CARE PHYS 213 Review Session - Quiz 2

Please add yourself to the queue!

CARE/CARE PHYS 213 Exam Review Session

No location specified

Welcome to the Center for Academic Resources in Engineering (CARE) I

Tutors are available to answer questions, review problems, and help you

Wed 11/6 6:00 - 8:00pm in 4031 CIF (Matthew, Vedha, Vallabh)

Worksheet

Solutions

Slides

Also, here is a Jupyter Notebook file that includes examples on how to Notebook environment installed on your machine, you can open this fil coding example!

Jupyter Notebook

Good Luck!

https://queue.illinois.edu/q/queue/713

This queue is closed. Check back later!

The queue is empty!

Topic breakdown for the Exam 2

- Ideal Gases, rms velocity
- Thermodynamic Processes,
 Reversible Processes
- Heat Engines
- Gibbs Free Energy

Ideal gas and Equipartition

- Ideal Gas: Approximation of particles as points with no interactions:
 - Follows ideal gas law:

$$pV = NkT = nRT$$

- Equipartition: each degree of freedom contributes ½ kT of energy
 - Internal energy in each particle:

$$U = (N_{DOF}/2)kT$$

- Molar heat capacity:
 - $c_{\rm M} = (N_{\rm DOF}/2)kN_{\rm A}$

Heat Capacity in Different Scenarios

- Work done by a gas is equal to the negative work done on the gas
 - Gas is "winning" → work by is positive
 - Gas is "losing" → work by is negative
- Heat capacity at constant pressure is always larger than heat capacity at constant volume
 - The gas "does work" and wastes some of the input heat

$$dW_{on}$$
 dW_{bv}

Work on
$$-pdV$$
 Work by pdV

Constant volume
$$C_V = \frac{dU}{dT}$$

Constant pressure $C_p = \frac{dU}{dT} + p\frac{dV}{dT}$

$$C_V = \frac{dU}{dT}$$

$$C_p = \frac{dU}{dT} + p\frac{dV}{dT}$$

Root-Mean-Square Velocity

- v_{rms}: the average (translational) velocity of gas particles
- Translational kinetic energy : $KE = \frac{1}{2}m(v_{rms})^2$
- Relationship to temperature:

$$rac{1}{2}mv_{
m rms}^2=rac{3}{2}kT$$

- Notice: this does not depend on the number of DOFs; it is always (3/2)kT
 - This is because translational KE only depends on the translational modes of motion (and there are always only 3 translational modes)

Thermodynamic Processes

- Isochoric or Isovolumetric
 - Constant Volume, Irreversible
- Isobaric
 - Constant Pressure, Irreversible
- Isothermal
 - \circ Constant Temperature, Reversible ($\Delta S_{\text{total}} = 0$, $\Delta U = 0$)
- Adiabatic
 - Constant Heat (dQ = 0), Reversible ($\Delta S_{\text{total}} = 0$, $\Delta Q = 0$)

Reversible Processes

- Isothermal + adiabatic processes are reversible

 - For isothermal processes:
 - \blacksquare PV = constant
 - For adiabatic processes:
 - \blacksquare $PV^{\gamma} = constant$

p-V Diagram

- Used to visualize thermodynamic cycles
- Area enclosed in the curve is equal to the work per cycle
 - Clockwise direction: work is positive (engine did work)
 - Counterclockwise direction: work is negative (work done on engine)

Heat Engines

- Cycles of Thermodynamic processes are used to make engines, heat pumps, and refrigerators
- Efficiency of engines:

$$\epsilon = \frac{w_{by}}{Q_H} \le 1 - \frac{T_C}{T_H}.$$

COP of pumps and refrigerators:

Heat pump:
$$COP = \frac{Q_H}{W_{on}} \le \frac{1}{1 - \frac{T_C}{T_H}}$$

Refrigerator:
$$COP = \frac{Q_C}{W_{on}} \le \frac{1}{\frac{T_H}{T_C} - 1}$$

Efficiency/COP can be thought of as "what you get out" divided by "what you put in."

Gibbs Free Energy

Useful when temperature and pressure is constant

$$G = U - T_{
m env}S + pV$$

- Minimizing Gibbs of a system will maximize total entropy
 - So as a system approaches equilibrium, free energy will decrease to a minimum
- Fundamental Thermodynamic Relation in Equilibrium:
 - $O TdS = dU + pdV \mu dN$
 - \circ $\mu = (dG/dN) \rightarrow \mu N = G$ at constant pressure and temperature
 - \circ Equilibrium favors lowest μ

Good Luck!

Feel free to ask any questions you may have!

You got this!!!

"Queue"-R Code

The team's drop-in hours:

(held on Grainger 4th floor, west wing)

Matthew: Wed 12-2pm

Zaahi: Wed 2-4pm

Vedha: Sun 12-2pm, Wed 1-3pm and

5-6pm, Thursday 8-10pm

Wesley: Fri 1-3pm, Sat 2-4pm

David: Fri 3-5pm

Aparna: Mon 4-6pm, Wed 5-7pm

Check CARE website for more

information!