O so that it may rotate without friction in a horizontal plane. A thin rod of mass M and length l slides without friction in the tube.

a) Start by calculating the moment of inertia I of the thin rod about its center of mass.
b) Use your result from part (a) to find the Lagrangian for this system. Use coordinates in which r is the distance of the center of mass of the rod from the pivot point and θ is the angle through which the tube (and hence the rod) has rotated.
c) Find the two Euler-Lagrange equations that determine $r(t)$ and $\theta(t)$ for this system. Hint: One of the equations can be written as a conservation law $d(f(r, \dot{\theta})) / d t=0$ for some quantity $f(r, \dot{\theta})$.
The rod is initially centered over the pivot (ie. $r=0$) and the tube is rotating with angular velocity ω_{0}. We wish to show that this situation is unstable to small perturbations.
d) Show that for very small r the equation of motion is approximately $\ddot{r}=\Omega^{2} r$, where Ω is real. Determine Ω and deduce that any initially small displacement from $r=0$ will grow rapidly.
e) What are the radial and angular velocities after a long time? Assume that the tube is long enough so that the rod remains inside.

