

MATH 285

Midterm 3 Review
CARE

Disclaimer

- These slides were prepared by tutors that have taken Math 285. We believe that the concepts covered in these slides could be covered in your exam.
- HOWEVER, these slides are NOT comprehensive and may not include all topics covered in your exam. These slides should not be the only material you study.
- While the slides cover general steps and procedures for how to solve certain types of problems, there will be exceptions to these steps. Use the steps as a general guide for how to start a problem but they may not work in all cases.

Topics

I. Systems of Differential Equations
I. System notation
II. Variation of Parameters
III. Eigenvectors/Eigenvalues
IV. Diagonalization
V. Putzer's Method
II. Boundary Value Problems
I. Eigenfunction Problems
III. Fourier Series

Systems of Ordinary Differential Equations

- Many physical phenomena can be described by a coordinated system of differential equations
- For example, Maxwell's Equations:

$$
\begin{gathered}
\frac{\partial B}{\partial t}=-\nabla \times E \\
\mu_{0} \varepsilon_{0} \frac{\partial E}{\partial t}=\nabla \times B
\end{gathered}
$$

- Also, higher order differential equations can be broken down into systems of ODE's

Creating Systems

- General process:
- Redefine a derivative as a new variable
- Create vectors $\boldsymbol{v}, \boldsymbol{g}$, and the matrix \boldsymbol{A}
- Write the differential equation in general form:

$$
\frac{d v}{d t}=A(t) v+g(t)
$$

Existence and Uniqueness

- If the equation is linear:

$$
\frac{d v}{d t}=A(t) v+g(t)
$$

- A unique solution exists if $\boldsymbol{A}(\boldsymbol{t})$ and $\boldsymbol{g}(\boldsymbol{t})$ are defined on the interval

The Fundamental Solution Matrix

- We want to find \boldsymbol{n} solutions to the system of differential equations, where each solution $\boldsymbol{v}_{\boldsymbol{i}}(\boldsymbol{t})$ is an \boldsymbol{n}-vector
- Build the fundamental solution matrix $M(t)$ by columnstacking each solution $v_{i}(t)$

$$
v_{1}=\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]
$$

The Fundamental Solution Matrix

- The Wronskian is the determinant of $\boldsymbol{M}(\boldsymbol{t})$
- $M(t)$ depends on how the solutions are chosen
- Most convenient choice is $\boldsymbol{M}\left(\boldsymbol{t}_{0}\right)=I$
- $M\left(t_{0}\right)=I$ can be calculated as $M(t) M^{-1}\left(t_{0}\right)$

Abel's Theorem Extended

- For a system of linear differential equations given by

$$
\begin{gathered}
\frac{d v}{d t}=A(t) v \\
\frac{d W}{d t}=\operatorname{Tr}(A(t)) W
\end{gathered}
$$

- W is the Wronskian / determinant of the fundamental solution matrix
- The "trace" (Tr) of a matrix is the sum of its diagonal components
- If $A(t)$ is continuous, then the Wronskian is either always or never 0

Variation of Parameters

- For a system of differential equations given by:

$$
\frac{d v}{d t}=A(t) v+g(t)
$$

- The general solution is given by:

$$
v(t)=\underbrace{M(t) \int_{t_{0}}^{t} M^{-1}(s) g(s) d s}_{\text {particular solution }}+\underbrace{M(t) M^{-1}\left(t_{0}\right) v_{0}}_{\text {characteristic solution }}
$$

Calculating Eigenvalues and Eigenvectors

- Eigenvalues (λ) and eigenvectors (\boldsymbol{v}) are given by:

$$
(A-\lambda I) v=0
$$

- Calculate eigenvalues with: $\boldsymbol{\operatorname { d e t }}(\boldsymbol{A}-\lambda I)=0$
- Then, calculate eigenvectors with first equation

Matrix Exponentials

- The matrix exponential definition comes from the power series definition of an exponent:

$$
\begin{gathered}
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
e^{A t}=\sum_{k=0}^{\infty} \frac{(A t)^{k}}{k!}=I+A t+\frac{A^{2} t^{2}}{2!}+\cdots
\end{gathered}
$$

Constant Coefficient Linear Systems

- If the matrix A is no longer a function of \boldsymbol{t} :

$$
\frac{d v}{d t}=A v
$$

- The fundamental solution matrix can be calculated by the matrix exponential:

$$
M(t)=e^{A t}
$$

Diagonalization

- If there are \boldsymbol{n} linearly independent eigenvectors, then the matrix exponential can be calculated as:

$$
\left.\begin{array}{c}
e^{A t}=U D U^{-1} \\
\underbrace{v_{1}}_{\text {eigenvector }} \\
v_{2}
\end{array} \quad \ldots\right], \quad D=\left[\begin{array}{ccc}
e^{e^{\lambda_{1}}} & 0 & 0 \\
0 & e^{\lambda_{2}} & 0 \\
0 & 0 & \ldots
\end{array}\right]
$$

Putzer's Method

- Putzer's Method will always work for solving the matrix exponential
- Trying to get to:

$$
e^{A t}=B_{0} r_{1}+B_{1} r_{2}+B_{2} r_{3} \ldots
$$

- Number of terms matches degree of matrix, I.E. 2×2 matrix goes up to the $\boldsymbol{B}_{\mathbf{1}} \boldsymbol{r}_{\mathbf{2}}$ term

Putzer's Method Contd.

- First, calculate the B matrices
- Follow the pattern:

$$
\begin{gathered}
B_{0}=I \\
B_{1}=\left(A-\lambda_{1} I\right) B_{0} \\
B_{2}=\left(A-\lambda_{2} I\right) B_{1}
\end{gathered}
$$

Putzer's Method Contd.

- Second, calculate the \mathbf{r} functions, then plug everything in
- Follow the pattern:

$$
\begin{array}{cr}
\frac{d r_{1}}{d t}=\lambda_{1} r_{1}, & r_{1}(0)=1 \\
\frac{d r_{2}}{d t}=\lambda_{2} r_{2}+r_{1}, & r_{2}(0)=0 \\
\frac{d r_{3}}{d t}=\lambda_{3} r_{3}+r_{2}, & r_{3}(0)=0
\end{array}
$$

Putzer's Method Notes and Example

- Putzer's Method doesn't require knowing the eigenvectors
- More calculation heavy than diagonalization, but no matrix multiplication either
- Example:

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Boundary Value Problems

- A boundary value problem is an analog to an initial value problem
- Instead of specifying just an initial condition, multiple "boundary" values are specified to constrain the solution

Eigenfunction Problems

- BVP with an unknown constant (eigenvalue) remaining in it
- Process:
- Solve the differential equation in terms of the eigenvalue
- Identify the critical value where solutions change form
- Apply boundary conditions to check if there are non-trivial solutions for each case
- Write down the non-trivial eigenvalues and their corresponding eigenfunctions

5.3 Eigenvalue Problem Example

$$
y^{\prime \prime}+\lambda y=0 \quad \lambda=k^{2} \quad y(0)=0 \quad y^{\prime}(1)=0
$$

Case 1: $\quad \lambda>0 \quad y=A \cos (k x)+B \sin (k x) \quad \lambda=\left(n+\frac{1}{2}\right)^{2} \pi^{2}$
Case 2: $\lambda=0 \quad y=A+B x \quad \lambda=0$

$$
\text { Case 3: } \quad \lambda<0 \quad y=A e^{k x}+B e^{-k x} \quad \lambda=0
$$

Fourier Series

- (Nearly) any periodic function can be represented as an infinite series of sin and cos functions
- A Fourier Series will always repeat periodically, even if the modelled function is only defined on a certain interval

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

Fourier Coefficients

- The coefficients of the series can be directly calculated using the orthogonality of sin and cos
- The integral bounds are one period
- Lis half of a period
- For odd functions, $\boldsymbol{A}_{\boldsymbol{n}}=\mathbf{0}$

$$
A_{0}=\frac{1}{2 L} \int_{0}^{2 L} f(x) d x
$$

$$
A_{n}=\frac{1}{L} \int_{0}^{2 L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

- For even functions, $\boldsymbol{B}_{\boldsymbol{n}}=0$

$$
B_{n}=\frac{1}{L} \int_{0}^{2 L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Fourier Convergence Theorem

Theorem 6.2.2. Suppose that $f(x)$ is piecewise C^{2} (twice differentiable) and 2L-periodic: $f(x+2 L)=f(x)$, with jump discontinuities at the points of discontinuity. Then the Fourier series

$$
A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

converges to $f(x)$ at points of continuity of $f(x)$, and to $\frac{1}{2}\left(f\left(x^{-}\right)+f\left(x^{+}\right)\right)$ at the jump discontinuities.

- If the modelled function is continuous, the series converges to the function values
- If the modelled function has a discontinuity, the series converges to the average of the values at the jump

Thanks for Coming!

