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1. Introduction 

 
Engineers of the future need be equipped with the culture and skills for a fast-changing and 
uncertain professional, socioeconomic and natural global environment. This need is fueled by 
rapid changes in science and technology and by pressures on societies to respond to emerging 
environmental crises and situations such as the recent pandemic. In the engineering classrooms, 
this translates into very high expectations on students and educators alike. Technology in the 
classroom has been used to help attain learning objectives, equip students with practical skills 
valued by employers, and link communities of learners. However, this diversity of learning and 
communication tools and information-rich learning environments can lead to cognitive overload. 
Cognitive load refers to the bandwidth of our working memory. Cognitive overload occurs when 
working memory demands exceed working memory capacity, causing learning and performance 
to suffer [1], [2].  Two types of cognitive load are mentioned in the literature intrinsic and 
extraneous [3]. Intrinsic cognitive load mostly affects students who are new to a subject and they 
have not yet constructed networks to connect ideas, theories, facts and figures. Extraneous 
cognitive load refers to factors not necessary for learning that can be altered by instructional 
interventions [3]. For example, extraneous cognitive overload can be caused by factors that make 
processing of information difficult, such as unclear course expectations, confusing LMS 
(learning management system) interface, poorly explained assignments, continuous switching of 
ICT (information and communication technology) tools, long pre-recorded lectures, inadequate 
online teaching methods, unnecessary distractions (e.g., provision of superfluous information or 
diverting attention to check something online) [4].  
 
Combating extraneous cognitive overload in courses that use computational tools (on physical or 
cloud platforms) is connected to usability of these tools. With reference to software systems, the 
term ‘usability’ has been broadly used to include execution time, performance, user satisfaction 
and ease of learning [5]. While older literature focused on software attributes, recent literature 
includes student and teacher user interaction, perceived usefulness and satisfaction. For example, 
in [6] six factors are identified that affect e-learning usability: information quality, system 
navigation, system learnability, visual design, instructional assessment, and system interactivity.  
 
In this presentation, we demonstrate the online environment we use in two second year civil and 
environmental engineering (CEE) courses that have enabled teaching computational thinking in 
the CEE context. We focus on an example approach for reducing extraneous cognitive overload: 
switching from the default in-class code developing and testing environment to one enabled 
recently in the learning platform that allows easy access to Jupyter workspaces [7] (JW). This 
presentation provides an example of technologies that enable teaching and learning of 
computation thinking regardless of class size. A demonstration class has been created on the ICT 



 

learning platform for readers who wish to have a hands-on experience with the tools we describe 
(see Appendix).   
 
2. Background and overview of tools and pedagogies we use 
 
Already before the pandemic, our departmental curriculum committee had been assembled as the 
primary community of practice (COP) to launch a department-wide curriculum innovation effort. 
Two second year CEE courses became the foundation for this effort. Curriculum innovation was 
launched with three major focal points: computational thinking, communication, and experiential 
learning. To make the changes scalable and sustainable, we created course-specific COPs among 
course instructors. Materials are developed as a result of coordinated efforts among these course 
specific communities of practice and the courses are taught the same way, no matter who teaches 
the course each semester, with continuously evolving materials and pedagogies across semesters. 
We also adopted a student-centered teaching model [8].  
 
We have previously presented our approach for integrating computational thinking with the 
fundamental content matter of our courses and for shifting to student-centered learning, along 
with cognitive and affective learning outcomes, after first implementation [9]. The two courses 
we initially redesigned cover introductions to (1) systems engineering and economics and (2) 
engineering risk and uncertainty. Both classes are offered every Fall and Spring semester. Python 
3 is used in the first course and R in the second. We chose these two coding languages, because 
they are currently prevalent but also considering coding language use in subsequent courses, as 
curriculum innovation efforts propagate to upper-level courses. We also intended to 
communicate to students that 1) computing literacy is more than the specific language used; 2) 
different tools are better suited for different applications; 3) different tools can work together, 
taking advantage of each tool’s strengths for a given application; 4) computer languages keep 
evolving, requiring everyone to adopt new tools using essential common background knowledge. 
 
Developing the learning online environments for the two courses is an evolving iterative process. 
A major guiding factor was the negligible coding experience of the vast majority of our 
incoming students. Therefore, user interface friendliness and simplicity (broadly included in the 
tool usability concept) are very important. The generalized steps we follow in choosing tools and 
teaching approaches are: 1) identification and articulation of learning objectives to prepare 
students for a rapidly changing physical, social and technological environment; 2) creation of an 
instructor community of practice for the specification of a strategic sustainable frame for action; 
3) consideration of the diversity of student backgrounds in our early (first and second year) 
courses; 4) research of pedagogies to enhance student engagement; 5) research of campus 
available learning tools to enable our teaching goals and learning objectives; 6) gradual 
development of educational materials; 7) adoption of a continuous learning, iteration, 
improvement process, as we keep learning from earlier implementations, using student survey 
feedback, student assessment results and our own classroom observations.  
 
Choice of LMS and ICT tools is important to support the sustainability of changes and to provide 
an appropriate environment for computational thinking practice and learning.  Specifically, our 
choice criteria for LMS and ICT included: 1) ability to support teaching of computational 
thinking and practice; 2) cost for use; 3) use by other courses our students take in earlier 



 

semesters or simultaneously. The latter is important for reducing student stress and confusion 
induced by use of multiple learning environments for different courses.  
 
Currently, we use Canvas [10] as a repository for course resource materials. Modules are 
organized by week, consistent with the syllabus, and contain study materials and links to 
assignments with reminders of due dates/times. We use Prairie Learn (PL) [11], an open source 
learning environment, to host pre-lecture videos, in-class worksheets, homework assignments 
and not-for grade practice homework problems. PL supports automatic and manual grading for a 
variety of problem types: multiple-choice, numeric, coding and symbolic. PL has been a major 
enabling factor of our efforts to introduce and create an accepting culture for computational 
thinking, among CEE students. It was also the essential enabling factor for the online shift of 
operations due to the COVID-19 pandemic.  
 
In our student-centered learning approach, students watch short pre-lecture videos and answer 
checkpoint questions. Then, in class, after an overview of the key concepts of the day, students 
work on problem solving, for understanding the new material at a deeper level. In class-
worksheets are made available on PL and as printable documents. Answers are submitted on PL 
for grading. In-class worksheets are formative assessments. Unlimited multiple attempts are 
allowed, and students get full credit as long as, they complete a certain percentage of the 
problems correctly. Solved worksheet problems become available on Canvas as study material, 
soon after class. Summative assignments comprise of weekly homeworks, exams and an 
assigned team project. Homework and exam problems are randomized to minimize cheating 
[12]. 
 
Here, we focus on the in-class student problem solving period. Our in-class worksheet approach 
is inspired by that described in [13] about self-regulated learning, even though we refer to a 
single class session with short problems rather than bigger projects. English and Kitsantas [13] 
distinguish three phases in the classroom environment: problem launch, guided inquiry/solution 
creation and problem conclusion that correspond to three student processing phases: forethought, 
performance and reflection, respectively.  
 
In our class implementation, in phase 1 (overview), students initiate an action plan for solving 
the problems using the tools made available to them. This is after the instructor presents a brief 
overview of the concepts students first learned about by watching the pre-lecture videos. The 
overview is a reminder and a lead to help students use that early knowledge to solve a problem. 
In phase 2 (problem solving), students arrive to a computationally assisted solution through 
careful reading of the problem, discussion with their teammates and experimentation that 
involves learning iteratively by erring, reasoning about where they erred and why, and finally 
correcting and arriving to the solution. At this stage, the instructor and TAs walk around the 
room or visit online breakout rooms, to provide prompts and answer questions but not to solve 
the problems for the students. In phase 3 (reflection – communication of ‘muddiest point’), the 
goal is for students to reflect on the materials and activities of the day about what they learned 
and about what remaining questions they have about the key concepts, the solution process or the 
tools they have available to help them solve a problem. Answers to muddiest point questions are 
posted on Canvas and the most common ones are discussed in the following class. 
 



 

In our initial implementation, using the default PL tools, we observed that students were 
struggling with organizing their laptop workspaces, despite our guidance about how to organize 
and manage their laptop screens. The workflow required that students needed to switch windows 
multiple times during class between the software on their laptops and the PL web browser 
window. A few students were vocal about these difficulties, while others were silently adjusting. 
It was apparent to us that even for the students who were accepting the original workflow as a 
fact of life, the need to manage multiple software and windows on a single class session was 
creating distraction and slowed down the learning process, becoming a cause of extraneous 
cognitive overload.  
 
3. Implementation of JWs and preliminary observations  

 
The addition of access to JW from inside PL enabled improved streamlining of in-class 
workflow for students. Use of JWs allows students to access their worksheets from a single 
browser window using two tabs. Students can complete, test and submit code for autograding 
just using these two tabs. In addition, the cloud environment offers independence from the laptop 
environment. This is another important consideration because student struggles with laptop 
specific issues that arise during class time detract from learning by shifting student attention to 
troubleshooting their machines. In the Appendix, we present instructions for interested readers to 
access an example and gain a sense of the student experience, while working on an in-class 
worksheet using PL. We provide two versions of the example, the ‘original’ one that requires 
availability of R/RStudio on one’s laptop to be able to submit and grade answers, and the 
‘improved’ workflow using PL JWs, where one needs only a browser to access PL.  
 
Next, we present early observations about student interactivity with the new approach using two 
metrics: duration for completing a worksheet and grade upon submission. We use duration as an 
indicator of workflow ease and grade as an indicator of learning. In Figure 1, we present these 
metrics for three worksheets across four semesters. The new approach was used in semester 4. 
Our data do not allow statistical evaluation, yet, but results are in the desired direction. Even 
though differences in duration and grade depend on the requirements and difficulty of questions 
in each worksheet, observationally, we note a general trend indicating reduced duration and 
higher grade, when JWs are used. We also surveyed the students in semester 4 asking the 
question “Please, indicate your preference about how you like the Jupyter Workspace questions 
we currently add to PL worksheets.” On a scale from 1 (I do not like) to 10 (I like best), 77% of 
students gave a rating of 6 or above, with 36% rating with 9 and above. 



 

Figure 1. Comparison of mean duration (a) from beginning of class until worksheet (WS) 
submission and grade (b), over four semesters. Worksheets using Jupyter Workspaces were used 
in semester 4.  

4. Discussion 

Introduction of computational thinking and practice in non-Computer Science majors presents 
challenges for instructors which include the development of discipline relevant materials and 
overcoming student resistance under the false perception that they do not need coding in their 
chosen discipline. This is particularly true for the classes that are the first to transition to a new 
teaching and learning environment. What we have witnessed is that these initial reactions fade 
after a couple of semesters of implementation [9], as student culture and expectations change. 
However, it is important to continue staying tuned and responsive to student perceptions and 
responses. When online learning platforms are used, ease of access and use are important for 
reducing student anxiety and extraneous cognitive load. It takes time to conclusively state the 
effectiveness of a given educational improvement effort, especially one where research, 
development and implementation occur simultaneously. At this stage, our example of an 
intervention aimed to reduce cognitive load appears to have a positive effect on optimizing 
student workflow and learning, during class, for CEE students.  

From the instructors’ perspective, staying responsive to student perceptions and responses, 
requires significant time commitment and increased workload. For example, our transition to 
JWs was hardly straightforward, as it first, required re-configuration of the PL R autograder, in 
addition to re-creating the PL questions. This seems to be a persistent issue, for teaching with 
technology because rapid technological advances reduce the lifetime of materials developed on 
learning platforms. This is beyond the scope of this presentation, but it is a challenge for the 
user-instructor communities, as well as for the platform developer communities. In addition to 
usability, as described in the beginning of the presentation, sustainability of learning platforms 
needs become an important consideration, with consideration to the instructor user of the 
platforms. Nevertheless, what we have learned from this effort is that use of cloud learning 
environments during class offers advantages such as, ease of access, student team collaboration, 
and simplification of student workflows. This works well for in-person, online, or hybrid types 
of courses and is scalable for all class sizes.  
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Appendix. Instructions for accessing the demo course 

1. Go to https://www.prairielearn.org/ . 
2. Click ‘Log in’. 
3. Sign in with a Google or Microsoft account. 
4. Once logged in, click on ‘Add or remove courses’. 
5. In the course list, find ‘CEE 201/202DM: CEE201/202 demo course, CEE 201-

202 Demo’ and click ‘Add course’. In the popup window confirm the addition.  
6. Hit the browser back button to go to the first PL page you landed, after login. You 

will see the course listed.  
7. Hit the course link and you will then be able to access and explore the demo 

assignments we have created.  
8. Click Assignments in the top menu to see the example assignments listed and just 

follow the instructions. 
9. For your convenience with testing, the complete code for the example problems is 

available on PL to copy/paste and submit for grading, so that you gain the full 
experience of using the platform.  
 

Notes:  
We have created two versions of the same assignment, one using the default PL environment and 
the other using the Jupyter Workspace (JW) option. 
 
In the default version, users not familiar with R will not be able to produce the graph files. The 
graphs can be produced in the R or RStudio [14] environment, be saved in an appropriately 
named .pdf file and uploaded to PL, where then they need to be checked by the instructor 
manually, after class. This is an inconvenience that is eliminated, when we use JWs. In the JW 
version, coping/pasting the code we provide and running each cell sequentially will provide both 
numerical and graph output. In JW the graphs are also autogradable through testing for the 
values of the variables that are plotted. 
 
 


