objective lens (Olympus, UPANSAPO30XS). The
laser beam was raster scanned on the sample using a galvanometric
scanning mirror pair. The signal emitted from the sample was collected
through the same objective lens in the epi-direction and was spectrally
separated using dichroic beam splitters and bandpass filters corre-
sponding to various SLAM detection channels (335–355 nm for THG,
417–477 nm for 3PF, 498–520 nm for SHG and 593–643 nm for 2PF).
The FOV was set to 200 μm × 200 μm and images were taken with an
average power at 2 mW at the sample plane while enclosed in the stage-
top incubator.
For 2D organoids, each biological replicate was imaged at 3 different

locations, across 3 biological replicates per timepoint and treatment
group. Each sample was imaged first with SLAM and then with confocal
microscopy after immunofluorescence staining for γH2AX foci. For 3D
organoids, 3 individual organoids were imaged at 3 equidistant z-depths
(10–20 μm spacing) per biological replicate with 4 biological replicates
per treatment group per timepoint (Sfig. 3).

2.4. γH2AX foci immunostaining and imaging of 2D organoids

Two-dimensional (2D) organoid samples were fixed in 4 % para-
formaldehyde (AAJ19943K2, ThermoFisher) for 30 min before rinsing
in PBS 3 times and permeabilization in 0.25 % Triton X-100 (Sigma-
Aldrich, AAA16046AE) for 15 min at room temperature. Samples were
rinsed in PBS once, then incubated in a 3% BSA solution (Sigma-Aldrich,
A6003) for 1 h, prior to incubation with a solution of 1:500 phospho-
histone H2A.X (Ser139) primary antibody (Invitrogen, MA5-27753)

overnight in 4 ◦C. Samples were then rinsed with PBS 3 times. A sec-
ondary antibody solution consisting of 1:500 Alexa 488 (ThermoFisher,
A11001) and 1:1000 DAPI (ThermoFisher, EN62248) in 3 % BSA was
applied for 1 h at room temperature prior to 3 more PBS rinses. The 2D
organoid samples were then imaged using a Zeiss LSM 700 Confocal at
Nyquist settings. Each FOV from the 2D organoids was identified by
location and morphology annotations from the corresponding FOV from
the label-free SLAM images. γH2AX quantification from these images
was performed in CellProfiler [32].

2.5. γH2AX foci immunostaining and imaging for 3D organoids

To enable γH2AX imaging in 3D organoids cultured in 80%Matrigel,
organoids were extracted from the Matrigel at each timepoint. Organoid
cultures from each treatment and timepoint group were collected and
gently dissociated by pipetting in a 10 mL pipette prior to centrifugation
at 1500 rpm for 5 min at 8 ◦C. The supernatant was then aspirated and 2
mL of dispase (Gibco, 17105041) was added. After incubation for 30
min, the resultant suspension was centrifuged at the previous settings.
The supernatant was again removed, and the pellet was resuspended in
Advanced Dulbecco’s Modified Eagles Medium with Nutrient Mixture F-
12 Hams, 2 mM GlutaMax, and 10 mM HEPES at 10,000 organoids per
mL. A 40 μL volume of this solution was added to each of 3 wells in a 384
wellplate (PerkinElmer, 6057308) per group.
Wellplates containing organoid suspensions were centrifuged at 200

rpm for 5 s prior to each aspiration step to ensure that the organoids
remained at the wellplate bottom. A 40 μL volume of 4 % para-
formaldehyde (Sigma-Aldrich, HT5011-15 ML) was added to each well
for 1 h at 4 ◦C. The paraformaldehyde solution was then replaced and
rinsed with 40 μL of 0.1 % Tween 20 (Sigma-Alrich, P1379) in PBS 3
times before incubation overnight at 4 ◦C. The samples were then rinsed
twice in washing buffer consisting of PBS and 0.2 wt% BSA (Sigma-
Aldrich, A9647) and 0.1 % Triton X-100 (Sigma-Aldrich, T8787-100
ML). Afterwards, samples were incubated overnight at 4 ◦C on a shaker
plate at 150 rpm in washing buffer containing 1:500 of phospho-histone
H2A.X (Ser139) primary antibody. The primary antibody solution was
then replaced with a secondary antibody solution consisting of 1:500
Alexa 647 (ThermoFisher, A32728) and 1:500 DAPI in PBS. Samples
were incubated overnight at 4 ◦C on a shaker plate at 150 rpm and then
washed 3 times with 40 μL of washing buffer. Samples were chemically
cleared sequentially in 50 % meOH, 80 % meOH and 100 % meOH
(Merck, 34860-100ML-R). A 40 μL volume of clearing agent (Invitrogen,
V11325) was added to each well for 15min at room temperature prior to
imaging. Each well was completely imaged at 20× using a PerkinElmer
OperaPhenix (1400L17141). Maximum projections of z-stacks obtained
at 20 μm spacing were quantified for γH2AX using CellProfiler.

2.6. Data analysis

Optical RR images were generated as shown in Fig. 2B [27]. SLAM
intensity, texture, and rank-weighted-correlation features were extrac-
ted using Python 3.10 on segmented SLAM images (scikit-image,
mahotas). Segmentation masks were obtained using Ilastik on 3PF im-
ages [33]. Min-max scaling was applied on extracted features and
correlated to γH2AX foci/nuclei quantification in 2D organoids using a
gradient boost regressor model using the Python package sci-kit learn.
Feature selection was done by ranking the features based on feature
importance through an initial gradient boost regressor and selecting the
top 27 SLAM features. Feature selection was done to improve model
performance by removing superfluous features. The gradient boost re-
gressor model was trained on top features for validation on SLAM fea-
tures from 3D organoids. Validation consisted of a train/test split of 80
%/20 % with the 2D organoid dataset and on a new dataset generated
from 3D organoids treated with DNA damaging compounds not included
in the training data.
One-way ANOVA testing followed by the Tukey’s Post hoc test was
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applied on data with equal variances and normal distributions. Other-
wise, a Kruskal-Wallis H-test was performed followed with Dunn’s
multiple comparison test.

3. Results

3.1. SLAM microscopy for live cell imaging

SLAM microscopy uses non-linear interactions between light and
sample, confining absorption and fluorescence within a focal volume
and limiting photodamage and photobleaching [34]. In contrast to
confocal microscopy, SLAM microscopy uses a lower energy,
near-infrared excitation laser with shorter pulse durations to further
reduce the photodamage in biological samples (Fig. 1a). Short pixel
dwell times (<10 μs) with multi-frame averaging was used to further
reduce photodamage at the focal volume. Prior studies using this
approach show no apparent signs of photodamage in live cell samples
[35,36]. SLAM imaging channels (THG, 2PF, 3PF) are specific for the
endogenous fluorescence produced by optical heterogeneity (THG), FAD
(2PF), and NAD(P)H (3PF) (Fig. 1b). Noninvasive SLAM imaging of
organoids in either 2D and 3D formats enables acquisition of molec-
ular/metabolic signal from autofluorescence with high-resolution opti-
cal sectioning (Fig. 1c), providing rich metabolic and structural
information from defined z-slices.

3.2. Label-free imaging of DNA damage response (DDR) to
chemotherapeutic treatments

Under brightfield microscopy, NSCLC organoids in Matrigel culture

present as multicellular structures with cystic or compact morphology
(Fig. 2a). Similarly, SLAM microscopy can visualize organoid
morphology, however SLAMmicroscopy images a 2D optical slice of the
3D structure, highlighting the hollow morphology of these organoids
(Fig. 2b). Moreover, SLAM microscopy provides functional information
in the form of the optical RR which provides metabolic information and
can be calculated from the intensities in the 2 PF and 3 PF channels
which correspond to signal from FAD and NAD(P)H fluorescence
respectively (Fig. 2b). The optical RR is a measure of the oxidation-
reduction balance and a robust indicator of metabolic state which can
be used in conjunction with the THG channel to obtain a label-free
phenotypic profile of organoid cultures [10,37,38]. Using label-free
SLAM images, DDR was extrapolated by implementing a prediction
model which was trained using a gradient boost regression model on a
dataset comprised of SLAM phenotypic profiles linked to the ground
truth of γH2AX foci/nuclei counts (Fig. 2c).

3.3. Training images generated with label-free SLAM imaging and label-
based γH2AX immunostaining

To generate a training dataset for a DDR regression model, 2D
organoid samples derived from HUB-047 organoids were first imaged
using SLAM microscopy, followed by γH2AX foci immunofluorescence
imaging for ground truth (Fig. 3a). To discriminate cell death mediated
through non-DDR pathways from DDR, the training data included
organoids treated with bortezomib, a proteasome inhibitor which in-
duces cell death without DDR [39] (Fig. 3a). DDR was induced using
etoposide, a topoisomerase inhibitor which results in DNA damage [40].
A total of 144 SLAM FOVs, split across media control, DMSO Vehicle, 3

Fig. 1. Simultaneous Label-free Autofluorescence Multiharmonic (SLAM) microscopy visualizes label-free signals. a) SLAM microscopy uses a modified
ultrafast laser to excite and detect 4 orthogonal endogenous signals. b) THG, 3PF, and 2PF endogenous signals corresponding to sample heterogeneity via THG signal,
reduced nicotinamide adenine dinucleotide/reduced nicotinamide adenine dinucleotide (NAD(P)H) signal via 3PF, and flavin adenine dinucleotide (FAD) via 2PF.
Signal intensities were collected from 1 field of view of each sample. c) Optically sectioned THG, 3PF, and 2PF signal is generated in organoids across multiple depths
denoted by z.
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μMetoposide, 30 μMetoposide, and 10 μMbortezomib treatment groups
were paired with their corresponding ground truth γH2AX foci/nuclei
values. In all FOVs capturing the growing edges of cell growth, γH2AX
foci signal was observed to be higher which we hypothesize is due to
replicative stress [41]. FOVs from media control and DMSO vehicle
displayed a baseline γH2AX signal which was expected since a baseline
amount of DSBs are formed per cell cycle in normal human cells [42]
(Fig. 3d).
Features extracted from THG, 2PF, 3PF and RR images include

intensity-based features, Haralick texture features [43], and
rank-weighted co-localization [44]. The AUC-RR value was included as
a handcrafted optical RR derived intensity feature, constructed based on
two assumptions about the relationship between optical RR and cell
metabolism (Sfig. 2). Firstly, the relationship between metabolism and
optical RR is assumed to be a linear relationship between the optical RR
and the rate of change of the metabolism. This differs from the con-
ventional assumption that optical RR values correlate directly with
metabolic status of samples but aligns with our experimental observa-
tion that optical RR intensities are highest at early timepoints where the
greatest γH2AX foci/nuclei change occur (Fig. 3c and d). The second
assumption is that optical RR intensity can be separated into a RRcontrol
representing the metabolism at baseline and an RReffect which captures
the perturbation to metabolism caused by treatment. The AUC-RR
feature is derived from the RReffect which normalizes this value against
a baseline metabolism that may differ between cell sources. Based on
these assumptions, the AUC-RR feature can quantify cumulative meta-
bolic change in live cell samples (Sfig 2, Fig 3b).

3.4. Metabolic and intracellular structural imaging features inform DNA
damage response (DDR) prediction

Feature ranking was performed using an initial gradient boost
regression and the top 27 ranked features were used to train the final
DDR prediction model (Fig. 4c). Feature importance scores from the
final model indicated that AUC-RR best informed the DDR prediction
(Fig. 4c). Following the AUC-RR feature, the prediction model also
relied on structural THG imaging features, HXY1 and HXY2.

Interestingly, THG texture and correlation features were more infor-
mative towards prediction than THG intensity features, suggesting that
the spatial patterns of THG signal were important for DDR prediction
and suggesting significant intracellular rearrangement of organelles
(Fig. 4c). Evaluation of prediction and actual values based on 80 % train
and 20 % test splits showed an R2 score of 0.60 with a mean squared
error of 3.2 γH2AX foci/nuclei, suggesting good performance of this
model to predict DDR based on label-free SLAM imaging features
(Fig. 4a and b). Removing the top feature, AUC-RR, resulted in an R2

score of 0.29 with prediction of etoposide treated groups suffering the
most, suggesting that the optical RR alone may not adequately predict
metabolically involved cell events (Sfig. 3).
To further examine the relationship between the top feature, AUC-

RR, and γH2AX foci/nuclei, a dose response for etoposide and borte-
zomib study was performed in HUB-047 organoid monolayers (Fig. 4d
and e). In these experiments, a different SLAM system was used but
reproduced the relationship between AUC-RR values and γH2AX foci/
nuclei throughout this study. AUC-RR resulted in wider variation at all
doses compared to γH2AX foci/nuclei which reflects the sampling used
in SLAM imaging (~1 % of well area) as opposed to γH2AX foci
immunofluorescence (100 % of well area). Fig. 4d shows that both AUC-
RR and γH2AX foci/nuclei show similar dose response relationships to
etoposide treatment. Similarly, in Fig. 4e, both AUC-RR quantification
and γH2AX foci/nuclei show a steep decrease after 0.01 μM bortezomib
treatment. In Fig. 4d and e, the original signed AUC-RR values are shown
which better mirror positive and negative trends in γH2AX foci response
across dosages of etoposide and bortezomib.

3.5. DNA damage prediction in 3D organoid samples

To validate SLAM based DDR prediction in organoids, the prediction
model was implemented on 3D NSCLC (HUB047) organoids treated with
etoposide, bortezomib, and two new DNA damaging compounds,
cisplatin and olaparib. SLAM microscopy of 3D organoids embedded in
Matrigel leverages optical sectioning at defined z-depths, generating 2D
image slices of the 3D structure (Figs. 1c and 5a). A prediction-based
DDR approach with SLAM microscopy enabled collection of

Fig. 2. SLAM microscopy enables simultaneous visualization of FAD, NAD(P)H, and THG signals to inform prediction of DNA damage response in live
samples. a) Brightfield image of NSCLC organoids shows multicellular 3D structures (scalebar: 1000 μm). b) Optical redox ratio (RR) images were generated from
ratio of 2 PF FAD signal and 3 PF NAD(P)H signal (scalebars: 50 μm). c) A prediction model for DNA damage response was created by training a gradient boost
regression model on linked feature sets of label-free SLAM images and labeled γH2AX foci-stained immunofluorescence images as ground truth.

T.T. Roh et al.
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longitudinal DDR data from the same samples, whereas γH2AX foci la-
beling required sacrificial samples for each timepoint (Sfig. 4a and b).
Implementation of the trained prediction model on SLAM images ac-
quired from 3D organoids show that etoposide and cisplatin induce DDR
but not olaparib (Fig. 5d). A separate parallel experiment where γH2AX
foci labeling and quantification was performed similarly show increased
DDR with etoposide and cisplatin but not olaparib in this NSCLC orga-
noid line (Fig. 5b and c). Olaparib, a PARP inhibitor known for synthetic
lethal interactions in BRCA-mutated tumors, showed no significant ef-
fects, which was supported by the lack of BRCA mutations in this
organoid line. The DDR prediction model also correctly identified bor-
tezomib treatment resulting in decreased DDR at days 2 and 5 (Fig. 5c
and d). In agreement with previous observations (Figs. 3b and 4d), in-
creases in the AUC-RR feature tracked closely with the treatment effect
from DNA damaging agents (Fig. 5e). The performance of this model in
this validation study supports its translation from 2D to 3D organoid
formats and across DNA damaging treatments in HUB047 organoids.

3.6. AUC-RR feature is unchanged in etoposide resistant organoids

In this study, the AUC-RR feature was found to correlate with the
extent of DDR (Figs. 3b, 4d and 5b, e). To test if the AUC-RR feature
could be used to test sensitivity to DNA damaging treatments, three
different NSCLC organoid lines were dosed with 3 μM etoposide and the
AUC-RR quantifications were compared against DMSO vehicle. Repre-
sentative optical RR images at Day 3 show regions of increased optical
RR in only the HUB-047 line treated with etoposide at Day 3 (Fig. 6a).
HUB065 and HUB133 showed no observable differences in RR between
DMSO vehicle and etoposide treatment (Fig. 6b and c). Quantification of
AUC-RR in each of the three lines (Fig. 6d) demonstrated similar trends
with only HUB047 showing a significant increase. This was validated in
a separate ground truth experiment with γH2AX foci/nuclei quantifi-
cation, showing an increase in only the HUB047 organoids (Fig. 6e and
Sfig. 6). AUC-RR had no statistically significant differences in HUB065
and HUB133, mirroring the γH2AX foci/nuclei quantification. In addi-
tion to label-free DDR prediction, SLAMmicroscopy may also be used to

Fig. 3. Extracted features and readouts for model training and evaluation. 2D organoid monolayers from a treatment naïve patient were continuously treated
with etoposide or bortezomib to generate a training dataset. a) Representative images taken at Day 2 of the NSCLC organoid monolayer using SLAM (3PF, 2PF, THG,
RR) and immunofluorescence (DAPI, γH2AX). b) Area under the curve of the redox ratio (AUC RR) is increased relative to blank controls, demonstrating treatment
effects on metabolism. c) Mean redox ratio shows a gradual increase then decrease in treatment groups. d) γH2AX foci/nuclei quantification. b,c,d) Statistical testing
was performed using ANOVA followed by Tukey’s post-hoc test or Kruskal-Wallis followed by Dunn’s post-hoc test across all groups within each timepoint. Sig-
nificance from media control indicated. No statistical differences were detected between media control and DMSO vehicle treatments across all timepoints (3
biological replicates with 3 technical replicates per biological replicate, NS = no significance, *p < 0.05, **p < 0.01, ***p < 0.001).
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identify susceptibility of a sample to treatments causing DNA damage.

4. Discussion

Our objective was to develop a DDR prediction model based on label-
free SLAM imaging features for NSCLC organoids to evaluate DNA
damaging compounds. The initial hypothesis was that the feature set
comprised of label-free intensities, textures, and correlations would
suffice in informing DDR prediction. However, this initial hypothesis
proved to yield a moderately weak prediction model with a R2 coeffi-
cient of 0.3 (Sfig. 3). Studies examining the link between metabolism
and DDR suggest a stronger correlation [12–14], which led to
re-examination of the relationship between optical RR, a label-free im-
aging feature, and cell metabolism. After examining the feature set and
how it relates to γH2AX signal, we created a handcrafted feature
denoted as AUC-RR to capture a hypothesized relationship between the
measured optical RR and DDR (Sfig. 2). This feature makes two key
assumptions that differ from before: 1) optical RR is linearly related to
the rate of change of cell metabolism, rather than metabolic state itself,
2) the measured optical RR is a combination of a baseline RR and an

effect RR. Derivation of AUC-RR based on those two assumptions can be
seen in Supplemental Fig. 2. By incorporating AUC-RR, the model per-
formance increased to 0.6, indicating good DDR prediction based on
SLAM imaging features. Moreover, in subsequent experiments with
additional DNA damaging compounds and organoid lines, this feature
demonstrated trends that were consistent with the initial training
experiment (Figs. 3b, 4d and 5e, 6d).
Based on the high feature ranking of AUC-RR compared to the optical

RR, the optical RR intensity appears to better indicate the rate of cell
metabolism change rather than indicating an absolute measure of
metabolic state. We speculate that as cells shift their energy needs as a
result of a treatment, upstream pathways which maintain a homeostatic
balance of intracellular FAD+ and NAD(P)H are perturbed, resulting in a
change in optical RR intensity. After these cells have responded termi-
nally to stimuli, FAD+ and NAD(P)H levels return to baseline levels in
the remaining cells, while the outcome of the altered metabolism,
γH2AX foci expression or cell death, endures as seen in Fig. 2c and d.
While the prediction model does not explicitly show the relationship
between AUC-RR and DDR, experimental results suggest that AUC-RR
and DDR are increased in tandem (Fig. 2b-d) and in proportion

Fig. 4. Performance of the DNA damage prediction model relies on area under the curve of redox ratio (AUC RR). a) Predicted γH2AX foci/nuclei were
generated based on 80/20 training/test splits. Statistical testing was performed using ANOVA followed by Tukey’s post-hoc test or Kruskal-Wallis followed by Dunn’s
post-hoc test across all groups within each timepoint. Significance from media control indicated (n = 6–11 replicates, NS = no significance, *p < 0.05, **p < 0.01,
***p < 0.001). b) Evaluation of the model by plotting predictions versus actual results in a R2 score of 0.60. c) Ranked feature importance scores of SLAM features
show relative contributions towards DNA damage prediction. d) Etoposide dose response generated from SLAM based AUC-RR feature and γH2AX foci/nuclei in
HUB-047 monolayers at Day 5. SLAM IC50: 4.655 μM, γH2AX IC50: 1.237 μM (3 biological replicates with 3 random fields of view for SLAM imaging and 25 fields of
view for γH2AX foci immunofluorescence imaging). e) Bortezomib dose response generated from SLAM based AUC-RR feature and γH2AX foci/nuclei in HUB-047
monolayers at Day 5. SLAM IC50: 0.4511 μM, γH2AX IC50: 0.1245 μM (3 biological replicates with 3 random fields of view for SLAM imaging and 25 fields of view
for γH2AX foci immunofluorescence imaging).
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(Fig. 5c and e) which aligns with the previous studies demonstrating the
metabolic demands of DDR [12–14].
Change in AUC-RR was also observed in bortezomib treated orga-

noids, suggesting that while AUC-RR is important for DDR prediction,
deconvolving DDR from cell death mediated by other mechanisms re-
quires other features. This increased involvement of metabolism leading

to cell death is consistent with prior studies [45]. In addition, we have
observed that when AUC-RR is calculated by taking sign changes into
account, AUC-RR appears to show a negative trend with bortezomib
whereas etoposide shows a positive trend (Fig. 4d and e). Feature
importance scoring showed that the DDR predictionmodel also relied on
the THG imaging channel (Fig. 4c). THG signal is generated at biological

Fig. 5. Implementation of DNA damage prediction model generated from 2D organoids show agreement in 3D organoids. 3D organoids from a treatment
naïve patient were cultured in 80 % Matrigel and were continuously treated over 5 days in 10 μm of etoposide, bortezomib, olaparib, or cisplatin. a) Representative
3PF, 2PF, THG, and optical redox ratio SLAM images from before treatment, 2 days and 5 days post-treatment. (scalebar: 50 μm) b) Representative immunofluo-
rescence imaging of DAPI and γH2AX signal in treated organoids (scalebar: 50 μm). c) Normalized ground truth data after 2 and 5 days of treatment (3 biological
replicates with 16–25 technical replicates per biological replicate). d) Predicted DNA damage after days 2 and 5 of treatment based on SLAM images show agreement
with ground truth data (4 biological replicates with 9 technical replicates per biological replicate). e) AUC-RR quantification from SLAM imaging used to inform
predictions in figure d. c,d) Statistical testing was performed using ANOVA followed by Tukey’s post-hoc test or Kruskal-Wallis followed by Dunn’s post-hoc test
across all groups within each timepoint. Dotted boxes were used to denote shared significance from media control (*p < 0.05, **p < 0.01, ***p < 0.001).
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interfaces where refraction index changes occur, such as at water-lipid
and water-protein interfaces [46], and has broad applications in visu-
alizing subcellular structures [35,47,48]. With DNA damage, morpho-
logical changes to cellular architecture include extension of the
endoplasmic reticulum, dispersal of the Golgi, and mitophagy [49–51].
This reorganization of the cellular architecture may be captured in the
THG features, which are sensitive to the spatial organization of
interfaces.
A limitation of the label-free approach to DDR predictions is the

reliance on time resolved measurements of the optical RR for calculating
AUC-RR. Longitudinal SLAM imaging performed at two or three-day
intervals provided sufficient time resolution for predictions of DDR in
the current study, but for treatments in which cells react over smaller
time scales, a high cadence of imaging would be necessary. However, an
automated SLAM imaging approach could ensure sufficient time-lapse
resolution while allowing for studies to be sufficiently powered.
Another limitation is the dependence on the phenotypic response of the
specific organoid line, resulting in difficulties translating phenotypic
prediction models to other organoid lines. While this study demonstrates
that AUC-RR is reflective of treatment sensitivity in organoid lines
(Fig. 6), additional validation in cell lines will be necessary to translate
these findings more generally. In particular, validation of label-free
predictive features towards predicting cisplatin resistance in resistant
and XPA deficient cell lines would enable potential use of SLAM based
prediction of cisplatin resistance in treating ovarian cancer.
Prediction modeling is an intrinsically data hungry approach. SLAM

microscopy, with simultaneous acquisition of four orthogonal, co-
registered imaging channels, is tailor-made for generating the longitu-
dinal high-dimensional image datasets needed for prediction modeling.
In this study, a SLAM-based DDR predictionmodel was generated, which

may also be applied non-invasively and non-destructively to tumor
organoids with slow growth rates or where deleterious assay optimiza-
tions prevent prolonged cell culture. Future studies will examine
endpoint predictions beyond DDR to maximize the utility of the rich
phenotypic, molecular, and metabolic information captured during
SLAM imaging.

5. Conclusion

The goal of this study was to leverage the label-free, non-invasive
optical sectioning and imaging capabilities of SLAMmicroscopy towards
the prediction of DDR in live NSCLC organoids. Training and initial
testing of the prediction model was successfully performed on 2D NSCLC
organoids treated with etoposide, a DNA damaging agent, and borte-
zomib, a proteasome inhibitor. This prediction model was additionally
validated on SLAM imaging of NSCLC organoids in the original 3D
format, treated with etoposide, bortezomib, olaparib, or cisplatin.
Lastly, imaging and examination of NSCLC organoids with varying
susceptibility to etoposide showed that the AUC-RR alone may be a
generalizable feature capable of informing DDR across 3D organoid
lines. This study demonstrated that non-invasive SLAM-based metabolic
imaging via the optical RR and structural imaging with THG was suffi-
cient to predict DDR in live NSCLC organoids. Use of this technique
enables rapid phenotypic validation in a physiologically relevant disease
model of NSCLC for cancer drugs targeting DNA repair pathways.
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