

Rutherford Backscattering Spectrometry

Timothy P. Spila, Ph.D.

Sr. Research Scientist

Materials Research Laboratory MRL.Illinois.edu University of Illinois at Urbana-Champaign

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

GRAINGER ENGINEERING

Geiger-Marsden Experiment

Top: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed.

Bottom: Observed results: a small portion of the particles were deflected, indicating a small, concentrated positive charge.

Rutherford Backscattering Spectrometry

RBS is an analytical technique where high energy ions (~2 MeV) are scattered from atomic nuclei in a sample. The energy of the back-scattered ions can be measured to give information on sample composition as a function of depth.

Van de Graaff accelerator

http://archive.thedailystar.net/newDesign/print_news.php?nid=73473

Rutherford Backscattering Spectrometry

3 MeV Pelletron accelerator

beam size ϕ 1-3 mm flat sample can be rotated

Ι

NEC Pelletron

- Ionization chamber
- Acceleration tube
- Focusing quadrupole
- Steering magnet
- RBS end station

- Ionization chamber
- Acceleration tube
- Focusing quadrupole
- Steering magnet
- RBS end station

- Ionization chamber
- Acceleration tube
- Focusing quadrupole
- Steering magnet
- RBS end station

- Ionization chamber
- Acceleration tube
- Focusing quadrupole
- Steering magnet
- RBS end station

- Ionization chamber
- Acceleration tube
- Focusing quadrupole
- Steering magnet
- RBS end station

Primary Beam Energy

thin film projected on to a plane: atoms/cm²

 $(Nt)[at/cm^2] = N[at/cm^3] * t[cm]$

Figure after W.-K. Chu, J. W. Mayer, and M.-A. Nicolet, *Backscattering Spectrometry* (Academic Press, New York, 1978).

Elastic Two-Body Collision

^{© 2024} University of Illinois Board of Trustees. All rights reserved.

Rutherford Scattering Cross Section

Coulomb interaction between the nuclei: exact expression -> quantitative method

$$\sigma_{R}(E,\theta) \propto \left(\frac{Z_{1}Z_{2}}{4E}\right)^{2} \left[\sin^{-4}\left(\frac{\theta}{2}\right) - 2\left(\frac{M_{1}}{M_{2}}\right)\right] \propto \left(\frac{Z_{2}}{E}\right)^{2}$$

Electron Stopping

Figure after W.-K. Chu, J. W. Mayer, and M.-A. Nicolet, *Backscattering Spectrometry* (Academic Press, New York, 1978).

RBS – Simulated Spectra

hypothetical alloy $Au_{0.2}In_{0.2}Ti_{0.2}AI_{0.2}O_{0.2}/C$

Element (Z,M): O(8,16), Al(13,27), Ti(22,48), In(49,115), Au(79,197)

Calibration Sample

SIMNRA Simulation Program for RBS and ERD

Ι

Cu-Nb-W Alloy on SiO₂/Si

© 2024 University of Illinois Board of Trustees. All rights reserved.

Courtesy N. Vo and R.S. Averback

Thickness Effects

Incident Angle Effects

Surface peaks do not change position with incident angle

I. Petrov, P. Losbichler, J. E. Greene, W.-D. Münz, T. Hurkmans, and T. Trinh, *Thin Solid Films*, 302 179 (1997)

RBS: Oxidation Behavior

30

Experimental spectra and simulated spectra by RUMP

- Free-standing polyamide films are too thin to give sufficient signal in the RBS.
- Use the added stopping power of the polymer to split the Pt peak in the RBS spectrum.

^{© 2024} University of Illinois Board of Trustees. All rights reserved.

Areal mass density by RBS

JM Dennison, X Xie, CJ Murphy, DG Cahill - ACS Applied Nano Materials, 2018

© 2024 University of Illinois Board of Trustees. All rights reserved.

Additional Analytical Capabilities

Elastic Recoil Detection

Additional Analytical Capabilities

Nuclear Reaction Analysis

Courtesy of E.J. Cho, N. Perry, University of Illinois

Ion Irradiation

SNICS source

He source

Irradiation end station

RBS Summary

- Quantitative technique for elemental composition
- Requires flat samples; beam size ϕ 1-3 mm
- Non-destructive
- Detection limit varies from 0.1 to 10⁻⁶, depending on Z
 - •optimum for heavy elements in/on light matrix, e.g. Ta/Si, Au/C...
- \bullet Depth information from monolayers to 1 μm

GRAINGER ENGINEERING