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Disclaimer
• These slides were prepared by tutors that have taken Math 

285. We believe that the concepts covered in these slides 
could be covered in your exam. 

• HOWEVER, these slides are NOT comprehensive and may not 
include all topics covered in your exam. These slides should 
not be the only material you study. 

• While the slides cover general steps and procedures for how 
to solve certain types of problems, there will be exceptions to 
these steps. Use the steps as a general guide for how to start a 
problem but they may not work in all cases.
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Topics

I. Systems of Differential Equations
I. System notation
II. Variation of Parameters
III. Eigenvectors/Eigenvalues
IV. Diagonalization
V. Putzer’s Method

II. Boundary Value Problems
I. Eigenfunction Problems

III. Fourier Series
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Systems of Ordinary Differential Equations

• Many physical phenomena can be described by a coordinated 
system of differential equations

• For example, Maxwell’s Equations:

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

= −𝜵𝜵 × 𝑬𝑬

𝝁𝝁𝟎𝟎𝜺𝜺𝟎𝟎
𝝏𝝏𝑬𝑬
𝝏𝝏𝝏𝝏

= 𝜵𝜵 × 𝝏𝝏

• Also, higher order differential equations can be broken down 
into systems of ODE’s
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Creating Systems

• General process:
• Redefine a derivative as a new variable
• Create vectors 𝒗𝒗, 𝒈𝒈, and the matrix 𝑨𝑨
• Write the differential equation in general form:

𝒅𝒅𝒗𝒗
𝒅𝒅𝝏𝝏

= 𝑨𝑨 𝝏𝝏 𝒗𝒗 + 𝒈𝒈(𝝏𝝏)
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Existence and Uniqueness
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• If the equation is linear:

𝒅𝒅𝒗𝒗
𝒅𝒅𝝏𝝏

= 𝑨𝑨 𝝏𝝏 𝒗𝒗 + 𝒈𝒈(𝝏𝝏)

• A unique solution exists if 𝑨𝑨 𝝏𝝏  and 𝒈𝒈(𝝏𝝏) are defined on the 
interval



The Fundamental Solution Matrix

• We want to find 𝒏𝒏 solutions to the system of differential 
equations, where each solution 𝒗𝒗𝒊𝒊(𝝏𝝏) is an 𝒏𝒏-vector

• Build the fundamental solution matrix 𝑀𝑀(𝑡𝑡) by column-
stacking each solution 𝒗𝒗𝒊𝒊(𝝏𝝏) 
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𝒗𝒗𝟏𝟏 =
𝒙𝒙𝟏𝟏
𝒚𝒚𝟏𝟏 𝒗𝒗𝟐𝟐 =

𝒙𝒙𝟐𝟐
𝒚𝒚𝟐𝟐 𝐌𝐌 =

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐
𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐



The Fundamental Solution Matrix

• The Wronskian is the determinant of 𝑴𝑴(𝝏𝝏) 
• 𝑀𝑀(𝑡𝑡) depends on how the solutions are chosen

• Most convenient choice is 𝑴𝑴 𝝏𝝏𝟎𝟎 = 𝑰𝑰
•  𝑴𝑴 𝝏𝝏𝟎𝟎 = 𝑰𝑰 can be calculated as 𝑴𝑴(𝝏𝝏)𝑴𝑴−𝟏𝟏 𝝏𝝏𝟎𝟎
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Abel’s Theorem Extended
• For a system of linear differential equations given by

𝒅𝒅𝒗𝒗
𝒅𝒅𝝏𝝏 = 𝑨𝑨 𝝏𝝏 𝒗𝒗

𝒅𝒅𝒅𝒅
𝒅𝒅𝝏𝝏

= 𝐓𝐓𝐓𝐓 𝑨𝑨 𝝏𝝏 𝒅𝒅

• W is the Wronskian / determinant of the fundamental solution matrix
• The “trace” (Tr) of a matrix is the sum of its diagonal components

• If 𝐴𝐴(𝑡𝑡) is continuous, then the Wronskian is either always or never 0
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Variation of Parameters
• For a system of differential equations given by:

𝒅𝒅𝒗𝒗
𝒅𝒅𝝏𝝏

= 𝑨𝑨 𝝏𝝏 𝒗𝒗 + 𝒈𝒈(𝝏𝝏)

• The general solution is given by:

𝒗𝒗 𝝏𝝏 = 𝑴𝑴 𝝏𝝏 �
𝝏𝝏𝟎𝟎

𝝏𝝏
𝑴𝑴−𝟏𝟏 𝒔𝒔 𝒈𝒈 𝒔𝒔 𝒅𝒅𝒔𝒔 + 𝑴𝑴 𝝏𝝏 𝑴𝑴−𝟏𝟏 𝝏𝝏𝟎𝟎 𝒗𝒗𝟎𝟎
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particular solution characteristic solution



Calculating Eigenvalues and Eigenvectors
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• Eigenvalues (𝝀𝝀) and eigenvectors (𝒗𝒗) are given by:

𝑨𝑨 − 𝝀𝝀𝑰𝑰 𝒗𝒗 = 𝟎𝟎

• Calculate eigenvalues with: 𝒅𝒅𝒅𝒅𝝏𝝏 𝑨𝑨 − 𝝀𝝀𝑰𝑰 = 𝟎𝟎

• Then, calculate eigenvectors with first equation



Matrix Exponentials
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• The matrix exponential definition comes from the power series 
definition of an exponent:

𝒅𝒅𝒙𝒙 = �
𝒌𝒌=𝟎𝟎

∞
𝒙𝒙𝒌𝒌

𝒌𝒌!

𝒅𝒅𝑨𝑨𝝏𝝏 = �
𝒌𝒌=𝟎𝟎

∞
(𝑨𝑨𝝏𝝏)𝒌𝒌

𝒌𝒌!
= 𝑰𝑰 + 𝑨𝑨𝝏𝝏 +

𝑨𝑨𝟐𝟐𝝏𝝏𝟐𝟐

𝟐𝟐!
+ ⋯



Constant Coefficient Linear Systems
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• If the matrix 𝐴𝐴 is no longer a function of 𝝏𝝏:

𝒅𝒅𝒗𝒗
𝒅𝒅𝝏𝝏

= 𝑨𝑨𝒗𝒗

• The fundamental solution matrix can be calculated by the 
matrix exponential:

𝑴𝑴 𝝏𝝏 = 𝒅𝒅𝑨𝑨𝝏𝝏



Diagonalization
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• If there are 𝒏𝒏 linearly independent eigenvectors, then the 
matrix exponential can be calculated as:

𝒅𝒅𝑨𝑨𝝏𝝏 = 𝑼𝑼𝑼𝑼𝑼𝑼−𝟏𝟏

𝑼𝑼 = 𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 … , 𝑼𝑼 =
𝒅𝒅𝝀𝝀𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝒅𝒅𝝀𝝀𝟐𝟐 𝟎𝟎
𝟎𝟎 𝟎𝟎 …



Putzer’s Method
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• Putzer’s Method will always work for solving the matrix 
exponential

• Trying to get to:

𝒅𝒅𝑨𝑨𝝏𝝏 =  𝝏𝝏𝟎𝟎𝒓𝒓𝟏𝟏 + 𝝏𝝏𝟏𝟏𝒓𝒓𝟐𝟐+ 𝝏𝝏𝟐𝟐𝒓𝒓𝟑𝟑…

• Number of terms matches degree of matrix, I.E. 2x2 
matrix goes up to the 𝝏𝝏𝟏𝟏𝒓𝒓𝟐𝟐 term



Putzer’s Method Contd.
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• First, calculate the B matrices
• Follow the pattern:

𝝏𝝏𝟎𝟎 = 𝑰𝑰

𝝏𝝏𝟏𝟏 = (𝑨𝑨 − 𝝀𝝀𝟏𝟏𝑰𝑰)𝝏𝝏𝟎𝟎

𝝏𝝏𝟐𝟐 = (𝑨𝑨 − 𝝀𝝀𝟐𝟐𝑰𝑰)𝝏𝝏𝟏𝟏

…



Putzer’s Method Contd.
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• Second, calculate the r functions, then plug everything in
• Follow the pattern:

𝒅𝒅𝒓𝒓𝟏𝟏
𝒅𝒅𝝏𝝏

=  𝝀𝝀𝟏𝟏 𝒓𝒓𝟏𝟏,  𝒓𝒓𝟏𝟏 𝟎𝟎 = 𝟏𝟏

𝒅𝒅𝒓𝒓𝟐𝟐
𝒅𝒅𝝏𝝏

=  𝝀𝝀𝟐𝟐 𝒓𝒓𝟐𝟐 + 𝒓𝒓𝟏𝟏,  𝒓𝒓𝟐𝟐 𝟎𝟎 = 𝟎𝟎

𝒅𝒅𝒓𝒓𝟑𝟑
𝒅𝒅𝝏𝝏

=  𝝀𝝀𝟑𝟑 𝒓𝒓𝟑𝟑 + 𝒓𝒓𝟐𝟐,  𝒓𝒓𝟑𝟑 𝟎𝟎 = 𝟎𝟎

…



Putzer’s Method Notes and Example
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• Putzer’s Method doesn’t require knowing the 
eigenvectors

• More calculation heavy than diagonalization, but no matrix 
multiplication either

• Example:

𝑨𝑨 =
𝟏𝟏 𝟏𝟏 𝟎𝟎
𝟏𝟏 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟐𝟐



Boundary Value Problems

• A boundary value problem is an analog to an initial 
value problem

• Instead of specifying just an initial condition, multiple 
“boundary” values are specified to constrain the 
solution
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Eigenfunction Problems
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• BVP with an unknown constant (eigenvalue) remaining in it
• Process:

• Solve the differential equation in terms of the eigenvalue
• Identify the critical value where solutions change form
• Apply boundary conditions to check if there are non-trivial solutions 

for each case
• Write down the non-trivial eigenvalues and their corresponding 

eigenfunctions



5.3 Eigenvalue Problem Example
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𝒚𝒚′′ + 𝝀𝝀𝒚𝒚 = 𝟎𝟎 𝒚𝒚 𝟎𝟎 = 𝟎𝟎 𝒚𝒚𝒚 𝟏𝟏 = 𝟎𝟎

Case 1: 𝝀𝝀 > 𝟎𝟎 𝒚𝒚 = 𝑨𝑨𝑨𝑨𝑨𝑨𝒔𝒔 𝒌𝒌𝒙𝒙 + 𝝏𝝏𝒔𝒔𝒊𝒊𝒏𝒏(𝒌𝒌𝒙𝒙) 𝝀𝝀 = 𝒏𝒏 +
𝟏𝟏
𝟐𝟐

𝟐𝟐

𝝅𝝅𝟐𝟐

Case 2: 𝝀𝝀 = 𝟎𝟎 𝒚𝒚 = 𝑨𝑨 + 𝝏𝝏𝒙𝒙 𝝀𝝀 = 𝟎𝟎

Case 3: 𝝀𝝀 < 𝟎𝟎 𝒚𝒚 = 𝑨𝑨𝒅𝒅𝒌𝒌𝒙𝒙 + 𝝏𝝏𝒅𝒅−𝒌𝒌𝒙𝒙 𝝀𝝀 = 𝟎𝟎

𝝀𝝀 = 𝒌𝒌𝟐𝟐



Fourier Series

• (Nearly) any periodic function can be represented as an infinite 
series of sin and cos functions

• A Fourier Series will always repeat periodically, even if the 
modelled function is only defined on a certain interval
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Fourier Coefficients

• The coefficients of the series can be 
directly calculated using the 
orthogonality of sin and cos

• The integral bounds are one period
• L is half of a period

• For odd functions, 𝑨𝑨𝒏𝒏 = 𝟎𝟎
• For even functions, 𝝏𝝏𝒏𝒏 = 𝟎𝟎
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Fourier Convergence Theorem
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• If the modelled function is continuous, the series converges to the 
function values

• If the modelled function has a discontinuity, the series converges 
to the average of the values at the jump



Thanks for 
Coming!
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