$\mathbf{Q3}$ A positron of mass m and charge +e interacts with a magnetic field **B** through the Hamiltonian

$$\hat{H} = -\frac{e}{m}\hat{\mathbf{S}}\cdot\mathbf{B}(t),$$

where $\hat{\mathbf{S}} = (\hbar/2)(\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z)$, and the $\hat{\sigma}_i$ are the Pauli matrices

$$\hat{\sigma}_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \hat{\sigma}_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \hat{\sigma}_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

a) Given a Schrödinger-picture state $|\psi(t)\rangle$ that evolves under \hat{H} , show that the vector of expectation values

$$\mathbf{S}(t) = (\langle \psi | \hat{S}_x | \psi \rangle, \langle \psi | \hat{S}_y | \psi \rangle, \langle \psi | \hat{S}_z | \psi \rangle),$$

obeys

$$\frac{d\mathbf{S}(t)}{dt} = \alpha \mathbf{S}(t) \times \mathbf{B}(t), \quad (\star)$$

where α is a constant that you should find.

- b) In the Heisenberg picture the time-independent $\hat{\mathbf{S}}$ is replaced by a timedependent operator $\hat{\mathbf{S}}(t)$. Show that $\hat{\mathbf{S}}(t)$ obeys an operator equation of similar form to (\star) , and from it show that the vector of expectation values $\mathbf{S}(t)$ still obeys (\star) .
- c) Suppose the Schrödinger-picture state $|\psi(t)\rangle$ at t = 0 is described in the eigenstate basis of $\hat{\sigma}_z$ by

$$\langle +1|\psi\rangle = \cos(\theta/2), \quad \langle -1|\psi\rangle = e^{i\phi}\sin(\theta/2).$$

Compute the vector $\mathbf{S}(t=0)$ and explain the relation of the parameters θ , ϕ to the direction of the spin.

d) Let **B** vary linearly with time so $\mathbf{B}(t) = (0, 0, Ft)$ where F is constant. Given the initial state from part (c), find $|\psi(t)\rangle$ and hence $\mathbf{S}(t)$. Does it satisfy (\star) from part (a)?