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TRANS-IPIC Quarterly Progress Report:
Project Description:
1. Research Plan - Statement of Problem
The poor conditions of aging bridges in the US prompted the federal government to enact a $1 trillion infrastructure bill in 2021 that includes $110 billion in additional funding for repairing and rebuilding US bridges and roadways (White House, 2022). State DOTs need to optimize the use of these investments to accomplish multiple objectives including maximizing durability, safety, sustainability, and mobility while minimizing life- cycle cost. This presents DOTs with a number of challenges including how to (1) select an optimal bridge construction method from a set of feasible alternatives including conventional cast-in-place, precast bridge elements or systems, precast lateral slide, and precast self-propelled modular transporter, for each planned project based on its specific conditions and requirements; (2) accurately predict the cost of these alternative bridge construction methods during the early project phase with limited design data; (3) optimize the planning of off-site PC manufacturing, transportation, and onsite installation; and (4) quantify and optimize the impact of important construction decisions on multiple objectives including durability, safety, sustainability, mobility, and life-cycle cost.
2. Research Plan - Summary of Project Activities (Tasks)
Task 1: Develop novel predictive Machine Learning (ML) models that can be used by DOT planners during the early design phase to quantify the impact of conventional and PC accelerated bridge construction methods on construction cost during the early design phase.
Task 2: Create a novel multi-objective optimization model to support DOTs in identifying optimal bridge construction planning decisions such as optimal size, number, transportation, and onsite installation of all bridge PC modules to maximize durability, safety, sustainability, and mobility while minimizing bridge life-cycle cost.
Project Progress:
3. Progress for each research task
Task 1 progress [100% completed]. Last quarter, the research team successfully developed six machine learning (ML) models to support decision makers in estimating the cost of conventional and PC accelerated bridge construction projects during the early design phase. The ML models were developed in four main phases that focused on (1) collecting and analyzing a dataset of 413 bridge projects that were constructed in 29 US states; (2) preprocessing the dataset to classify, clean, and transform predictor and predicted variables as well as splitting the dataset into training and testing sets; (3) developing bridge cost estimating models using the six ML algorithms of Ordinary Least Squares, LASSO Regression, Ridge Regression, Random Forest Regressor, Gradient Boosting, and Extreme Gradient Boosting; and (4) evaluating and validating the performance of the developed ML models, as shown in Figure 1. The results of the performance evaluation and validation phase showed that non-linear models of Random Forest, Gradient Boosting, and Extreme Gradient Boosting outperformed linear models in both training and testing datasets. The performance evaluation results showed that the Gradient Boosting and the Extreme Gradient Boosting achieved the highest performance with an R² of 99.99% and 99.97%, respectively. Similarly, the validation

results showed that the Extreme Gradient Boosting model outperformed the other models in three metrics as it achieved the lowest 𝑀𝐴𝑃𝐸 of 13.90%, 𝑀𝐴𝐸 of $64.28/sf, and 𝑀ed. 𝐴𝐸 of $29.94/sf. On the other hand, the GB model outperformed the other models in the fourth metric with the lowest RMSE of $113.01/sf.


Phase 1: Bridge Data Collection
· Total Construction Cost
· Project Type
· Location Type
· Design Type
· Project Length
· Bridge Length
· Bridge Width
· Maximum Span Length
· Number of Spans
· Number of Lanes
· Beam Material
· Average Daily Traffic
· Mobility Impact Category

Phase 2: Data Preprocessing
· Predictor and Predicted Variables Identification
· Data Classification
· Data Cleaning
· Data Transformation
· Data Splitting

Phase 3: Model Development
· Selecting Machine Learning Algorithms
· Fitting Selected Algorithms to Training Datasets

Phase 4: Evaluation and Validation
· Evaluating Performance of Developed Models
· Validating Results Using Testing Datasets


[bookmark: _bookmark0]Figure 1. Development Phases of Machine Learning Models.
Task 2 progress [20% completed]. Last quarter, the research team started working on the second task that focuses on creating a novel multi-objective optimization model to identify optimal bridge construction planning decisions such as optimal size, number, transportation, and onsite installation of all bridge PC modules to maximize durability, safety, sustainability, and mobility while minimizing bridge life-cycle cost.
4. Percent of research project completed
60% of total project completed through the end of this quarter.


5. Expected progress for next quarter
In the next quarter, the research team will continue working on the second research task that focuses on developing multi-objective optimization Decision Support Tool (DST) for optimizing the construction decisions of PC bridges.
6. Educational outreach and workforce development
On April 22, 2024, the research team attended the first annual TRANS-IPIC workshop that was held at the Big Ten Office and Conference Center in Rosemont, IL to present their preliminary research findings and learn more about cutting-edge research for infrastructure PC construction, implementation, and maintenance process, as shown in Figure 2. Additionally, the research team actively participated in the TRANS-IPIC Monthly Webinars that were held online on May 13, 2024, and June 17, 2024.
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(a) The research team presen/ng their preliminary research ﬁndings at the ﬁrst TRANS-IPIC workshop
(b) 
The research team with a group of other researchers in the workshop


[bookmark: _bookmark1]Figure 2. The research team a=ending the ﬁrst annual TRANS-IPIC workshop in Rosemont, IL

7. Technology Transfer
The research team developed six different ML predictive models to estimate the construction cost of alternative bridge construction methods including conventional and precast concrete accelerated bridge construction methods. The research team will develop a plan for sharing the ML and optimization models that will be developed in this research project.
Research Contribution:
8. Papers that include TRANS-IPIC UTC in the acknowledgments section:
The research team submitted a paper titled “Comparison of Machine Learning Algorithms for Estimating Cost of Conventional and Accelerated Bridge Construction Methods During Early Design Phase” to the ASCE Journal of Construction Engineering and Management that is currently under review.
9. Presentations and Posters of TRANS-IPIC funded research:
The research team developed a poster presenting the preliminary results of their
TRANS-IPIC research that focuses on optimizing the planning of precast concrete bridge construction methods to maximize durability, safety, and sustainability (El-Rayes et al.
2024), as shown in Figure 3.
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[bookmark: _bookmark2]Figure 3. Poster presenJng the preliminary results of the TRANS-IPIC research (El-Rayes et al., 2024)OVERVIEW
· Significant percentage of the 617,000 US bridges are aging and in need of replacement.
US Bridges Needing Work By Type
US Bridges Condition(ARTBA, 2023)1
of Repair (FHWA, 2023)2
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· 2021 $1 Trillion Infrastructure Investment and Jobs Act includes $110 Billion for bridge rehabilitation/ replacement (White House, 2022)3.

PROBLEM STATEMENT
State DOTs need to optimize the use of these bridge investments to accomplish multiple objectives.
Construction Decision Variables
Construction Method
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OBJECTIVES
Objective 1
Develop predictive Machine Learning (ML) models to estimate construction cost of bridge projects during early design.
Objective 2
Create novel multi-objective optimization model to optimize impact of construction decisions on bridge projects during planning.
METHODOLOGY
Phase 1: Bridge Data Collection
· Total Construction Cost
· Construction Method
· Project Type
· Location Type
· Design Type
· Project Length
· Bridge Length
· Bridge Width
· Maximum Span Length
· Number of Spans
· Number of Lanes
· Beam Material
· Deck Material
· Average Daily Traffic
· Mobility Impact Category
Phase 2: Data Preprocessing
· Predictor and Predicted Variables Identification
· Data Classification
· Data Transformation
· Data Splitting (Training & Testing datasets)

Phase 3: Model Development
· Selecting Machine Learning Algorithms
(OLS, Lasso, Ridge, RF, GB, XGBoost)
· Fitting Selected Algorithms to Training Datasets

Phase 4: Evaluation & Validation
· Evaluating Performance of Developed Models
(R2, MAPE, training time, …)
· Validating Results Using Testing Datasets
ML MODELS PRELIMINARY RESULTS
XGBoost achieved highest
R-Squared
XGBoost achieved lowest
MAPE
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Machine Learning Models
Optimizing the Planning of Precast Concrete Bridge Construction Methods to Maximize Durability, Safety, and Sustainability
Khaled El-Rayes, Ernest-John Ignacio, Bassem Andrawes, and Hadil Helaly
t









Ridge Regression has fastest
training time


Ordinary Least Squares No need for GUI Lasso Regression	No need for GUI &
fewer required input
Ridge Regression	No need for GUI
Random Forest	Needs GUI
Gradient Boosting	Needs GUI Xtreme Gradient Boosting Needs GUI
Lasso Regression does not need GUI for integration in DST & requires least input data

CONCLUSIONS
Developed ML models enable DOT decision makers to accurately predict and compare construction cost of alternative bridge construction methods during early design phase to achieve specific project objectives.
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10. Please list any other events or activities that highlights the work of TRANS-IPIC occurring at your university (please include any pictures or figures you may have). Similarly, please list any references to TRANS-IPIC in the news or interviews from your research.
The following research paper was developed and submitted to the ASCE Journal of Construction Engineering and Management based on the completed research activities in this project. Helaly, H., K. El-Rayes, E.J. Ignacio, and H. J. Joan. (under review) “Comparison of Machine Learning Algorithms for Estimating Cost of Conventional and Accelerated Bridge Construction Methods During Early Design Phase.” Journal of Construction Engineering and Management, ASCE.
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