

Single Cell & Spatial Transcriptomics

Yan Asmann, PhD

Associate Professor of Biomedical Informatics Department of Quantitative Health Sciences Mayo Clinic, Jacksonville Florida

Outline

Lecture

- NanoString spatial omics platforms
- Case study in Non-Small Cell Lung Cancer (NSCLC)
- Introduction to pseudo-bulk scRNA analyses

Lab (self-paced)

- Multi-sample scRNA analyses
- Pseudo-bulk scRNA analyses
- Lab material preparation: Zach Fogarty and Clark Ikezu

Introduction to NanoString Spatial Platforms

GeoMx Digital Spatial Profiler (DSP): High resolution (10 microns)
 CosMx Spatial Molecular Imaging (SMI): True single cell resolution

GeoMx Digital Spatial Profiler (DSP):

- Select distinct tissue compartments or cell types
- Use micromirrors to expose the ROI to UV
- Release barcodes for quantification

GeoMx Digital Spatial Profiler (DSP):

Full spatial ROI transcriptome: The GeoMx Human Whole Transcriptome Atlas (18,000+ protein-coding genes)

- Readout tag sequence identifier (RTS ID): biological targets
- Unique molecular identifier (UMI): identify PCR artifacts
- SPR: sequencing primers

- i5/i7: uniquely identifies ROI
- P5/P7: binding to Illumina flowcell
- P5/P7: PCR primers

GeoMx NGS Pipeline

GeoMx Digital Spatial Profiler Summary

- Pseudo-spatial: via selection of ROIs
- Resolution: 10 microns
 - ✓ cell size: 10-20 microns in diameter
 - ✓ not conducive to single-cell analysis: need at least 20-300 cells per ROI for reliable quantification of transcripts
- Throughput: full transcriptome, plus more targeted panels
 - ✓ cancer transcriptome atlas (>1800 RNAs)
 - ✓ TCR profiling add-on

CosMx Spatial Molecular Imaging (SMI): True Single Cell Resolution, True Spatial

Subcellular

 \sim 50 nm in the XY plane

10um

In Situ Chemistry: protein, RNA

Z-stack of multi-channel tissue images

Subcellular Resolution

100um

Single-cell

GeoMx vs. CosMx

Spatial-omics for Every Spatial-scale										
	Automated, FF Multiomic (RNA + F									
	GeoMx Digital Spatial Profiler	Spatial	osMx Indecular Imager							
	Whole Transcriptome High Throughput	Single-Cell Resolution								
	Multi-cellular Large Dynamic Range Differentiation Between Samples	High Multiplexing Comprehensive Map Cell Type								
	ROIs barcodes released from tissu	e In-situ measuremer	nts							
		emaner target parte								

Figure from Nanostring

CosMx SMI chemistry and workflow

- in situ hybridization (ISH) probes
 - ✓ Target binding domain (30-50 nt)
 - ✓ Read out domain (60-80 nt)
 - ✓ 4 consecutive 10-20 nt sequences that are individual landing sites of 4 reporter probes
- fluorescent readout probes called reporters
 - ✓ photocleavable sites to remove reporters (★)
 - $\checkmark\,$ The reporter landing domain still occupied after PC

detect RNAs in intact tissue

✓ 5 ISH probes are designed per gene to detect different regions of the RNA target,

CosMx SMI chemistry and workflow

Watch Nanostring University Video

CosMx SMI chemistry and workflow

- Every gene has a 16-digit binary barcode (with four 1s, and 12 0s)
- with Hamming distance 4 (HD4): every barcode is separated by an HD of at least four from all other barcodes to maximally suppress RNA decoding error.
- Images will localize a gene in a cellular/subcellular location

MAYO

CLINIC

CosMx SMI: 3D RNA localization

Optical Z-stacks: number of Z-stacks can be different between experiments.

CosMx SMI chemistry and workflow: RNA vs. Protein

Protein Barcode Chemistry

- Each antibody has a specific linker with a readout domain
- Protein chemistry is similar, but with a single readout domain for a single-color reporter to quantify a protein target

CosMx Spatial Molecular Imaging (SMI): Lab Workflow

Accurate cell segmentation is challenging:

- <u>Heterogeneous Shapes</u>: nearly impossible to define mathematical shape models.
- <u>Variation in Size and Shape</u>: Unlike nuclei, the cytoplasm exhibits significant variations in shape and size.
- <u>Weak Boundary Gradients</u>: Cells that are in close proximity can have weak boundary gradients
- <u>Makeshift Nature of Segmentation Approaches</u>: dataset constraints, including differences in staining or imaging modality, artifacts in image capture, or morphological differences.

Consequence of minor segmentation error

- Tumor mRNA
- T-cell mRNA
- Segmentation boundaries

Ο

Tumor mRNA falsely attributed to T-cell after mild segmentation errors. Precise cell segmentation is the most important parameter when determining data accuracy. An imager's ability to identify accurate cell boundaries to minimize segmentation errors provides the confidence to draw biologically impactful conclusions from your spatial data.

- cell membrane and morphology marker protein images
 - ✓ a nuclear dye (DAPI)
 - ✓ Protein markers: Membrane (CD298), epithelial cells (PanCK), and T cells (CD3), ...
- machine-learning augmented cell segmentation (Cellpose neural network models)
- transcript-based segmentation refinement

Most genes/transcripts have a cell assignment

©2019 MFMER | Slide-19

Data

- A table per FOV: genes, counts, cell ID, annotation
- A Seurat object: for analytics similar to those of single cell RNA-Seq (cell typing, U-map, differential expression, etc.)
- Nanostring AtoMx Pipeline: inspection of images, QC etc.

CosMx Spatial Omics: an example in NSCLC

Category	Total*	Lung 5_rep 3	Lung 5_rep 4	Lung 5_rep 5	Lung 6	Lung 9_rep 1	Lung 9_rep 2	Lung 12	Lung 13
Tissue type	FFPE human lung	FFPE human lung	FFPE human lung	FFPE human lung					
Panel	980 plex	980 plex	980 plex	980 plex					
Number of slides analyzed	8	1	1	1	1	1	1	1	1
Total tissue area analyzed (μm^3)	753,480,217	97,014,620	97,014,620	97,014,620	97,014,620	<mark>64,676,41</mark> 3	145,521,930	90,546,979	64,676,413
Number of Field of Views (FOVs)	233	30	30	30	30	20	45	28	20
Total number of cells	800,327	100,292	106,660	100,264	93,795	91,972	150,504	73,997	82,843
% Cells passed QC (≥ 20 transcripts)	96.1	94.7	99.3	97.6	96.2	95.3	92.8	96.6	98.1
Number of cells analyzed	769,114	94,977	105,903	97,898	90,193	87,677	139,713	71,489	81,286
Transcripts detected	262,649,897	36,505,900	42,342,772	31,583,902	35,952,059	26,404,493	33,597,576	26,074,273	30,188,922
% of transcripts assigned to cells	79.2	81.7	83.3	82.1	80.9	85.7	71.2	69.1	77.7
Cellular transcripts/µm ³	0.446	0.523	0.59	0.456	0.423	0.456	0.28	0.393	0.547
Mean transcripts/cell	260	297	331	259	310	246	159	244	283
Mean negatives/cell/target	0.0429	0.0323	0.0611	0.0283	0.0238	0.0415	0.0412	0.076	0.0463
Genes detected	850	874	763	865	849	805	724	629	736
% Genes detected	88.5	91.0	79.5	90.1	88.4	83.9	75.4	65.5	76.7
Mean false call/cell/target	0.0092	0.0058	0.0096	0.0076	0.0100	0.0105	0.0083	0.0090	0.0144

Data Size: per FOV: ~2GB (233 FOVs: 466 GB) 5 patients, 8 samples

He S, et al. Nat Biotechnology. 2022, 40(12):1794-1806.

Cell Typing:

- Similar to scRNA-Seq's cell typing
- Challenges: 1000 RNA targets only, may not be sufficient for cell typing of all cells

 1000 RNA targets were partially optimized for cell typing
 de novo clustering without assigning cell types?
- Cell typing + spatial information

B/T Cells colocalization

cell neighborhoods: from spatial information

For every cell, the nearest K neighbors are identified, and a summary of those neighbors is recorded (e.g., abundance of each cell type or # of cells in each cell type) \rightarrow matrix of cells and neighborhood characteristics (project-specific, e.g., average gene expression profiles within specific cell types).

UMAP illustration of the neighborhood matrix: of all cells, all FOVs, across all samples (769,114 cells)

Biological questions that can be answered by neighborhoods or niches

Changes of gene expression in macrophages between niches in Lung 6

Does a cell type change expression in response to neighbors?

Interactions between Tumor and T-cells

LR pairs

Distribution of ligand-receptor pairs between 980 RNA targets: including many tumor-immune interface pairs

An average score was calculated for each LR pair.
 Each average score was tested to determine whether it was enriched by the spatial arrangement of cells within the adjacency matrix: producing a null distribution of simulated average scores calculated using randomized adjacency networks.

Interactions between Tumor and T-cells

PD-L1 binds to PD-1 and inhibits T cell killing of tumor cell

PD-L1/PD-1 (CD274/PDCD1): Low interaction in Lung 6, higher in Lungs 5, 13, 9, 12

CosMx SMI Summary

MAYO CLINIC

- Spatial at true single cell resolution
- Biggest challenge: cell segmentation (foundation of all analyses)
- Throughput:
 - ✓ Current: ~1000 RNA
 - ✓ Future: full transcriptome (>18K genes, 2025)

Clinical Application of spatial transcriptomics

- Mulholland EJ, et al., Redefining clinical practice through spatial profiling: a revolution in tissue analysis. Ann R Coll Surg Engl. 2024;106(4):305-312.
- Zhang L, et al., Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther. 2022;7(1):111
- Hu W, et al. Spatial transcriptomics in human biomedical research and clinical application. Curr Med 2, 6 (2023).

Clinical Application of spatial transcriptomics

Immunotherapy

- Activate patient's own immune system
- Hot tumors are more likely to respond to immunotherapy
- e.g., lung 6 vs. others

Tumor immune phenotypes and immunotherapy outcome

Multi-Sample and Pseudo Bulk Analyses of scRNA data (Lab)

Murphy, A.E., Skene, N.G. *A balanced measure shows superior performance of pseudobulk methods in single-cell RNA-sequencing analysis. Nat Commun* **13**, 7851 (2022).

Zimmerman, K.D., Espeland, M.A. & Langefeld, C.D. *A practical solution to pseudoreplication bias in single-cell studies.* Nat Commun **12**, 738 (2021).

Squair, J.W., Gautier, M., Kathe, C. *et al. Confronting false discoveries in singlecell differential expression. Nat Commun* **12**, 5692 (2021).

Why Pseudo Bulk: *pseudo-replication bias in single cell transcriptome analyses*

- Cells from the same individual share common genetic and environmental backgrounds and are not statistically independent; therefore, they are subsamples or pseudo-replicates
- Thus, single-cell data have a hierarchical structure that many current single-cell methods do not address, leading to biased inference, highly inflated type 1 error rates, and reduced robustness and reproducibility.
- Example: differential express between two groups of cells
 - ✓ 2000 cells vs. 5000 cells (e.g., tumor cells between two group of patients, or tumors between different regions)
 - ✓ LARGE sample size (2000 vs. 5000) \rightarrow extremely SMALL p values (inflated)
- Pseudo Bulk: A pseudo-bulk sample is formed by aggregating the expression values from a group of cells from the same individual (counter-intuitive?)

"Gold Standard" Data Sets:

matched bulk and scRNA-seq performed on the same population of purified cells, exposed to the same perturbations, and sequenced in the same laboratories.

18 data sets from 4 publications

Squair, J.W., Gautier, M., Kathe, C. et al. Confronting false discoveries in single-cell differential expression. Nat Commun 12, 5692 (2021).

Comparison of fourteen DE methods

AUCC of GO term enrichment

The most frequently used DE methods from 500 scRNA papers

Area under the concordance curve (AUCC): concordance between bulk and scRNA DE measurements

Alternatives to Pseudo-bulk Approaches

"... that pseudo-bulk aggregation methods are conservative and underpowered relative to mixed models. To compute differential expression within a specific cell type across treatment groups, we propose applying **generalized linear mixed models** with a random effect for individual ..."

Zimmerman, K.D., et al., A practical solution to pseudoreplication bias in single-cell studies. Nat Commun **12**, 738 (2021).

NOTE: a 2022 Nature Communications paper supports the superior performance of pseudo-bulk approaches