

MATH 241

Midterm 4 Review

Keep in mind that this presentation was created by CARE tutors, and while it is thorough, it is not comprehensive.

QR Code to the Queue

The queue contains the worksheet and the solution to this review session

Vector Field, Gradient Vector Field

A vector field F(x,y) = P i + Q j is a function that assigns each point (x,y) a 2D vector

 A gradient vector field ∇ F(x,y) is a vector field that is always perpendicular to the contour map

Line Integral Along a Curve with respect to...

Arc length (orientation does not matter, integral of C = integral of -C)

$$\int_C f(x, y) \, ds = \int_a^b f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt$$

x, y (orientation matters, integral of C = -integral of -C)

$$\int_C f(x, y) dx = \int_a^b f(x(t), y(t)) x'(t) dt$$

$$\int_C f(x, y) dy = \int_a^b f(x(t), y(t)) y'(t) dt$$

Line Integral of Vector Fields

 Let F be a continuous vector field defined on a curve C given by a vector function r(t), a ≤ t ≤ b. Line integral of F along C (Work done) is:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_C \mathbf{F} \cdot \mathbf{T} ds$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy + R \, dz$$
where $\mathbf{F} = P \, \mathbf{i} + Q \, \mathbf{j} + R \, \mathbf{k}$

Fundamental Theorem of Line Integrals

Let C be a smooth curve given by the vector function r(t), a ≤ t ≤ b. Let f
be a differentiable function of two or three variables whose gradient
vector ∇f is continuous on C. Then:

$$\int_{C} \nabla f \cdot dr = f[r(b)] - f[r(a)]$$

Conservative Vector Field

Line integrals of a conservative vector field are independent of path

$$\int_C F \cdot dr$$
 is independent of path D if and only if
$$\int_C F \cdot dr = 0 \text{ for every closed path C in D}$$

Let F = Pi + Qj be a vector field on an open simply-connected region D.
 Suppose that P and Q have continuous partial derivatives and

$$\frac{\partial P}{\partial v} = \frac{\partial Q}{\partial r}$$
 throughout D , then F is conservative.

Conservative Vector Field

Example Question #1

Which one of the vector fields shown below is not conservative?

Example Solution #1

The fourth vector field is not conservative as line integral in the closed path does not equal to 0.

Green's Theorem

Let C be a counterclockwise, simple closed curve in the plane and let D
be the region bounded by C. If P and Q have continuous partial
derivatives on an open region that contains D, then

$$\int_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

• Green's theorem to calculate the area of a region D bounded by C

$$A = \oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C x \, dy - y \, dx$$

Example Question #2

 Consider the region R shown at the right which contains simple closed curves A, B, and C. Suppose F = <P, Q> is a vector field with continuous partial derivatives on R with the following characteristics:

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \qquad \int_{A} F \cdot dr = 2 \qquad \int_{B} F \cdot dr = -1$$

- (a) Find $\int_{C} F \cdot dr$
- (b) Is this vector field conservative?

Example Solution #2

(a) Let D be the region enclosed by C. Using Green's theorem:

$$\int_{C} F \cdot dr - \int_{A} F \cdot dr - \int_{B} F \cdot dr = 0$$

$$\int_{C} F \cdot dr - 2 - (-1) = 0$$

$$\int_{C} F \cdot dr = 1$$

(b) This vector field is not conservative because it is not a simply-connected region, and the line integral for the closed curve C is not 0.

Curl

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F}$$

- Cross product → Curl is a vector field
- Describes how vectors rotate around a certain point
- Use right-hand rule to determine the sign of curl
- Curl of a gradient field = 0
- If F is conservative, curl = 0
- Green's theorem in vector form:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D (\text{curl } \mathbf{F}) \cdot \mathbf{k} \, dA$$

Curl Test for Conservative Vector Field

 If F is a vector field defined on all of R³ whose component functions have continuous partial derivatives and curl F = 0, then F is a conservative vector field

Divergence

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F}$$

- Dot product → Divergence is a scalar field
- Describes how vectors diverge from a single point (or converge to a point)
- Diverging vectors: positive, Converging vectors: negative
- Green's theorem in vector form:

$$\oint_C \mathbf{F} \cdot \mathbf{n} \ ds = \iint_D \operatorname{div} \mathbf{F}(x, y) \ dA$$

Example Problem #3

Match the surfaces below with the following parametrization:

$$r(u, v) = \langle u, u^2 + v^2, v \rangle$$
 defined on $D = \{(u, v) | 0 \le u \le 1, 0 \le v \le 1\}$

Example Solution #3

 $r(u,v)=< u,u^2+v^2,v>$ defined on $D=\{(u,v)|0\le u\le 1,0\le v\le 1\}$ When x is constant \to curve on the yz-plane should be a parabola When y is constant \to curve on the xz-plane should be a circle When z is constant \to curve on the xy-plant should be a parabola

Surface Area of a Parametric Surface

If a parametric surface S is given by the equation

$$\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k} \qquad (u, v) \in D$$

, the surface area of S is

$$A(S) = \iint\limits_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

, where r_{ij} and r_{ij} are partial derivatives with respect to u and v.

Surface Integral

The surface integral of a function f over a parametric surface is:

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

Flux

• The flux of a vector field F over a parametric surface is:

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \vec{n} \, dS = \iint_{D} \vec{F} \cdot (\vec{r_{u}} \times \vec{r_{v}}) dA$$