PHYS 212 Review 3

Exam 3 Queue

Exam 3 Overview

18) RL Circuits

19) LC Circuits

20) AC Circuits

21) AC Power and Resonance

22) Maxwell's Displacement Current

23) EM Waves

24) Polarization

RL Circuits

Inductors behave "oppositely" to capacitors (i.e. at t=0 and t=∞ when charging up)

 $\tau = \frac{L}{R}$

Inductors in circuits add in series and in parallel like resistors

Inductance: L = magnetic flux / current

Time constant: $\tau = L / R$

Charging and Discharging Equations

$$I(t) = I(\infty) \left(1 - e^{-t/\tau} \right)$$
 $I(t) = I(0) e^{-t/\tau}$

 $L \equiv \frac{\Phi_B}{I}$

 $V = L \frac{dI}{dt}$

RL Circuits cont.

Charging

- t = 0 → inductor acts like an open circuit
- I = 0 A, but there is a voltage
- $t = \infty \rightarrow$ inductor acts like a wire (short circuit)
 - V = 0 V, but there is a current

Discharging

t = 0 \rightarrow inductor acts like a current source (I at t = 0 is the same as I at t = ∞ found when charging up)

 $t = \infty \rightarrow$ inductor acts like a wire (no more current in the circuit)

LC Circuits

Inductors and capacitors are storage devices so their energies are constantly oscillating between one another (given an initial voltage/current)

Resonance only occurs at the natural frequency: ω_0

AC Circuits (RLC)

Resistor is in phase with the current

Inductor leads current by 90 degrees

Capacitor lags current by 90 degrees

Steps for AC Circuit Problems:

- 1) Find the reactances first (X_1 and X_2)
- 2) Then find impedance (Z)
- 3) Now you can solve for I_m
- 4) Solve for phase of the generator
 - a) If phase is positive -> generator voltage leads current
 - b) If phase is negative → generator voltage lags current

Impedance Phasor Diagram

Average Power and Resonance

Resonance occurs when $\omega = \omega_0$

 $\langle P_{Generator} \rangle = \mathcal{E}_{rms} I_{rms} \cos \phi$

This makes $X_L = X_C$ thus $Z = R \Rightarrow$ this is when I_m is at its maximum value

Transformers

Transformers are used to convert from high voltages to low voltages and vice versa

EM Wave Image (Remember this image!)

EM Wave Properties

$$E_x = E_o \cos(kz - \omega t)$$

E and B have the same waveform: If E is $sin(kz-\omega t)$ then B is also $sin(kz-\omega t)$

Magnitude of B is smaller: $B_0 = E_0 / c$ where c is the speed of light (3 x 10⁸ m/s)

The "x, y, or z" variable inside the argument tells you the direction of propagation $\cos(kz - \omega t)$ travels in +z-direction, $\cos(kz + \omega t)$ travels in -z-direction

Wave parameters: $\omega = 2\pi f$, $v = \lambda f = \omega / k$ (v = c for EM waves in free-space)

Poynting vector (S) points in the same direction the wave is traveling

 $S = (E \times B) / \mu_0$

Power = S x A (units: W) , **Intensity = Power / Area = S** (units: W/m²)

Doppler Shift

$$f' = f \sqrt{\frac{1 \pm \beta}{1 \mp \beta}} \xrightarrow{\beta <<1} f' \approx f(1 \pm \beta)$$

v

M

where
$$\beta \equiv \frac{v}{c}$$

Decreasing Separation

$$f' = f \sqrt{\frac{1+\beta}{1-\beta}}$$

$$(f' > f)$$

Increasing Separation

$$f' = f \sqrt{\frac{1-\beta}{1+\beta}}$$

(f' < f)

Linear Polarization

Incident Light

Circular Polarization cont.

- Produced by passing linear polarized light through a quarter wave plate (only if the light isn't 100% vertically or horizontally linearly polarized beforehand)
- If Slow-Axis X Fast-Axis = Direction of Wave → RCP , otherwise LCP

Sign into queue for worksheet!

