

Exam 3
Queue

Fixam 3 Dverview

18) RL Circuits
19) LC Circuits
20) AC Circuits
21) AC Power and Resonance
22) Maxwell's Displacement Current
23) EM Waves
24) Polarization

RL Gircuits

Inductors behave "oppositely" to capacitors (i.e. at $t=0$ and $t=\infty$ when charging up)
Inductors in circuits add in series and in parallel like resistors
Inductance: L = magnetic flux / current

$$
L \equiv \frac{\Phi_{B}}{I}
$$

Time constant: $\boldsymbol{\tau}=\mathbf{L} / \mathbf{R}$
Charging and Discharging Equations

$$
\tau=\frac{L}{R} \quad V=L \frac{d I}{d t}
$$

$$
I(t)=I(\infty)\left(1-e^{-t / \tau}\right) \quad I(t)=I(0) e^{-t / \tau}
$$

RL Circuits cont.

Charging

$\mathrm{t}=\mathbf{0} \boldsymbol{\rightarrow}$ inductor acts like an open circuit

- $\mathrm{I}=0 \mathrm{~A}$, but there is a voltage
$t=\infty \rightarrow$ inductor acts like a wire (short circuit)
- $\mathrm{V}=0 \mathrm{~V}$, but there is a current

Discharging
$t=0 \rightarrow$ inductor acts like a current source (l at $t=0$ is the same as I at $t=\infty$ found when charging up)
$t=\infty \rightarrow$ inductor acts like a wire (no more current in the circuit)

LC Circuits

Inductors and capacitors are storage devices so their energies are constantly oscillating between one another (given an initial voltage/current)

Total Potential Energy: $U_{\text {total }}=U_{\text {inductor }}+U_{\text {capacitor }}=0.5 \mathrm{LI}^{2}+0.5 \mathrm{CV}^{2}$
Resonance only occurs at the natural frequency: ω_{0}

Natural Frequency

$$
\omega_{o}=\frac{1}{\sqrt{L C}}
$$

$$
U=\frac{1}{2} L I^{2} \quad U=\frac{1}{2} C V^{2}
$$

AC Gircuits (RLC)

Resistor is in phase with the current

Inductor leads current by 90 degrees

Capacitor lags current by 90 degrees

Steps for AC Circuit Problems:

1) Find the reactances first (X_{L} and X_{C})
2) Then find impedance (Z)
3) Now you can solve for I_{m}
4) Solve for phase of the generator
a) If phase is positive \rightarrow generator voltage leads current
b) If phase is negative \rightarrow generator voltage lags current

Average Power and Resonance

Resonance occurs when $\omega=\omega_{0}$
This makes $X_{L}=X_{C}$ thus $Z=R=>$ this is when I_{m} is at its maximum value

$$
\left\langle P_{\text {Generator }}\right\rangle=\mathcal{E}_{r m s} I_{r m s} \cos \phi
$$

Root Mean Square (rms)

$$
\begin{array}{ll}
\mathcal{E}_{r m s}=\frac{\mathcal{E}_{m}}{\sqrt{2}} & \text { Voltage } \\
I_{r m s}=\frac{I_{m}}{\sqrt{2}} & \text { Current }
\end{array}
$$

Natural Frequency

Transformers

Transformers are used to convert from high voltages to low voltages and vice versa

HM Wave Image (Remember this image!)

HM Mave Properties $\quad E_{x}=E_{o} \cos (k z-\omega t)$

E and B have the same waveform: If E is $\sin (k z-\omega t)$ then B is also $\sin (k z-\omega t)$
Magnitude of B is smaller: $B_{0}=E_{0} / c$ where c is the speed of light $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
The " x, y, or z " variable inside the argument tells you the direction of propagation $\cos (k z-\omega t)$ travels in +z-direction, cos(kz + $\omega \mathrm{t}$) travels in -z-direction

Wave parameters: $\omega=2 \pi f, v=\lambda f=\omega / k(v=c$ for EM waves in free-space)
Poynting vector (S) points in the same direction the wave is traveling
$S=(E \times B) / \mu_{0}$
Power = S x A (units: W) , Intensity $=$ Power / Area $=\mathbf{S}\left(\right.$ units: $\mathrm{W} / \mathrm{m}^{2}$)

Doppler Shift

$$
f^{\prime}=f \sqrt{\frac{1 \pm \beta}{1 \mp \beta}} \quad \xrightarrow{\beta \ll 1} f^{\prime} \approx f(1 \pm \beta)
$$

where $\beta \equiv \frac{v}{c}$

Decreasing Separation

$$
\begin{aligned}
& f^{\prime}=f \sqrt{\frac{1+\beta}{1-\beta}} \\
& \left(f^{\prime}>f\right)
\end{aligned}
$$

Increasing Separation

$$
\begin{aligned}
& f^{\prime}=f \sqrt{\frac{1-\beta}{1+\beta}} \\
& \left(f^{\prime}<f\right)
\end{aligned}
$$

Linear Polarization

Incident Light
Incident Polarized Light

Unpolarized: $I_{\text {final }}=\frac{1}{2} I_{o}$

> Law of Malus
> $I_{\text {final }}=I_{o} \cos ^{2} \theta$

Circular Polarization

Circular Polarization

Right-handed (RCP):

Left-handed (LCP):
$\phi_{x}-\phi_{y}=-\frac{\pi}{2} \xrightarrow{\text { Examples }}\left[\begin{array}{l}E_{x}=E_{o} \sin (k z-\omega t) \\ E_{y}=E_{o} \cos (k z-\omega t)\end{array}\right.$

Circular Polarization cont.

- Produced by passing linear polarized light through a quarter wave plate (only if the light isn't 100\% vertically or horizontally linearly polarized beforehand)
- If Slow-Axis X Fast-Axis = Direction of Wave \rightarrow RCP , otherwise LCP

Sign into queue for worksheet!

