Machine learning for causality?
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The bitter Lesson (Sutton, 2019)

o Clever human solutions are eventually beat by general
purpose machine learning

o O O O O

Chess
Go
Speech recognition

Image recognition .
Natural Language Processing The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods
that leverage computation are ultimately the most effective, and by a large margin. The
ultimate reason for this is Moore's law, or rather its generalization of continued
exponentially falling cost per unit of computation. Most Al research has been conducted as
if the computation available to the agent were constant (in which case leveraging human
knowledge would be one of the only ways to improve performance) but, over a slightly
longer time than a typical research project, massively more computation inevitably



How good we are not after ML but after
causality

e Medicine is almost always after causality
e And ML merely models correlations



3 Schools
e RCT or bust

o Randomize, avoid threads
o Very strong strategy for large audience, high value
O

Weak for underserved populations
o Gold standard (also C. elegans)

e Observational
o Fit complex models, Correct for various variables
o Lack of causal validity

o Quasiexperimental
o Find a place where the world contains randomization
o Usually not possible



Intuition: Simulate a trivial causal
system

X141 = 0(AX; + €)

X, is an n-dimensional vector representing our n-neuron system at timestep ¢

o is a sigmoid nonlinearity

A is our n X n causal ground truth connectivity matrix (more on this later)

€, is random noise: ¢, ~ N(0, I,,)

X is initialized to 0

Is correlation ~ causation?



Great in small system

True connectivity matrix A
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Not so great in big system

Estimated connectivity matrix R
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Delayed Correlation vs
Causation

Similarity between A and R as a function of network size
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Omitted Variable Bias

Yi =20+ 20 +
B=(X'X)'X'(XB+Z5+U)
E[B| X]=8+ (X'X)'E[X'Z| X]6

The bias should be arbitrarily big relative to the signal
This problem does not go away with more data

Measuring and interpreting neuronal correlations

Marlene R. Cohen' and Adam Kohn?




An ideal RCT allows unbiased
measurements of causal effects
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But alas, the world is not perfect:
observational studies

Why is it so hard to obtain causality?
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Instrumental variables

Exclusion restriction

Treatment

Instrument Outcome
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Quantifying causality in data science with quasi-experiments

Tony Liu," Lyle Ungar,' and Konrad Kording®%=
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If exclusion restriction correct
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Count

If it

IS violated
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There are lots of quasiexperiments

e Check out Tony’s tutorials

https://github.com/tliu526/causal-data-science-
perspective
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Does eating grains make ducks lay
more eggs?
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IV analysis strategy
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Problem: non-compliance

Never-takers Always-takers

Compliers
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Improving exclusion criteria for IV studies

=== 0% excluded

Estimated power
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Improving exclusion criteria for IV studies

=== 0% excluded

Estimated power
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Improving exclusion criteria for IV studies

=== 0% excluded === 40% excluded
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Data-driven exclusion criteria

Use observed features and machine learning to predict out-of-sample compliance

D

22



Data-driven exclusion improves power
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Applying this to diabetis

o Optum data

o Above A1C=6.5 you should be diabetic
e Butitis fuzzy (hence V)

o Follow-up A1C should be better
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Let us use regression discontinuity design

1-
©
[
+=
o
0-
o LATE
E - /—‘/
e T N
S | Tt e
> i
O 0

50

Clinical score



30 day diabetes
diagnosis rate

Full sample
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30 day diabetes
diagnosis rate

Followup A1C %

Full sample
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A nonstandard logic

ML tells us whom we are talking about

Our predictions then only apply to these items

We can then purposefully say nothing about the expected noncompliers
(which seems unavoidably true)

28



Find all the RDDs

e Currently working to
o Apply this idea to every threshold
o Continuously sweep to find all thresholds
o Optum and other datasets



A bitter lesson approach

Published in Transactions on Machine Learning Research (09/2023)

Learning domain-specific causal discovery from time series

Xinyue Wang
Department of Bioengineering
University of Pennsylvania

Konrad Kording
Department of Bioengineering
University of Pennsylvania

wsinyue@seas. upenn. edu

koerding@gmail.com
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Supervised learning

e Know inputs and true output
e Get good at mapping from input to output
e Causal inference is not like this!

Train

Data

31



Where do CI/ CD algorithms come from?

) @

Human Knowledge Data

Algorithm Inference Causality

Just like in ML
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Learning causal discovery

Train Test
| | |
= v =
ata Causality ara

N/

s :E_,.
Algorithm Inference

Causal inference is supervised learning, after all.

Causality
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We need something to test this idea

e Something with known causality
e And nontrivial data




A causal discovery problem with the microprocessor

A. Causal pairs
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e Read through two channels. Predict if they are connected
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Perturbations to
define causality

A. Average treatment effect of lesioning transistor 1

DonkeyKong Pitfall Spacelnvaders

Y Position (um)

se Effect Strength

X Position (um)

B. Average treatment effect of lesioning transistor 990

DonkeyKong Pitfall Spacelnvaders

se Effect Strength-

X Position (um)

C. Average treatment effect of lesioning transistor 3057

DonkeyKong Pitfall Spacelnvaders

Y Position (um)
Cause Effect Strength
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Honest validation

e Use 1 half of the data to train a causality detector
e Use other half to test if it works
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Works pretty great
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Also robust to noise
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Generalizes well across games: train on Donkey
Kong, test others

Spacelnvaders

Pitfall
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H Transformer
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Focuses attention where it matters (transients)

A Label: 1 | Prediction: 1

|




Simulated fMRI

Table 3: AUPRC comparison on different simulations of NetSim (mean =+ std).

Dataset Corr DYNO GC MI PCMCI+ LiNGAM cMLP cLSTM eSRU SRU Transformer
Sim1 0474002 0414+0.08 0404+0.08 039+0.08 0.39+0.09 043+0.15 0424015 0.41+0.14 040+0.14 0.39+0.14 0.974+0.06
Sim2 045+0.03 0.33+0.12 0.32+0.12 031+0.11 0.29+0.11 030=+0.11 029+0.11 0.28+0.11 0.27+0.11 0.26+0.10 0.94+0.05
Sim3 0444003 0.324+0.13 0.29+0.14 027+0.12 0.26+0.12 027+0.13 0264012 0.24+0.12 0.23+0.12 0.224+0.12 0.894+0.06
Sim8 0414+0.07 036=x0.08 0.38+0.11 037+£0.10 0.36+0.10 040£0.14 040+0.14 0.39+0.14 0.39+0.14 0.38+0.13 0.85+0.13
Sim10 048 40.02 038+0.10 0.394+0.12 0404+£0.11 04040.12 042+£0.16 0424016 0.4240.15 0.424+0.15 0.424+0.15 0.961-0.03
Sim11 0.284+0.03 0.26+0.04 026+£006 026006 0.25+0.07 0.25+£0.08 0254008 0.244+0.08 0.244+0.08 0.23+£0.08 0.7140.10
Sim12 043+0.02 036+0.08 033+0.11 031+0.10 0.29+0.11 030=+0.11 028+0.11 0.27+0.11 0.26+0.11 0.26+0.11 0.90+0.06
Sim13 0484+ 0.04 0474+0.05 0484+0.07 049+0.10 047+0.10 048+0.10 0474+0.10 0.47+0.10 047+0.11 0.46+0.11 0.76+0.10
Sim14 048+0.02 041+0.08 041+0.09 040+0.08 0.38+0.09 042+£0.13 041+0.13 0.40£0.13 0.39+0.13 0.39+0.13 0.93+0.08
Sim15 0.454+0.03 0.38+0.07 0404+0.09 041+0.08 0414+0.10 048+0.21 0474020 045+0.20 044+0.19 0.43+0.19 0.7240.09
Sim16 048+0.01 044+0.05 045+0.07 044+006 044+0.06 046=+0.10 0464010 0454+0.10 0.454+0.10 0.45+0.10 0.9610.03
Sim17 04740.01 039+£0.09 0364+£0.10 0364009 0354+0.10 042+£0.19 0404019 0.3740.19 0.354+0.19 0.34+0.19 0.984-0.02
Sim18 0.484+0.03 0424007 0424+0.12 041+0.10 0404+0.11 043+0.16 0424016 0.41+0.16 040+0.15 0.39+0.15 0.994+0.02
Sim21 0.48+0.03 042+0.08 041+0.08 040+0.08 0.38+0.09 042+£0.15 041+014 0.40+0.14 0.39+0.14 0.38+0.13 0.95+0.06
Sim?22 0.414+0.04 0.38+0.06 0.384+0.08 0.39+0.07 037+0.08 037+0.09 0354+0.09 0.34+0.09 0.34+0.09 0.34+0.09 0.31 +£0.11
Sim?23 0.40+0.04 035+£006 040+0.12 0.39+£0.10 041+0.14 0.47£0.21 0454+020 0.43+0.19 0.4240.19 0.41+0.19 0.41 £ 0.05
Sim24 0.36 :0.06 0.31 +£0.07 0.344+0.10 0.354+£0.10 0354+0.11 035£0.11 0344011 0.3440.11 0.344+0.11 0.33£0.11 0.3740.11
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Gene networks

Table 5: AUPRC comparison on the Dream3

Dataset Corr DY NO GC MI PCMCI4+ cMLP cLSTM eSRU SRU Transformer
Ecoli2 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.04
Yeast2 0.01 0.01 0.02 0.01 0.01 0.04 0.04 0.04 0.04 0.06
Yeast3 0.01 0.01 0.01 0.01 0.01 0.06 0.07 0.06 0.06 0.06
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What does this mean

e Cons

o Requires a lot of ground truth data
o Impossible for humans to understand
o Biased

e Pros

o If we have enough ground truth it will beat all humans
o Meaningful proofs (inherited from empirical risk minimization)
o A new approach to get into messy observational spaces
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Take home message

o Causality and ML really have overlapping problems
e S0 much to learn
e Check out Clear conference

e Exclusion can be a meaningful data problem

o« Maybe we should look for more ways to learn how to do
CD/ ClI, and prepare ourselves for a future where the bitter
lesson is key to medicine
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