

MATH 285

Midterm 2 Review
CARE

Disclaimer

- These slides were prepared by tutors that have taken Math 285. We believe that the concepts covered in these slides could be covered in your exam.
- HOWEVER, these slides are NOT comprehensive and may not include all topics covered in your exam. These slides should not be the only material you study.
- While the slides cover general steps and procedures for how to solve certain types of problems, there will be exceptions to these steps. Use the steps as a general guide for how to start a problem but they may not work in all cases.

Topics

I. Linear Independence + Wronskian
II. Linear Constant Coefficient DE's
III. Solving Particular Solutions
I. Undetermined Coefficients
II. Annihilators
III. Variation of Parameters
IV. Laplace Transformations
IV. Oscillations
I. Mechanical
II. Electrical

Linear Independence and the Wronskian

- In order to form a "complete" solution to a differential equation, we want to create a linear combination of solutions
- We need to have n solution equations, where n is the order of the differential equation
- The Wronskian is a tool for determining if our solutions are linearly independent

The Wronskian

$$
W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(t)=\left|\begin{array}{cccc}
y_{1}(t) & y_{2}(t) & y_{3}(t) \ldots & y_{n}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t) & y_{3}^{\prime}(t) \ldots & y_{n}^{\prime}(t) \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)}(t) & y_{2}^{(n-1)}(t) & y_{3}^{(n-1)}(t) \ldots & y_{n}^{(n-1)}(t)
\end{array}\right|
$$

- Calculate the determinant of the matrix built with solution functions and their derivatives
- Results
- If $W=0$, the solutions are linearly dependent
- If $W \neq 0$, the solutions are linearly independent

Abel's Theorem

- If the Wronskian is non-zero, then it will solve the first order linear differential equation:

$$
W^{\prime}+a_{n-1}(t) W=0
$$

Linear Constant Coefficient $2^{\text {nd }}$ Order ODEs

- General Form:

$$
A y^{\prime \prime}+B y^{\prime}+C y=g(t)
$$

- Solving:
- Set up the characteristic equation $A r^{2}+B r+C=0$
- Solve the roots of the characteristic equation
- Write the solution as $y_{h}=C_{1} e^{r_{1}}+C_{2} e^{r_{2}}$
- Use initial conditions to solve the constants

Three Specific Cases:

- Two distinct, real roots $\left(r_{1}, r_{2}\right)$:

$$
y_{h}=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

- One distinct, real root $\left(r_{1}\right)$:

$$
y_{h}=C_{1} t e^{r_{1} t}+C_{2} e^{r_{1} t}
$$

- Two distinct, imaginary roots (a + bi, $a-b i$):

$$
y_{h}=e^{a t}\left(C_{1} \cos (b t)+C_{2} \sin (b t)\right)
$$

Solutions to Non-homogenous Equations

- If you have a linear non-homogenous DE:

$$
\mathcal{L} y=f(t)
$$

- Its solution is given by:

$$
\begin{gathered}
y(t)=y_{\text {part }}(t)+y_{\text {homog }}(t) \\
y_{\text {homog }}(t)-\text { general solution } \\
y_{\text {part }}(t) \text { - particular solution }
\end{gathered}
$$

The Method of Undetermined Coefficients

- A way to solve certain non-homogenous linear DEs
- Can be used when $f(t)$ is an exponential, sin or cos, or polynomial

	$f(t)$
$f(t)=t^{k}$	$y(t)$
$f(t)=e^{\sigma t}$	$y(t)=A_{0}+A_{1} t+A_{2} t^{2} \ldots A_{k} k^{k}=P_{k}(t)$
$y(t)=A e^{\sigma t}$	
$f(t)=\sin \omega t$ or $f(t)=\cos \omega t$	$y(t)=A \sin \omega t+B \cos \omega t$
$f(t)=t^{k} \sin \omega t$ or $f(t)=t^{k} \cos \omega t$	$y=P_{k}(t) \sin \omega t+Q_{k}(t) \cos \omega t$
$f(t)=e^{\sigma t} \sin \omega t$ or $f(t)=e^{\sigma t} \cos \omega t$	$y(t)=A e^{\sigma t} \sin \omega t+B e^{\sigma t} \cos \omega t$
$f(t)=t^{k} e^{\sigma t}$	$y=P_{k}(t) e^{\sigma t}$
$f(t)=t^{k} e^{\sigma t} \sin \omega t$ or $f(t)=t^{k} e^{\sigma t} \sin \omega t$	$y=P_{k}(t) e^{\sigma t} \sin \omega t+Q_{k}(t) e^{\sigma t} \cos \omega t$

Using Method of Undetermined Coefficients

1. Initial Differential Equation:

$$
y^{\prime \prime}+6 y^{\prime}+8 y=e^{t}
$$

2. Guess in the same form:

$$
y=A e^{t}
$$

3. Plug into the initial equation:

$$
A e^{t}+6 A e^{t}+8 A e^{t}=e^{t}
$$

4. Solve for the constants:

$$
15 A=1
$$

5. Write the particular solution:

$$
y_{p}=\frac{1}{15} e^{t}
$$

The Method of Undetermined Coefficients Contd.

- If guess functions appear in the homogenous solution, multiply by the lowest power of t such that the guess no longer solves the homogenous equation
- Example:
- If e^{t} appears in the homogenous solution and $f(t)=e^{t}$, guess $A t e^{t}+B e^{t}$

Annihilators

- Annihilators are another method for solving nonhomogenous differential equations
- Look for an operator that "annihilates" the right-hand side

$f(t)$	Annihilator
1	$\frac{d}{d t}$
$P_{k}(t)$	$\frac{d^{k+1}}{d t^{k+1}}$
$e^{a t}$	$\frac{d}{d t}-a$
$A \sin \omega t+B \cos \omega t$	$\frac{d^{2}}{d t^{2}}+\omega^{2}$
$A e^{a t} \sin \omega t+B e^{a t} \cos \omega t$	$\left(\frac{d}{d t}-a\right)^{2}+\omega^{2}$
$P_{k}(t) \sin \omega t+Q_{k}(t) \cos \omega t$	$\left(\frac{d^{2}}{d t^{2}}+\omega^{2}\right)^{k+1}$
$P_{k}(t) e^{a t} \sin \omega t+Q_{k}(t) e^{a t} \cos \omega t$	$\left(\left(\frac{d}{d t}-a\right)^{2}+\omega^{2}\right)^{k+1}$

Annihilators Contd.

- How to use annihilators to solve particular solutions:
- Solve the homogenous equation
- Pick the right annihilator
- Apply the annihilator to the left-hand side
- Find the solutions to the new homogenous equation
- Identify the solutions that are not part of the original homogenous solution
- Plug in your guess and solve for the coefficients

Variation of Parameters

$$
y_{p}(t)=y_{2}(t) \int_{0}^{t} \frac{y_{1}(s) f(s)}{W(s)} d s-y_{1}(t) \int_{0}^{t} \frac{y_{2}(s) f(s)}{W(s)} d s
$$

W : Wronskian
y_{1} and y_{2} : homogenous solutions
f is the non-homogenous part

- Process:
- Find two solutions to the homogenous equation (could be given)
- Calculate the Wronskian
- Plug and chug

Laplace Transformations

- Process:
- Apply the Laplace transform to both sides of the differential equation
- Algebraically isolate the Laplacian of your function
- Inverse Laplace transform both sides
- May require partial fraction decomposition or other tricks

Laplace Transforms Tables

Function	Laplace Transform
$f(t)$	$F(s)$
1	$\frac{1}{s}$
t^{k}	$\frac{k!}{s^{k+1}}$
$t^{k} e^{-a t}$	$\frac{k!}{(s+a)^{k+1}}$
$\sin (b t)$	$\frac{b}{b^{2}+s^{2}}$
$\cos (b t)$	$\frac{s}{s^{2}+b^{2}}$
$e^{-a t} \sin (b t)$	$\frac{b}{b^{2}+(s+a)^{2}}$
$e^{-a t} \cos (b t)$	$\frac{s+a}{b^{2}+(s+a)^{2}}$

$f(t)$	$F(s)$
$f(t)+g(t)$	$F(s)+G(s)$
$f^{\prime}(t)$	$s F(s)-f(0)$
$f^{\prime \prime}(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$
$\frac{d^{k} f}{d t^{k}}$	$s^{k} F(s)-s^{k-1} f(0)-s^{k-2} f^{\prime}(0)-\ldots f^{(k-1)}(0)$
$t f(t)$	$-F^{\prime}(s)$
$t^{k} f(t)$	$(-1)^{k} F^{(k)}(s)$
$e^{a t} f(t)$	$F(s-a)$
$\frac{1}{t} f(t)$	$\int_{s}^{\infty} F(\sigma) d \sigma$

Mechanical Oscillators

- Derived from fundamental physics:

$$
m y^{\prime \prime}+\gamma y^{\prime}+k y=f(t)
$$

- Can be solved as a standard $2^{\text {nd }}$ order constant coefficient DE
- Frequently may see "natural frequency" $\omega_{n}=\sqrt{\frac{k}{m}}$

Mechanical Oscillators Contd.

- Use the radical part of the quadratic equation to assess cases:

$$
\sqrt{\gamma^{2}-4 m k}
$$

Criteria	Solution	Physical Scenario
$\gamma^{2}=0$	- $r= \pm b i$ - $y_{h}=C_{1} \cos (b t)+C_{2} \sin (b t)$	- Undamped - Oscillates forever
$\gamma^{2}<4 m k$	- $r=a \pm b i$ - $y_{h}=e^{a t}\left(C_{1} \cos (b t)+C_{2} \sin (b t)\right)$	- Underdamped - Oscillations die away slowly
$\gamma^{2}=4 m k$	$\text { - } \begin{aligned} & \\ & \text { - } y_{h}=C_{1} t e^{r_{1} t}+C_{2} e^{r_{1} t} \end{aligned}$	- Critically damped - Oscillations die away quickly
$\gamma^{2}>4 m k$	$\begin{aligned} & \text { - } \mathrm{r}=\mathrm{a} \pm \mathrm{b} \\ & \text { - } y_{h}=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} \end{aligned}$	- Overdamped - Oscillations mostly die away quickly

Electrical Oscillators

- Derived from circuit laws (for series RLC circuits specifically):

$$
L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=\frac{d V(t)}{d t}
$$

- Direct analogues can be drawn from mechanical to electrical oscillators
- $L=m$ (inductance)
- $R=\Upsilon$ (resistance)
- $\frac{1}{c}=k$ (inverse capacitance)
- Same cases and implications as mechanical oscillators

Thanks for Coming!

