Midterm 3 Welcome to Math 231 Exam Review!

CARE

QR Code to Queue and Worksheet:

Sequences

- A list of numbers in a certain order
 - $a_1, a_2, a_3, a_4, a_5, \dots, a_n, \dots$
- Taking the Limit of Sequences:
 - Limit as n approaches infinity
 - If it exists, the sequence is convergent
 - DNE, sequence is divergent
 - If the limit is infinity, a_n diverges to infinity

Ex:
$$1/5$$
, $-2/25$, $3/125$, $-4/625$, ..., $(-1)^{(n-1)}n/5^n$

Series

- Similar to sequences, but now add the terms together!
 - \circ $a_1 + a_2 + a_3 + a_4 + a_5 + \dots + a_n + \dots$
- Convergent if $a_1 + a_2 + \dots + a_n + \dots = s$
 - Divergent if the sum diverges
- Geometric Series:

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}; |r| < 1$$
 What about $|r| >= 1$? It diverges!

- Test for Divergence
 - If the limit of an does not exists or does not equal o
 - The series is divergent

Integral Test

• Suppose $a_n = f(n)$ If converges $\int_1^{\infty} f(x) dx$ then $\sum_{n=1}^{\infty} a_n$ converges If diverges $\int_1^{\infty} f(x) dx$ then $\sum_{n=1}^{\infty} a_n$ diverges

P-Test

When does this series converge?

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

When p > 1!

Comparison Test

• If given two series and know the convergence or divergence of one:

If $\sum_{n=1}^{\infty} b_n$ is convergent and $b_n \geq a_n$ then $\sum_{n=1}^{\infty} a_n$ converges

If $\sum_{n=1}^{\infty} b_n$ is divergent and $b_n \leq a_n$ then $\sum_{n=1}^{\infty} a_n$ diverges

• Limit Comparison Test:

If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and c is finite and > 0:

Either both series converge or both series diverge

Alternating Series

- The series alternates between positive and negative!
- Convergence:
 - \circ Terms are decreasing, $b_n >= b_{n+1}$
 - \circ $\lim_{n\to\infty}b_n=0$
- Absolute and Conditional Convergence
 - Absolute Convergence: The absolute value of a series is convergent
 - Conditional Convergence: The absolute value of a series is convergent, but the original series converges
 - If a series is absolutely convergent, then it is convergent

Ex: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ Conditional or Absolute convergence? Conditionally Convergent!

Ratio Test

 Take the limit of absolute value of the ratio of the nth term and the nth+1 term

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

- If L < 1: Absolutely Convergent
- If L > 1 or $L = \infty$: Divergent
- If L = 1: Inconclusive

Root Test

• Take the limit of nth root of the absolute value of the nth term

$$\lim_{n\to\infty}\sqrt[n]{|a_n|}=L$$

- If L < 1: Absolutely Convergent
- If L > 1 or $L = \infty$: Divergent
- If L = 1: Inconclusive

Putting It All Together

A general order for how you might want to go by solving problems:

- 1. Test for Divergence
- 2. p-Series Test
- 3. Geometric Series Test
- 4. Comparison Test
- 5. Alternating Series Test
- 6. Ratio Test
- 7. Root Test
- 8. Integral Test

