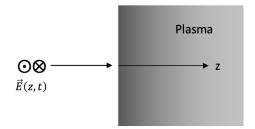
Q2 Consider a model of the ionosphere as an electrically neutral ideal gas of ions and electrons with electron number density n per cubic meter. A plane electromagnetic wave of angular frequency ω and polarized along the x-direction is traveling along the z-direction. It is incident on the plasma which fills the half-space $z \ge 0$.



Assume that the ions remain stationary and treat the electrons as a gas of mobile, non-interacting, classical particles with mass m and charge -e. Take the physical fields to be the real parts of complex quantities **E**, **D**, **B**, **H** and **J** that are $\propto \exp\{i(kz - \omega t)\}$.

- a) Find the frequency-dependent complex conductivity $\sigma(\omega)$ defined by $\mathbf{J} = \sigma(\omega) \mathbf{E}$.
- b) Use your result from part (a) to derive a wave equation for $E_x(z,t)$. From it show that the dispersion equation for transverse waves in the plasma is $\omega(k) = \sqrt{a^2k^2 + \omega_p^2}$. You should find expressions for both a and the *plasma frequency* ω_p^2 in terms of n, e, m and other physical constants.
- c) What are the boundary conditions on \mathbf{E} , \mathbf{D} , \mathbf{B} , and \mathbf{H} at z = 0?
- d) Use your expression for $\omega(k)$ and your boundary conditions from part (c) to compute the magnitude of the reflection coefficient $R = |E_{\text{reflected}}/E_{\text{incident}}|$ when $\omega \leq \omega_p$ and $\omega > \omega_p$.
- e) Now consider oscillations of the plasma with the *E* field polarized *par-allel* to the direction of the wave. Show that for such waves $\omega = \omega_p$ for all *k*. (You may use your previous result for the conductivity.)