UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

The Grainger College of Engineering Materials Research Laboratory

Can AFMs be more accurate and precise?

New interferometric detection system for tip displacement sensing

Ted Limpoco, PhD

B. Ohler, J. Li, R. Proksch, A. Labuda, J. Lefever Oxford Instruments Asylum Research Concord, MA o June 2024

Advanced Materials Characterization Workshop University of Illinois, Urbana-Champaign

Innovation through NEW products

AFMs = high resolution visualization

AFMs visualize surface topography... down to atoms

- Sharp stylus (vs. light, electrons)
- Vertical resolution (z-noise <15 pm)
- Lateral resolution (tip radius <10 nm)

Graphite lattice

1-5 nm scan (contact mode - current image)

Calcite point defects 10 nm scan (tapping mode in liquid)

AFM = high resolution visualization

Asylum Research pioneered closed-loop scanners, which revolutionized scan accuracy Asylum Research also developed the **lowest noise position sensors**, improving AFM scanner position

How is topography obtained?

- In contact mode, the height feedback loop looks at deflection
- When an AFM tip is rastered across the surface, cantilever **deflection** changes when the tip encounters variations in topographic slope.
- The height feedback loop adjusts the tip z-position to keep deflection at setpoint, i.e., to maintain a constant loading force
- The actuating voltage to adjust (extend/retract) the z-piezo therefore tracks topography.

How is deflection detected?

Optical beam detection (OBD)

How did we get OBD?

How did we get OBD?

Interferometric AFM

Martin, Y., Williams, C. C. & Wickramasinghe, H. K. J. Appl. Phys. 61 4723 (1987)

Several early AFM designs used interferometric sensing

How did we get OBD?

Meyer, G. & Amer, N. M. Appl Phys Lett 53, 1045–1047 (1988)

Why did OBD become the default?

Early interferometric AFMs had issues...

1987 light usable linear peak/trough source Interferometric AFM signal range reference no signal mirror beamsplitter LASER PROBE QUARTER detector reference NeLASER beam BEAM COLL objective cantilever displacement DETECTION measurement 0 ELECTRON ₩₀ 72 kHz beam DISPLAY cantilever We can't get to 88 mph for time displacement!!! Limited measurement range Poor low-frequency noise / drift Complex to build and use

Revisiting interferometric detection

Cypher IDS: interferometric detector demonstrating benefits for piezoresponse force microscopy (PFM). But still poor low-frequency noise...

© Oxford Instruments Asylum Research Inc.

30 years

later...

New in 2023: AFM with QPDI detector

 Fall MRS
 Vero: first AFM to use quadrature phase differential interferometry (QPDI) detector.

 2023
 So what is different about QPDI?

Quadrature phase differential interferometry (QPDI)

"Quadrature Phase" Two interferometric signals are generated, where the second has a 90° phase delay with respect to the first... a bit like running two interferometers in parallel

<u>Benefit</u>: QPDI can measure very large displacements and do so while maintaining optimal noise performance

"Differential" Instead of using a remote reference mirror, the back of the probe substrate acts as the reference, i.e., <1 mm from the AFM tip

Benefit: QPDI has dramatically better lowfrequency noise and drift

Vero: very accurate and very precise

- Vero is a next-generation AFM family from Oxford Instruments Asylum Research
- Vero uses Quadrature Phase Differential Interferometry (QPDI) to produce more accurate and precise AFM results
- Vero builds on the ultra-high performance, stability, and capabilities of Cypher AFMs

Accuracy and precision

Five key benefits

Five key benefits

Vero measures true tip displacement

Optical beam deflection (OBD)

- OBD measures cantilever angular changes
- Angular changes must be converted into displacement
- Conversion value (optical lever sensitivity or "InvOLS") is dependent on many factors (e.g., spot position, spot size, cantilever length, etc.)

Quadrature phase differential interferometry (QPDI)

- Vero QPDI measures **tip displacement** directly
- "InvOLS" is a fixed constant (510 nm/V)

You can't solve OBD errors with better calibration

QPDI Tip Displacement

QPDI measures tip displacement

- All angular changes are interpreted as tip displacement
- But lots of things can affect cantilever bending besides tip displacement

• No tip displacement detected even when there is cantilever bending

When does this happen?

Piezoresponse force microscopy

• Amplitude is related to the magnitude of the bias and the "effective" vertical piezo coefficient, $(d_{\rm eff})$

PFM $d_{
m eff}$ values range from 0.1 pm/V to 500 pm/V

• **Phase** gives directional information, i.e., domain polarization:

Accurately removes tip-sample friction

0 pm

Periodically poled lithium niobate (PPLN)

- Patterned with up and down domains
- Same material but oppositely polarized
- Magnitude of piezoresponse should be the same

• Tip-sample friction contributes to cantilever bending

• OBD shows inaccurate variation in amplitude of piezoresponse, as well as variation with scan angle

0 pm

- Due to variable in-plane forces from friction
- QPDI detection not affected by tip-sample friction

Accurately removes electrostatic effects

- During PFM, drive bias can drive the cantilever via **electrostatic forces**
- Soda lime glass, though not ferroelectric, can exhibit cantilever oscillation if...
 - OBD is used (measures cantilever angle)
 - $\circ~$ QPDI is used if spot isn't over the tip
- PFM with QPDI unaffected if spot is over tip

QPDI SS-PFM on soda lime glass

Five key benefits

Accurately removes in-plane piezoresponse

- Many piezoelectric materials exhibit both inplane and out-of-plane response
- PFM response on BFO (100) has both in-plane and outof-plane response

PFM on bismuth ferrite (BiFeO₃ or "BFO")

OBD (inaccurate)

Vero QPDI (accurate)

- Crosstalk of in-plane response into vertical response
 - OBD-based PFM claims to distinguish between vertical and lateral response, but in-plane tip-sample forces couple into the vertical deflection
- QPDI vertical response unaffected by in-plane forces

Accurately removes in-plane piezoresponse

OBD (inaccurate)

PFM on erbium manganese trioxide (ErMnO₃)

- Crosstalk of in-plane response into vertical response
 - Red outline highlights grains that have mostly in-plane response.
 - Blue outline highlights grain with out-of-plane response.
 - In plane response is visible in OBD (artifact) but not in QPDI.
- Note: DART used in OBD to accentuate signal

Vero QPDI (accurate)

Five key benefits

© Oxford Instruments Asylum Research Inc.

Accurately calibrates spring constants

- With OBD, **10-20% error** in cantilever spring constant calibration is typical.
- Vero's built-in interferometer and direct measure of tip displacement reduces this error.
- Sensitivity (InvOLS) is fixed by the wavelength of light used (510 nm/V)

Vero QPDI spring constant calibrations agreed with NIST SItraceable values **to within 1%**

Accurately removes buckling in force curves

- Force curve on a hard surface:
 - Extend and retract curves should be linear and overlap if there's no indentation
 - Tip slides and pivots during contact
- Tip-sample friction can cause **bucking** that results in cantilever angular change
 - OBD interprets this as tip displacement, resulting in hysteresis at the turnaround
 - Pivoting of the tip does not change its vertical displacement, so QPDI signal is not affected
 - Tip "plowing" is real and probably affects indentation, but it shouldn't appear in the force curve

Five key benefits

Detector with the lowest noise floor

OBD

- Noise floor depends on cantilever size vs. spot size
- Best case: ~25 fm/√Hz if carefully optimized, but usually 200-500 fm/√Hz

QPDI

- Noise floor does not depend on cantilever size vs. spot size
- Consistently <10-20 fm/rtHz above 20 kHz regardless of cantilever or spot size
- Actual **detector noise** can be measured at the base
- So signal at the tip is actual **sub**resonance thermal motion
- This means what we are seeing is thermally limited motion even for stiffest levers

Adama AD-2.8-AS probe (w ~ 35 μm, l ~ 225 μm, f ~ 65 kHz, k ~ 2.8 N/m)

© Oxford Instruments Asylum Research Inc.

Precisely measure low-response material

- HfO₂ is uniquely compatible with Si and can be naturally integrated in logic and memory devices
- Processing into thin films is key to transforming HfO₂ into its ferroelectric crystalline state
- Vero clearly resolves piezoelectric domains in hafnia even though the response is <2 pm/V
- Identical settings used for these two images. Only difference is detector type (OBD vs QPDI)
- DART or HV but will not work on samples with low breakdown or coercive voltage

Technique: single-frequency PFM at 30 kHz, 2 V drive amplitude, and 290 nN setpoint

PFM on hafnia (HfO₂)

Precisely measure low-response material

PFM on erbium manganese trioxide (ErMnO₃)

- Identical settings used for these two images. Only difference is detector type (OBD vs QPDI)
- Vero clearly **resolves piezoelectric domains** which highlights much lower noise floor of the QPDI detector
- DART (resonance amplification) an option, but may still contain artifacts

Vero QPDI (strong signal)

On-resonance vs. Off-resonance PFM

Precisely measure tBLG moiré

- Varying the relative rotation (or twist angle) alter their electronic properties
- tBLGs can either be superconductors or correlated insulators within a narrow range of "magic" angles around 1.1 degrees.
- Moire pattern typically not observed in topography so other contrast mechanisms used (LFM, PFM)
- Owes to the low noise floor of Vero
- What else can Vero potentially see?

Twisted bilayer graphene (tBLG) moiré

COBD (weak signal)

Vero QPDI (strong signal)

Five key benefits

Precisely quantify Sc doping in AIN

- AIN (a piezoelectric material) is used in **acoustic** resonators in wireless devices
- Many advantages, e.g., compatible with high temperature, CMOS processing, etc.
- But has low piezoresponse (6 pm/V)
- Alloying AIN with Sc increases response by up to 4x
- **Processing needs to be optimized**, e.g., balanced with defects at higher Sc concentrations
- Requires good correlation with Sc levels and piezoresponse to evaluate processing
- Vero QPDI results show both more precise measurements (narrower distributions) and more repeatable measurements (peaks tightly clustered) compared to OBD

PFM of scandium aluminum nitride (ScAIN)

Piezoelectric Coupling Coefficient [pm/V]

Technique: single-frequency PFM at 30 kHz, 1-5 V drive amplitude, and 290 nN setpoint

QPDI improves AFM accuracy and precision

Accuracy (systematic errors)

- Measurement artifacts
 - Electrostatic artifacts in PFM measurements

• Pivoting or buckling of tip

during force curves

- Calibration errors
 - Error in INVOLS calibration (aka deflection sensitivity)
 - Error in spring constant calibration

Precision (random errors)

- Measurement noise
 - Noise in OBD deflection signal

- Dependence of noise on cantilever
- Calibration repeatability
 - User variability in INVOLS calibration

Thank You! Questions???

