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The bitter Lesson (Sutton, 2019)
● Clever human solutions are eventually beat by general 

purpose machine learning
○ Chess
○ Go
○ Speech recognition
○ Image recognition
○ Natural Language Processing
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How good we are not after ML but after 
causality
● Medicine is almost always after causality
● And ML merely models correlations
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3 Schools
● RCT or bust

○ Randomize, avoid threads
○ Very strong strategy for large audience, high value
○ Weak for underserved populations
○ Gold standard (also C. elegans)

● Observational
○ Fit complex models, Correct for various variables
○ Lack of causal validity

● Quasiexperimental
○ Find a place where the world contains randomization
○ Usually not possible
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Intuition: Simulate a trivial causal 
system

Is correlation ~ causation?



Great in small system



Not so great in big system



Delayed Correlation vs 
Causation



Omitted Variable Bias

The bias should be arbitrarily big relative to the signal
This problem does not go away with more data



An ideal RCT allows unbiased 
measurements of causal effects
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But alas, the world is not perfect: 
observational studies
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Why is it so hard to obtain causality?



Instrumental variables
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If exclusion restriction correct
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If it is violated
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There are lots of quasiexperiments
● Check out Tony’s tutorials
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https://github.com/tliu526/causal-data-science-
perspective



Does eating grains make ducks lay 
more eggs?
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T Y
Treatment Outcome
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Instrument Treatment Outcome



Problem: non-compliance

18

Never-takers Always-takers Compliers



Improving exclusion criteria for IV studies
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n = 
10



Improving exclusion criteria for IV studies
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neff = 
3.6



Improving exclusion criteria for IV studies
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neff = 6



Data-driven exclusion criteria
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Use observed features and machine learning to predict out-of-sample compliance

?



Data-driven exclusion improves power
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Applying this to diabetis
● Optum data
● Above A1C=6.5 you should be diabetic
● But it is fuzzy (hence IV)
● Follow-up A1C should be better 
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Let us use regression discontinuity design

Clinical score
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0.095 ± 0.007 0.065 ± 0.006 



0.095 ± 0.007 0.065 ± 0.006 

-0.55 ± 0.17 -0.49 ± 0.13 



A nonstandard logic
● ML tells us whom we are talking about
● Our predictions then only apply to these items
● We can then purposefully say nothing about the expected noncompliers
● (which seems unavoidably true)

28



Find all the RDDs
● Currently working to

○ Apply this idea to every threshold
○ Continuously sweep to find all thresholds
○ Optum and other datasets



A bitter lesson approach
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Supervised learning
● Know inputs and true output
● Get good at mapping from input to output
● Causal inference is not like this!
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Where do CI/ CD algorithms come from?
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Just like in ML



Learning causal discovery
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Causal inference is supervised learning, after all.



We need something to test this idea
● Something with known causality
● And nontrivial data



A causal discovery problem with the microprocessor

● Read through two channels. Predict if they are connected
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Perturbations to
define causality
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Honest validation
● Use 1 half of the data to train a causality detector
● Use other half to test if it works



Standard Transformer
ML system
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Works pretty great
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Also robust to noise
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Generalizes well across games: train on Donkey 
Kong, test others
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Focuses attention where it matters (transients)
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Simulated fMRI
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Gene networks
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What does this mean

● Cons
○ Requires a lot of ground truth data
○ Impossible for humans to understand
○ Biased 

● Pros
○ If we have enough ground truth it will beat all humans
○ Meaningful proofs (inherited from empirical risk minimization)
○ A new approach to get into messy observational spaces
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Take home message
● Causality and ML really have overlapping problems
● So much to learn
● Check out Clear conference

● Exclusion can be a meaningful data problem
● Maybe we should look for more ways to learn how to do 

CD/ CI, and prepare ourselves for a future where the bitter 
lesson is key to medicine
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