Q3 A positron of mass m and charge $+e$ interacts with a magnetic field B through the Hamiltonian

$$
\hat{H}=-\frac{e}{m} \hat{\mathbf{S}} \cdot \mathbf{B}(t)
$$

where $\hat{\mathbf{S}}=(\hbar / 2)\left(\hat{\sigma}_{x}, \hat{\sigma}_{y}, \hat{\sigma}_{z}\right)$, and the $\hat{\sigma}_{i}$ are the Pauli matrices

$$
\hat{\sigma}_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \hat{\sigma}_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \hat{\sigma}_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

a) Given a Schrödinger-picture state $|\psi(t)\rangle$ that evolves under \hat{H}, show that the vector of expectation values

$$
\mathbf{S}(t)=\left(\langle\psi| \hat{S}_{x}|\psi\rangle,\langle\psi| \hat{S}_{y}|\psi\rangle,\langle\psi| \hat{S}_{z}|\psi\rangle\right)
$$

obeys

$$
\frac{d \mathbf{S}(t)}{d t}=\alpha \mathbf{S}(t) \times \mathbf{B}(t)
$$

where α is a constant that you should find.
b) In the Heisenberg picture the time-independent $\hat{\mathbf{S}}$ is replaced by a timedependent operator $\hat{\mathbf{S}}(t)$. Show that $\hat{\mathbf{S}}(t)$ obeys an operator equation of similar form to (\star), and from it show that the vector of expectation values $\mathbf{S}(t)$ still obeys (\star).
c) Suppose the Schrödinger-picture state $|\psi(t)\rangle$ at $t=0$ is described in the eigenstate basis of $\hat{\sigma}_{z}$ by

$$
\langle+1 \mid \psi\rangle=\cos (\theta / 2), \quad\langle-1 \mid \psi\rangle=e^{i \phi} \sin (\theta / 2) .
$$

Compute the vector $\mathbf{S}(t=0)$ and explain the relation of the parameters θ, ϕ to the direction of the spin.
d) Let \mathbf{B} vary linearly with time so $\mathbf{B}(t)=(0,0, F t)$ where F is constant. Given the initial state from part (c), find $|\psi(t)\rangle$ and hence $\mathbf{S}(t)$. Does it satisfy (\star) from part (a)?

