

MATH 241

Midterm 3 Review

Keep in mind that this presentation was created by CARE tutors, and while it is thorough, it is not comprehensive.

QR Code to the Queue

The queue contains the worksheet and the solution to this review session

Fubini's Theorem

If f(x,y) is continuous on the rectangle

$$R = \{(x,y) | a \le x \le b, c \le y \le d\}$$

$$\iint \underbrace{f(x,y) dA}_{a} = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$

Double Integral Over a General Region

Then integrate dx

- Integrate dx from x=0 to x=y
- Then integrate dy

Center of Mass

• The x, y coordinates of the center of mass for an object that has a density function $\rho(x,y)$

$$\bar{\mathbf{x}} = \frac{1}{\mathbf{m}} \iint x \cdot \rho(x, y) dA$$
 $\bar{\mathbf{y}} = \frac{1}{\mathbf{m}} \iint y \cdot \rho(x, y) dA$

, where mass is calculated as
$$\mathbf{m} = \iint \rho(x,y)dA$$

Triple Integral

• Let *E* be the solid contained under the plane 2x + 3y + z = 6 in the first octant. Compute the following:

$$\iiint_{E} 2x \, dV$$

Triple Integral-Cont'd

• Let *E* be the solid contained under the plane 2x + 3y + z = 6 in the first octant. Compute the following:

$$\iiint_E 2x \, dV = \int_0^3 \int_0^{2-2x/3} \int_0^{6-2x-3y} 2x \, dz dy dx = \int_0^3 \int_0^{2-2x/3} 2x (6-2x-3y) dy dx$$

$$= \int_0^3 12x \left(2 - \frac{2x}{3}\right) - 4x^2 \left(2 - \frac{2x}{3}\right) - 3x \left(2 - \frac{2x}{3}\right)^2 dx = 9$$

Example Question #1

Match the integrals to their corresponding solid regions:

(B)
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}-y^{2}} g(x, y, z) dz dy dx$$

Example Solution #1

(A)
$$\int_{0}^{1} \int_{y}^{1} \int_{0}^{2-x^{2}-y^{2}} f(x, y, z) \, dz \, dx \, dy$$
(B)
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x} \int_{0}^{1-x^{2}-y^{2}} g(x, y, z) \, dz \, dy \, dx$$

Polar Coordinates

$$x = r\cos\theta$$
$$y = r\sin\theta$$
$$r^{2} = x^{2} + y^{2}$$
$$\theta = \arctan\left(\frac{y}{x}\right)$$
$$dA = rdrd\theta$$

https://magoosh.com/hs/ap-calculus/2017/ap-calculus-bc-review-polar-functions/

Cylindrical Coordinates

 Cylindrical coordinate is just an extension of polar coordinate to three dimension

$$x = r\cos\theta$$

$$y = r\sin\theta$$

$$z = z$$

$$r^{2} = x^{2} + y^{2}$$

$$\theta = \arctan\left(\frac{y}{x}\right)$$

$$dV = rdzdrd\theta$$

Spherical Coordinates

$$x = \rho \sin\varphi \cos\theta$$

$$y = \rho \sin\varphi \sin\theta$$

$$z = \rho \cos\varphi$$

$$\rho^{2} = x^{2} + y^{2} + z^{2}$$

$$dV = \rho^{2} \sin\varphi \, d\rho d\theta d\varphi$$

Sketch of a point in R³

Surface Area

 The area of the surface A(S) with equation z=f(x,y) can be calculated as:

$$A(S) = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA$$

Change of Variables Using Jacobian Matrix

If there is a transformation such that x=g(u,v) and y=h(u,v), then:

$$\iint\limits_{R} f(x,y)dA = \iint\limits_{S} f[g(u,v),h(u,v)] \cdot \left| \frac{\partial(x,y)}{\partial(u,v)} \right| d\overline{A}$$

, where the Jacobian Matrix is calculated as

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

Example Question #2

• Set up the integral to calculate the area of R with the transformation $T(u,v) = (u^2+v, v)$.

Example Solution #2

• Set up the integral to calculate the area of R with the transformation $T(u,v) = (u^2+v, v)$.

$$0 \le v \le 1 - \frac{u}{2} \qquad 0 \le u \le 2$$

Jacobian:
$$\det \begin{bmatrix} 2u & 1 \\ 0 & 1 \end{bmatrix} = 2u$$

Integral:
$$\int_0^2 \int_0^{1-u/2} 2u \, dv du$$