MATH 257 Mid-semester CARE

 ReviewPlease join the queue!
https://queue.illinois.edu/q/queue/955

In-Person Resources

CARE Drop-in tutoring:
7 days a week on the 4th floor of Grainger Library!
Sunday - Thursday 12pm-10pm
Friday \& Saturday 12-6pm

Course Office hours:
TAs: Monday - Thursday 5-7pm in English Building 108 Instructors: Chuang MW 4-5PM in CAB 233
Leditzky MW 2:30-3:30PM in CAB 39
Luecke Tu 1:30-3:30PM in Altgeld 105

Subject	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday \uparrow	Saturday
Math 257	3 pm -9pm	2pm-4pm	2pm-6pm	2pm-5pm	2pm-9pm	1pm-6pm	12pm-6pm
		8pm-10pm	8pm-10pm	6pm-10pm			

Structure

First hour: Midterm 1 Content
30 mins: interactive big group presentation

30 mins: small group problem solving

Second hour: Midterm 2 Content
30 mins: interactive big group presentation

30 mins: small group problem solving

Last hour: Midterm 2+ Content (midterm 3 content so far) - go to the midterm 3 review session for worksheet/problems!

How has the class been so far?

Which statement best describes you?

1. I don't understand the concepts at all.
2. I'm not sure how to approach conceptual questions/what concepts are relevant.
3. I'm struggling to do all of the questions in time.

Midterm 1 Topics

- Linear systems
- Solving systems with matrices
- Reduced row echelon form
- Pivot columns: basic and free variables
- Row operations
- Vectors and spans
- Matrix operations
- Addition, subtraction, scalar multiplication, linear
combinations
- Transposition
- Matrix multiplication
- Properties of matrix multiplication
- Matrix inverses
- What matrices are invertible?
- Elementary matrices

Linear Systems

$$
a_{1} x_{1}+\ldots+a_{n} x_{n}=b
$$

and matrices

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

1. One unique solution
2. Infinite solutions
3. No solutions

Equivalent linear systems have the same set of solutions.

You can represent a linear system with matrices...

We often define a matrix in terms of its columns or its rows:
\mathbf{a}_{n} are all column vectors

$$
\left.A:=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right] \quad \text { or } \quad A: \left.=\begin{array}{c}
\mathbf{R}_{\mathbf{m}} \text { are all row } \\
\text { vectors }
\end{array} \right\rvert\, \begin{array}{c}
\mathbf{R}_{2} \\
\vdots \\
\mathbf{R}_{m}
\end{array}\right]
$$

Echelon Forms

Row Echelon Form (REF):

1. All nonzero rows above rows of all zeros
2. Leading entry (leftmost nonzero number) is strictly to the right of the leading entry of the row above
Reduced Row Echelon Form (RREF):
3. Leading entries of nonzero rows are all 1
4. Each leading entry is the only nonzero entry in the column

Gaussian Elimination (for a general solution)

General Process

1. Write down the augmented matrix.
2. Find the RREF of the matrix.
3. Write down linear equations based on the RREF.
4. Express pivot variables in terms of free variables (unless there are no free variables).
5. Solve only if there are no free variables and the matrix is consistent. (This means the solution is unique!)

$$
\begin{array}{cc:l}
{\left[\begin{array}{lll:l}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \leftarrow} \\
0=0 & {\left[\begin{array}{lll:l}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 2
\end{array}\right] \leftarrow} \\
& 0=2 \simeq
\end{array}
$$

Dependent AKA consistent

Inconsistent systems have no solutions.

Elementary Row Operations

Elementary operations do not change the solution set of a system.

There are three kinds:

1. Replacement $\left(R_{1} \rightarrow R_{1}+a * R_{2}\right)$
2. Scaling $\left(R_{1} \rightarrow a * R_{1}\right)$
3. Interchange $\left(R_{1} \rightarrow R_{2}\right)$

All elementary operations are reversible. Two matrices are row equivalent if elementary operations can turn one into the other.

Matrix Operations

a) The sum of $A+B$ is
$\left[\begin{array}{cccc}a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}\end{array}\right]$
b) The product $c A$ for a scalar c is
$\left[\begin{array}{cccc}c a_{11} & c a_{12} & \cdots & c a_{1 n} \\ c a_{21} & c a_{22} & \cdots & c a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ c a_{m 1} & c a_{m 2} & \cdots & c a_{m n}\end{array}\right]$

Addition: only defined for matrices with the same dimensions

Subtraction: the same as addition
Scalar multiplication: every entry is multiplied by the scalar

- Scalar = any real number

Linear combinations: any mixture of scalar multiplication and addition/subtraction of matrices

- $\operatorname{span}(\mathbf{a}, \mathrm{b})$ is a set of ALL the possible linear combinations of \mathbf{a} and \mathbf{b}

8. Consider the set

$$
W:=\left\{\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \in \mathbb{R}^{3}: a_{1}+a_{2}-a_{3}=0\right\}
$$

Can you write W as a span of two vectors?
Intuitive solution: can you find two independent vectors that satisfy the given relationship?

Rigorous solution: write the equation on the left as an augmented matrix. Find the general solution in parametric form.

$$
\left[\begin{array}{lll|l}
1 & 1 & -1 \mid 0
\end{array}\right] \longrightarrow\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
-a_{2}+a_{3} \\
a_{2} \\
a_{3}
\end{array}\right]=a_{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Matrix Operations (cont.)

Transpose: switch rows and columns

2	4	-1			
-10	5	11			
18	-7	6	\quad		
:---:	:---:	:---:	:---:		

Matrix-vector multiplication: $\mathrm{A} \mathbf{x}=$ $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}$ which means you multiply the entries of the vector with the columns of the matrix

Matrix-vector multiplication

- The number of entries in \mathbf{x} must match the number of columns in A

Matrix multiplication

Only defined for two matrices A and B if

- A has the dimensions $m \times n$ and B has the dimensions $n \times p$
- A^{k} (exponent) is only defined for a square matrix

Each entry of $A B$ is a linear combination of a row of \mathbf{A} with a column of B.

Properties of Matrix Multiplication

(a) $A(B C)=(A B) C$ (associative law of multiplication)
(b) $A(B+C)=A B+A C,(B+C) A=B A+C A$ (distributive laws)
(c) $r(A B)=(r A) B=A(r B)$ for every scalar r,
(d) $A(r B+s C)=r A B+s A C$ for every scalars r, s (linearity of matrix multiplication)
(e) $I_{m} A=A=A I_{n}$ (identity for matrix multiplication)

Transpose Theorem: $\quad(A B)^{T}=B^{T} A^{T}$
Matrix multiplication is NOT COMMUTATIVE: AB $=\mathrm{BA}$
11. Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ be a 3×3-matrix such that the columns of A sum up to the zero vector (i.e. $\mathbf{a}_{1}+\mathbf{a}_{2}+\mathbf{a}_{3}=\mathbf{0}$), and let $B=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$. What can you say about the product matrix $A B$?

Always write out the product if you don't see a pattern at first!

$$
A B=\left[\begin{array}{lll}
0 \mathbf{a}_{1}+0 \mathbf{a}_{2}+0 \mathbf{a}_{3} & \mathbf{a}_{1}+\mathbf{a}_{2}+\mathbf{a}_{3} & 2 \mathbf{a}_{1}+2 \mathbf{a}_{2}+2 \mathbf{a}_{3}
\end{array}\right]
$$

Try to relate back to the information given in the question $\rightarrow \mathrm{AB}$ is the zero matrix

Elementary Matrices

Any matrix that can be form from the identity matrix with one elementary row operation.
Identity Matrices

$$
\left.\left.\begin{array}{l}
1 \times 1
\end{array} \begin{array}{l}
{[1]}
\end{array}\right] \begin{array}{ll}
1 & \\
2 \times 2 & {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
3 \times 3
\end{array} \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

Ex.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \underset{R_{2} \rightarrow 3 R_{2}}{\leadsto}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \underset{R_{2} \leftrightarrow R_{3}}{\leadsto}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

Elementary Matrices (cont.)

Multiplying an elementary matrix (E) with another matrix (A) is the same as performing the elementary row operation on A.

This means you can represent putting a matrix in RREF as a sequence of matrix multiplications:
$E_{n} \ldots E_{2} E_{1} A=B$ where A is the original matrix and B is the RREF form
6. Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Using what you know about elementary matrices, determine A^{n} for any
natural number n.
What do you notice about A? What elementary row operation does A do?
$\mathrm{R} 1 \rightarrow \mathrm{R} 1+\mathrm{R} 2$
Each time you multiply A with itself, it will add one to the top right corner:

$$
\mathrm{A}^{\mathrm{n}}=\left[\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right]
$$

Matrix Inverses

Determinants:

Definition of an inverse:

$$
A C=I_{n}
$$

Requirements for a matrix to be invertible:

1. It has to be square
2. The determinant of the matrix cannot be 0 or
3. The RREF of A is the identity matrix or
4. A has as many pivots as columns/rows

Statements 2, 3, and 4 mean the same thing.

Calculating an Inverse

For 2×2 :

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Elementary Matrix strategy:

$$
A^{-1}=E_{m} E_{m-1} \ldots E_{1}=E_{m} E_{m-1} \ldots E_{1} I_{n}
$$

OR: set up an augmented matrix with the identity and reduce to RREF

$$
[A \mid I]=\left[\begin{array}{ccc|ccc}
2 & 0 & 0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll|lll}
1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & \frac{3}{2} & 1 & 0
\end{array}\right]
$$

Works for any square matrices of any size

Properties of Matrix Inverses

(a) A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A \quad$ (i.e. A is the inverse of A^{-1}). (b) $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
(c) A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Inverses are unique! Every invertible matrix only has one inverse.
Multiplying by a matrix inverse is the closest we get to dividing matrices.
Theorem 14. Let A be an invertible $n \times n$ matrix. Then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Always look for counterexamples!

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Both have non-zero determinants and pivots in all columns which means they are invertible, but the sum is the zero matrix, which is not invertible! Simple matrices like the identity matrix and zero matrix are often good counterexamples to try.

Small Group Time!

- Worksheets are organized by topic! Pick one or multiple to work through!

Midterm 2 Topic Summary

- LU Decomposition
- Lower/Upper Triangular Matrix
- LU for Linear Systems
- Permutation Matrix
- Vectors and Spans
- Inner Product
- Orthogonality
- Linear Independence
- Subspaces
- Column Space
- Null Space
- Basis and Dimension
- Fundamental Subspaces
- Orthonormal bases
- Orthogonal/normal Complements
- Graph and Adjacency Matrices
- Coordinates
- Coordinate Matrices

Upper/Lower Triangular Matrices

Upper Triangular:
$\left[\begin{array}{lllll}\star & \star & \star & \star & \star \\ 0 & \star & \star & \star & \star \\ 0 & 0 & \star & \star & \star \\ 0 & 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \star\end{array}\right]$

Finding this is like doing REF with only row replacement

Lower Triangular:
$\left[\begin{array}{lllll}\star & 0 & 0 & 0 & 0 \\ \star & \star & 0 & 0 & 0 \\ \star & \star & \star & 0 & 0 \\ \star & \star & \star & \ddots & \vdots \\ \star & \star & \star & \star & \star\end{array}\right]$

Keep track of your row operations to find L

LU Decomposition:

$$
A=L U
$$

- Not all matrices have LU decompositions
- LU decompositions are not unique (unlike inverses)

LU Decomposition Example

$$
\begin{aligned}
& \text { Determine the } L U \text {-decomposition of }\left[\begin{array}{lll}
1 & 2 & 2 \\
4 & 4 & 4 \\
4 & 4 & 8
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& L:=\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
4 & 1 & 1
\end{array}\right] \\
& U:=\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & -4 & -4 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

LU for Linear Systems

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -8 & -2 \\
0 & 0 & 1
\end{array}\right]}_{U}
$$

$$
\underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]}_{L}\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]}_{\mathbf{b}}
$$

$$
\underbrace{\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -8 & -2 \\
0 & 0 & 1
\end{array}\right]}_{U}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
5 \\
-12 \\
2
\end{array}\right]}_{\mathrm{c}} .
$$

Use LU decomposition to solve a linear system if:

1. A is $n \times n$ matrix
2. $A=L U$
3. $b \in R^{n}$

Step-by-step Algorithm

1. Find L and U
2. Solve for c using $L c=b$
3. Solve for x using $U x=c$

$$
A \mathbf{x}=\mathbf{b}
$$

$$
L \mathbf{c}=\mathbf{b} \longrightarrow U \mathbf{x}=\mathbf{c}
$$

$A \mathbf{x}=(L U) \mathbf{x}=L(U \mathbf{x})=L \mathbf{c}=\mathbf{b}$

Permutation Matrices: for matrices that don't have an LU decomposition

Theorem 21. Let A be $n \times n$ matrix. Then there is a permutation matrix P such that $P A$ has an LU-decomposition.

Step-by-step:

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
2 & 1 & 0
\end{array}\right] \underset{\substack{R_{1} \leftrightarrow R_{3}}}{\longrightarrow}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=P A
$$

- Use the interchange operation done on \mathbf{A} to an equivalent size identity matrix, this will be your \mathbf{P} matrix
- Solve the for the LU decomposition of PA
When we apply the \mathbf{P}^{-1} to $\mathbf{L U}$ (on the right),
$P=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$ we'll be able to get the original value of \mathbf{A}

$$
P A=\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
.5 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{=: L} \underbrace{\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & .5 & 0 \\
0 & 0 & 1
\end{array}\right]}_{=: U}
$$

The inner product of $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ is

Inner Product, Norm, and Distance

$$
\text { If } \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \text { and } \mathbf{w}=\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right] \text {, then } \mathbf{v} \cdot \mathbf{w} \text { is }
$$

$$
v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}
$$

$$
\begin{gathered}
\mathbf{v} \cdot \mathbf{w}=\mathbf{v}^{T} \mathbf{w} \\
\text { AKA the dot product } \\
\text { It is a scalar! }
\end{gathered}
$$

Definition. Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$.
The norm (or length) of \boldsymbol{v} is

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}} .
$$

The distance between \mathbf{v} and \mathbf{w} is

$$
\operatorname{dist}(\mathbf{v}, \mathbf{w})=\|\mathbf{v}-\mathbf{w}\|
$$

The norm is also a scalar!

Properties of the Inner Product: similar to scalars

Theorem 22. Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^{n}, and let c be any scalar. Then
(a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$ Commutative!
(b) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$ Distributive!
(c) $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(c \mathbf{v})$ Associative!
(d) $\mathbf{u} \cdot \mathbf{u} \geq \mathbf{0}$, and $\mathbf{u} \cdot \mathbf{u}=\mathbf{0}$ if and only if $\mathbf{u}=\mathbf{0}$.

Orthogonality

(fancy word for perpendicular)

Vectors are orthogonal if their dot product is zero.

Why? The dot product of two non-zero vectors can only be zero if the angle between them is 90 .

Orthonormality

A unit vector in \mathbb{R}^{n} is vector of length 1.

$$
\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

Orthonormal sets are all orthogonal to each other and unit vectors.

Ex.

$$
\begin{gathered}
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
\mathbf{u}_{\mathbf{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{u}_{\mathbf{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{gathered}
$$

Subspaces

\mathbf{W} is a subspace of \mathbf{V}, if:

- W contains the 0 vector
- Adding any 2 vectors in W together gives a vector also in W
- Multiplying any vector in W by any scalar gives a vector also in W

Theorem 24. Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}} \in \mathbb{R}^{n}$.
Then $\operatorname{Span}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right)$ is a subspace of \mathbb{R}^{n}.

Vector Spaces ' V ': a specific type of subspace

$u, v, w \in V$ and for all scalars $c, d \in \mathbb{R}$:
$\boldsymbol{\ominus} \mathbf{u}+\mathbf{v}$ is in V. (V is "closed under addition".)
$\boldsymbol{\theta} \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
$\boldsymbol{\Theta}(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
$\boldsymbol{\Theta}$ There is a vector (called the zero vector) $\mathbf{0}_{V}$ in V such that $\mathbf{u}+\mathbf{0}_{V}=\mathbf{u}$
$\boldsymbol{\ominus}$ For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V satisfying $\mathbf{u}+(-\mathbf{u})=\mathbf{0}_{V}$.
$\Theta \mathbf{c u}$ is in V. (V is "closed under scalar multiplication".)
$\Theta c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
$\boldsymbol{\Theta}(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
$\boldsymbol{\theta}(c d) \mathbf{u}=c(d \mathbf{u})$.
$\Theta \mathbf{1} \mathbf{u}=\mathbf{u}$.
(a) $W_{1}=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a-2 b=c, 4 a+2 c=0\right\} \subseteq \mathbb{R}^{3}$.

Counterexamples

W_{3} : not closed under addition

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

$$
(-1)\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

W_{4} : not closed under scalar multiplication

Which are subspaces of the given vector spaces?
(a) $W_{1}=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a-2 b=c, 4 a+2 c=0\right\} \subseteq \mathbb{R}^{3}$.
(b) $W_{2}=\left\{\left[\begin{array}{c}a-b \\ c \\ a+c \\ a-2 b-c\end{array}\right]: a, b, c \in \mathbb{R}\right\} \subseteq \mathbb{R}^{4}$.
(c) $W_{3}=\left\{\left[\begin{array}{l}a \\ b\end{array}\right]: a \cdot b \geq 0\right\} \subseteq \mathbb{R}^{2}$.
W_{1} : relate to a Nullspace
$\left[\begin{array}{ccc}1 & -2 & -1 \\ 4 & 0 & 2\end{array}\right]$

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & -2 & -1
\end{array}\right] \begin{aligned}
& \mathrm{W}_{2} \text { : relate to a } \\
& \text { Column space }
\end{aligned}
$$

(d) $W_{4}=\left\{\left[\begin{array}{c}a \\ b\end{array}\right]: b \geq 0\right\} \subseteq \mathbb{R}^{2}$.
(e) $W_{5}=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a-2 b=1,4 a+2 c=0\right\} \subseteq \mathbb{R}^{3}$.
W_{5} : does not contain the zero vector

Column Spaces

Definition. The column space, written as $\operatorname{Col}(A)$, of an $m \times n$ matrix A is the set of all linear combinations of the columns of A. If $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{\mathbf{n}}\end{array}\right]$, then $\operatorname{Col}(A)=\operatorname{span}\left(\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{n}}\right)$.

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
1 & -8 & -18 & -32 \\
-2 & 20 & 51 & 87
\end{array}\right] \\
{\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
1 & -8 & -18 & -32 \\
-2 & 20 & 51 & 87
\end{array}\right] \xrightarrow[R_{2}-R_{1} \rightarrow R_{2}]{R_{3}+2 R_{1} \rightarrow R_{3}}\left[\begin{array}{cccc}
\frac{1}{0} & -10 & -24 & -42 \\
0 & \underline{2} & 6 & 10 \\
0 & \underline{3} & 3
\end{array}\right]}
\end{gathered}
$$

How to solve for $\operatorname{Col}(\mathrm{A}):$

1. Put matrix A into REF
2. Find all the pivots of A
3. Map the pivots to the columns of your original matrix, A

$$
\operatorname{Col}(A)=\left\{\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-10 \\
-8 \\
20
\end{array}\right],\left[\begin{array}{c}
-24 \\
-18 \\
51
\end{array}\right]\right\}
$$

Null Spaces

Definition. The nullspace of an $m \times n$ matrix A, written as $\operatorname{Nul}(A)$, is the set of all solutions to the homogeneous equation $A \mathbf{x}=\mathbf{0}$; that is, $\operatorname{Nul}(A)=\left\{\mathbf{v} \in \mathbb{R}^{n}: A \mathbf{v}=\mathbf{0}\right\}$.

How to solve for $\operatorname{NuI}(\mathrm{A})$:

1. Set matrix A into Augmented Matrix with zeros on the right $(\mathbf{A x}=\mathbf{0})$
2. Get A into RREF
3. Solve for \mathbf{x}
$\operatorname{Nul}(A)=\operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right)$

Construct a matrix A such that

$$
\operatorname{Nul}(A)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right)
$$

Step 1. What are the dimensions of A?
A has 3 columns, since the vectors have 3 entries Step 2. How many pivots/free variables does A have?

2 free variables +1 pivot variable Step 3.

$$
\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=0 \quad\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=0 \longrightarrow\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]
$$

Linear Independence

Definition. Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are said to be linearly independent if the equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution (namely, $x_{1}=x_{2}=\cdots=x_{p}=0$).
We say the vectors are linearly dependent if they are not linearly independent.
Theorem 30. Let A be an $m \times n$ matrix. The following are equivalent:
© The columns of A are linearly independent.
(©) $A \mathbf{x}=\mathbf{0}$ has only the solution $\mathbf{x}=\mathbf{0}$.
$\boldsymbol{\ominus}$ A has n pivots.
$\boldsymbol{\theta}$ there are no free variables for $A \mathbf{x}=\mathbf{0}$.

Basis and Dimension

Definition. Let V be a vector space. A sequence of vectors $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right)$ in V is a basis of V if
$\boldsymbol{\bullet} \boldsymbol{V}=\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right)$, and
$\Theta\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right)$ are linearly independent.
The number of vectors in a basis of V is the dimension of V.

Find a basis for the following subspaces:
(i)

$$
W_{3}=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}: a=d=0\right\}
$$

(ii)

$$
W_{4}=\left\{p(t) \in \mathbb{P}_{2}: \frac{d}{d t} p(t)=0\right\}
$$

(Recall that \mathbb{P}_{2} is the vector space of polynomials of degree at most 2).
(i) The dimension is only 2 since a and d are fixed. Pick an easy basis!

$$
\left\{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right\}
$$

(ii) First write a general expression for P_{2} and its derivative to find:
$W_{2}=\left\{a_{0}+a_{1} t+a_{2} t^{2}: a_{1}=a_{2}=0\right\} \longrightarrow$ Only constants are allowed: $\{1\}$

Basis and Dim of four subspaces:

Rank [r] : Number of pivots matrix has
Let A be an $m \times n$ matrix with rank r

- $\quad \operatorname{dim} \operatorname{NuI}(A)=n-r$
- $\quad \operatorname{dim} \operatorname{Col}(A)=r$
- $\quad \operatorname{dim} \operatorname{Nul}\left(A^{\top}\right)=m-r$
- $\quad \operatorname{dim} \operatorname{Col}\left(\mathrm{A}^{\top}\right)=r$

Graphs and Adjacency Matrices

A graph is a set of nodes (or: vertices) that are connected through edges.
Definition. Let \mathcal{G} be a graph with n nodes. The adjacency matrix of \mathcal{G} is the $n \times n$-matrix $A=\left(a_{i j}\right)$ such that

$$
a_{i j}= \begin{cases}1 & \text { if there is an edge between node } i \text { and node } j \\ 0 & \text { otherwise }\end{cases}
$$

N1
\(\left[\begin{array}{llll}0 \& N2 \& N4

0 \& 1 \& 1 \& 0

1 \& 1 \& 1 \& 0

1 \& 1 \& 0 \& 1

0 \& 0 \& 1 \& 0\end{array}\right]\)| Node 1: Connected to N2 \& N3 |
| :--- |
| Node 2: Connected to N1, N2, \& N3 |
| Node 3: Connected to N1, N2 \& N4 |
| Node 4: Connected to N3 |

Walks and Paths

Definition. A walk of length k on a graph of is a sequence of $k+1$ vertices and k edges between two nodes (including the start and end) that may repeat.A path is walk in which all vertices are distinct.

Example. Count the number of walks of length 2 from node 2 to node 3 and the number of walks of length 3 from node 3 back to node 3 :

$\boldsymbol{\ominus}$ Node 2 to Node 3: 2 walks of length 2
Θ Node 3 to Node 3: 3 walks of length 3

Directed Graphs

Definition. A directed graph is a set of vertices connected by edges, where the edges have a direction associated with them.

\(\left[\begin{array}{llll}N1 \& N2 \& N3 \& N4

0 \& 0 \& 0 \& 0

1 \& 0 \& 1 \& 0

1 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 0\end{array}\right] \quad\)| Node 1: Nothing pointing to N1 |
| :--- |
| Node 2: N 1 and N3 pointing to N2 |
| Node 3: N1 points to N3 |
| Node 4: N 2 and N3 pointing to N4 |

Definition. Let G be a directed graph with m edges and n nodes. The adjacency matrix of G is the $n \times n$ matrix $A=\left(a_{i, j}\right)_{i, j}$ with

$$
a_{i, j}= \begin{cases}1, & \text { if there is a directed edge from node } j \text { to node } i \\ 0, & \text { otherwise }\end{cases}
$$

Edge-Node Incidence

Definition. Let G be a directed graph with m edges and n nodes. The edge-node incidence matrix of G is the $m \times n$ matrix $A=\left(a_{i, j}\right)_{i, j}$ with

$$
a_{i, j}=\left\{\begin{array}{cl}
-1, & \text { if edge } i \text { leaves node } j \\
+1, & \text { if edge } i \text { enters node } j \\
0, & \text { otherwise }
\end{array}\right.
$$

\(\left[\begin{array}{cccc}N1 \& N2 \& N3 \& N4

-1 \& 1 \& 0 \& 0

-1 \& 0 \& 1 \& 0

0 \& 1 \& -1 \& 0

0 \& -1 \& 0 \& 1

0 \& 0 \& -1 \& 1\end{array}\right]\)| Edge 1: Leaves N1; Enters N2 |
| :--- |
| Edge 2: Leaves N1; Enters N3 |
| Edge 3: Leaves N3; Enters N2 |
| Edge 4: Leaves N2; Enters N4 |
| Edge 5: Leaves N3; Enters N4 |

'Connectedness'

Definition. A connected component of an undirected graph is a part in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the rest of the graph. The connected components of a directed graph are those of its underlying undirected graph. A graph is connected if only has one connected component.

A graph with one connected component:

A graph with two connected components:

Theorem 40. Let \mathcal{G} be a directed graph and let A be its edge-node incidence matrix. Then $\operatorname{dim} \operatorname{Nul}(A)$ is equal to the number of connected components of \mathcal{G}.

Cycles

Definition. A cycle in an undirected graph is a path in which all edges are distinct and the only repeated vertices are the first and last vertices. By cycles of a directed graph we mean those of its underlying undirected graph.

Theorem 41. Let \mathcal{G} be a directed graph and let A be its edge-node incidence matrix. Then the cycle space of \mathcal{G} is equal to $\operatorname{Nul}\left(A^{T}\right)$.

Orthogonal Complements

Definition. Let W be a subspace of \mathbb{R}^{n}. The orthogonal complement of W is the subspace W^{\perp} of all vectors that are orthogonal to W; that is

$$
W^{\perp}:=\left\{\mathbf{v} \in \mathbb{R}^{n}: \mathbf{v} \cdot \mathbf{w}=0 \text { for all } \mathbf{w} \in W\right\} .
$$

Some helpful theorems:

- $\left(W^{\perp}\right)^{\perp}=W$
- $\operatorname{Nul}(A)=\operatorname{Col}\left(A^{T}\right)^{\perp}$
- $\operatorname{Nul}(A)^{\perp}=\operatorname{Col}\left(A^{T}\right)$
- $\operatorname{Nul}\left(A^{T}\right)=\operatorname{Col}(A)^{\perp}$

Theorem 43. Let V be a subspace of \mathbb{R}^{n}. Then $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$.

Coordinates

Generally, if $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{\mathrm{p}}$ are a basis B of vector space V, the coordinate vector of any vector \mathbf{w} in V is:
Standard basis (ε):

$$
\boldsymbol{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \boldsymbol{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$\mathbf{w}_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ c_{3} \\ \vdots \\ c_{p}\end{array}\right], \quad$ if $\mathbf{w}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}$

This coordinate vector is unique!

Let $\mathcal{A}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)$ be a basis of \mathbb{R}^{3}.
(1) Find a 3×3-matrix B such that $\mathbf{v}=B \mathbf{v}_{\mathcal{A}}$ for all $\mathbf{v} \in \mathbb{R}^{3}$.
(2) Find a 3×3-matrix C such that $\mathbf{v}_{\mathcal{A}}=C \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$.
(1) Use the definition of coordinates to find:

$$
\mathbf{v}=\left[\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}
\end{array}\right] v_{\mathcal{A}}
$$

(2) Multiply B^{-1} on both sides:

Change of Basis Matrix

Definition. Let \mathcal{B} and \mathcal{C} be two bases of \mathbb{R}^{n}. The change of basis matrix $I_{\mathcal{C}, \mathcal{B}}$ is the matrix such that for all $\mathbf{v} \in \mathbb{R}^{n}$

$$
I_{\mathcal{C}, \mathcal{B}} \mathbf{v}_{\mathcal{B}}=\mathbf{v}_{\mathcal{C}} \quad \begin{aligned}
& \text { Matrix allowing us to go from } \\
& \text { coordinates mapped in } \mathbf{B} \text { to be } \\
& \text { mapped onto } \mathbf{C}
\end{aligned}
$$

Theorem 45. Let $\mathcal{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathbf{n}}\right)$ be a basis of \mathbb{R}^{n}. Then

That is, for all $\mathbf{v} \in \mathbb{R}^{n}$,

$$
I_{\mathcal{E}_{n}, \mathcal{B}}=\left[\begin{array}{lll}
\mathbf{b}_{1} & \ldots & \mathbf{b}_{n}
\end{array}\right]
$$

$$
\mathbf{v}=\left[\begin{array}{lll}
\mathbf{b}_{1} & \ldots & \mathbf{b}_{n}
\end{array}\right] \mathbf{v}_{\mathcal{B}}
$$

How do we compute change of basis matrix:

What we know:

- $\mathrm{I}_{\mathrm{En}, \mathrm{B}}=$ Matrix that maps coordinates in B onto Standard
- $\mathrm{I}_{\mathrm{B}, \mathrm{En}}=$ Matrix that maps coordinates in Standard onto B
- $\mathrm{I}_{\mathrm{En}, \mathrm{C}}=$ Matrix that maps coordinates in C onto Standard
- $\quad \mathrm{I}_{\mathrm{C}, \mathrm{En}}=$ Matrix that maps coordinates in Standard onto C

$$
I_{\mathcal{B}, \mathcal{E}_{n}} I_{\mathcal{E}_{n}, \mathcal{C}}
$$

From right to left:
We map coordinates from C into the standard coordinate plane, then, we map the newly acquired standard coordinates onto B's coordinate plane
aка: $I_{\mathcal{B}, \mathcal{C}}$

Orthogonal and Orthonormal Bases

Definition. An orthogonal basis (an orthonormal basis) is an orthogonal set of vectors (an orthonormal set of vectors) that forms a basis.

Theorem 47. Let $\mathcal{B}:=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right)$ be an orthogonal basis of \mathbb{R}^{n}, and let $\mathbf{v} \in \mathbb{R}^{n}$. Then

$$
\mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{b}_{1}}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}} \mathbf{b}_{1}+\ldots+\frac{\mathbf{v} \cdot \mathbf{b}_{n}}{\mathbf{b}_{n} \cdot \mathbf{b}_{n}} \mathbf{b}_{n}
$$

When \mathcal{B} is orthonormal, then $\mathbf{b}_{i} \cdot \mathbf{b}_{i}=1$ for $i=1, \ldots, n$.

Theorem 48. Let $\mathcal{U}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{n}}\right)$ be an orthonormal basis of \mathbb{R}^{n}. Then

$$
\mathcal{U}_{\mathcal{U}, \mathcal{E}_{n}}=\left[\begin{array}{lll}
\mathbf{u}_{1} & \ldots & \mathbf{u}_{n}
\end{array}\right]^{T} .
$$

Why? An $n \times n$-matrix Q is orthogonal if $Q^{-1}=Q^{T}$

Small Group Time!

- Worksheets are organized by topic! Pick one or multiple to work through!

Midterm 3 Content (so far)

- Linear Transformation
- Coordinate Matrices
- Determinants
- Eigenvectors and eigenvalues
- Markov Matrices
- Diagonalization

Linear Transformation

Definition. Let V and W be vector spaces. A map $T: V \rightarrow W$ is a linear transformation if

$$
T(a \mathbf{v}+b \mathbf{w})=a T(\mathbf{v})+b T(\mathbf{w})
$$

for all $\mathbf{v}, \mathbf{w} \in V$ and all $a, b \in \mathbb{R}$.

$$
\begin{aligned}
T\left(\mathbf{0}_{V}\right)= & T\left(0 \cdot \mathbf{0}_{V}\right)=0 \cdot T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W} \leadsto T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W} \\
& \text { Check linearity with the zero vector! }
\end{aligned}
$$

Theorem 50. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there is a $m \times n$ matrix A such that
$\boldsymbol{\Theta} T(\mathbf{v})=A \mathbf{v}, \quad$ for all $\mathbf{v} \in \mathbb{R}^{n}$.
$\boldsymbol{\ominus} A=\left[\begin{array}{llll}T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \ldots & T\left(\mathbf{e}_{n}\right)\end{array}\right]$, where $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right)$ is the standard basis of \mathbb{R}^{n}.
Remark. We call this A the coordinate matrix of T with respect to the standard bases - we write $T_{\mathcal{E}_{m}, \mathcal{E}_{n}}$.

Coordinate matrices

Theorem 51. Let V, W be two vector space, let $\mathcal{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ be a basis of V and $\mathcal{C}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right)$ be a basis of W, and let $T: V \rightarrow W$ be a linear transformation. Then there is a $m \times n$ matrix $T_{\mathcal{C}, \mathcal{B}}$ such that
© $T(\mathbf{v})_{\mathcal{C}}=T_{\mathcal{C}, \mathcal{B}} \mathbf{v}_{\mathcal{B}}, \quad$ for all $\mathbf{v} \in V$.
$\boldsymbol{\ominus} T_{\mathcal{C}, \mathcal{B}}=\left[\begin{array}{llll}T\left(\mathbf{b}_{1}\right)_{\mathcal{C}} & T\left(\mathbf{b}_{2}\right)_{\mathcal{C}} & \ldots & T\left(\mathbf{b}_{n}\right)_{\mathcal{C}}\end{array}\right]$.

$\mathbf{v}_{\mathcal{B}}:$ coordinate vector in $\mathbb{R}^{n} \xrightarrow{\text { multiply by } T_{\mathcal{C}, \mathcal{B}}}$ coordinate vector in $\mathbb{R}^{m}: T_{\mathcal{C}, \mathcal{B}} \mathrm{v}$

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be such that $T(\mathbf{v})=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right] \mathbf{v} \quad \mathcal{B}:=\left(\mathbf{b}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$
Compute $T_{\mathcal{B}, \mathcal{B}}$. Let $\mathbf{v}=\mathbf{b}_{1}+\mathbf{b}_{2}$. Use $T_{\mathcal{B}, \mathcal{B}}$ to compute $T(\mathbf{v})$

$$
T_{\mathcal{B}, \mathcal{B}}=\left[\begin{array}{ll}
T\left(\mathbf{b}_{1}\right)_{\mathcal{B}} & T\left(\mathbf{b}_{2}\right)_{\mathcal{B}}
\end{array}\right]
$$

$$
T\left(\mathbf{b}_{1}\right)=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]=2\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=2 \mathbf{b}_{1}+0 \mathbf{b}_{2}
$$

$$
\begin{gathered}
T(\mathbf{v})_{\mathcal{B}}=T_{\mathcal{B}, \mathcal{B}} \mathbf{v}_{\mathcal{B}} \\
T_{\mathcal{B}, \mathcal{B}}=\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{gathered}
$$

$$
T\left(\mathbf{b}_{2}\right)=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right]=0 \mathbf{b}_{1}+4 \mathbf{b}_{2}
$$

$$
T(\mathbf{v})=2 \mathbf{b}_{1}+4 \mathbf{b}_{2}=\left[\begin{array}{l}
6 \\
2
\end{array}\right]
$$

Theorem 52. Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear transformation and \mathcal{A} and \mathcal{B} be two bases of \mathbb{R}^{m} and \mathcal{C}, \mathcal{D} be two bases of \mathbb{R}^{n}. Then

$$
T_{\mathcal{C}, \mathcal{A}}=I_{\mathcal{C}, \mathcal{D}} T_{\mathcal{D}, \mathcal{B}} I_{\mathcal{B}, \mathcal{A}}
$$

Determinants (how to find them)

2×2 : easy formula!

$$
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

Triangular: multiply all of the diagonal entries together

Otherwise: cofactor expansion
Note: if the matrix A is not invertible, $\operatorname{det}(A)=0 \leftarrow$ this is the definition of a determinant!

Cofactor Expansion

Definition. Let A be an $n \times n$-matrix. The (\mathbf{i}, \mathbf{j})-cofactor of A is the scalar $C_{i j}$ defined by

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}
$$

Procedure for large matrices:

- Pick one row or one column to eliminate
- Go one by one in the other dimension (row or column) and ignore all the entries in that row + column
- Calculate the cofactor
- Find the determinant of the remaining matrix

This is very impractical for anything larger than 3×3 !

Cofactor Expansion Example

$$
\begin{gathered}
\left.\begin{array}{ccc}
1 & 2 & 0 \\
3 & -1 & 2 \\
2 & 0 & 1
\end{array}\left|=2 \cdot(-1)^{1+2} \cdot\right| \begin{array}{cc}
& - \\
3 & 2 \\
2
\end{array}\left|+(-1) \cdot(-1)^{2+2} \cdot\right| \begin{array}{ccc}
1 & & 0 \\
1 & + & \\
2 & 1
\end{array}\left|+0 \cdot(-1)^{3+2} \cdot\right| \begin{array}{ccc}
1 & 0 \\
3 & 2 \\
2
\end{array} \right\rvert\, \\
=-2 \cdot(-1)+(-1) \cdot 1-0=1
\end{gathered}
$$

$$
\left.\begin{array}{ccc}
1 & 2 & 0 \\
3 & -1 & 2 \\
2 & 0 & 1
\end{array}\left|=0 \cdot(-1)^{1+3} \cdot\right| \begin{array}{cc}
& \\
3 & -1 \\
2 & 0
\end{array}\left|+2 \cdot(-1)^{2+3} \cdot\right| \begin{array}{ccc}
1 & 2 & \\
& & - \\
2 & 0
\end{array}\left|+1 \cdot(-1)^{3+3} \cdot\right| \begin{array}{cc}
1 & 2 \\
3 & -1
\end{array} \right\rvert\,
$$

$$
=0-2 \cdot(-4)+1 \cdot(-7)=1
$$

Properties of determinants

(Replacement) Adding a multiple of one row to another row does not change the determinant.
(Interchange) Interchanging two different rows reverses the sign of the determinant. (Scaling) Multiplying all entries in a row by s, multiplies the determinant by s.

These three things also apply to the columns of a matrix!

Let A, B be two $n \times n$-matrices. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
If A is invertible, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$
Let A be an $n \times n$-matrix. Then $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$

Eigenvectors and Eigenvalues

An eigenvector of A is a nonzero $\mathbf{v} \in \mathbb{R}^{n}$ such that

$A \mathbf{v}=\lambda \mathbf{v}$
 Peigenvalue

An eigenspace is all the eigenvectors associated with a specific eigenvalue.

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& A\left[\begin{array}{l}
x \\
x
\end{array}\right]=1 \cdot\left[\begin{array}{l}
x \\
x
\end{array}\right] \\
& A\left[\begin{array}{c}
-x \\
x
\end{array}\right]=-1 \cdot\left[\begin{array}{c}
-x \\
x
\end{array}\right]
\end{aligned}
$$

Eigenvectors are always linearly independent!

Calculating eigenvectors and eigenvalues

Theorem 59. Let A be an $n \times n$ matrix. Then $p_{A}(t):=\operatorname{det}(A-t l)$ is a polynomial of degree n. Thus A has at most n eigenvalues.

Definition. We call $p_{A}(t)$ the characteristic polynomial of A.
The roots of the characteristic polynomial are the eigenvalues
Let A be $n \times n$ matrix and let λ be eigenvalue of A. Then

$$
\operatorname{Eig}_{\lambda}(A)=\operatorname{Nul}(A-\lambda I) .
$$

General algorithm: 1) find $\operatorname{det}(A-\lambda I)$ and solve for λ 2) plug each eigenvalue back into $A-\lambda I$
3) solve for the nullspace

Eigenvalue/eigenvector example

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
3-\lambda & 2 & 3 \\
0 & 6-\lambda & 10 \\
0 & 0 & 2-\lambda
\end{array}\right|=(3-\lambda)(6-\lambda)(2-\lambda)
$$

$\leadsto A$ has eigenvalues $2,3,6$. The eigenvalues of a triangular matrix are its diagonal entries.

$$
\begin{array}{ll}
\lambda_{1}=2: & A-2 I=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 & 10 \\
0 & 0 & 0
\end{array}\right] \underset{R R E F}{\longrightarrow}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 2.5 \\
0 & 0 & 0
\end{array}\right] \leadsto \operatorname{Nul}(A-2 I)=\operatorname{span}\left(\left[\begin{array}{c}
2 \\
-5 / 2 \\
1
\end{array}\right]\right) \\
\lambda_{2}=3: & A-3 I=\left[\begin{array}{ccc}
0 & 2 & 3 \\
0 & 3 & 10 \\
0 & 0 & -1
\end{array}\right] \underset{R R E F}{\longrightarrow}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \leadsto \operatorname{Nul}(A-3 I)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right) \\
\lambda_{3}=6: & A-6 I=\left[\begin{array}{ccc}
-3 & 2 & 3 \\
0 & 0 & 10 \\
0 & 0 & -4
\end{array}\right] \xrightarrow[R R E F]{\longrightarrow}\left[\begin{array}{ccc}
1 & \frac{-2}{3} & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \leadsto \operatorname{Nul}(A-6 I)=\operatorname{span}\left(\left[\begin{array}{l}
\frac{2}{3} \\
1 \\
0
\end{array}\right]\right)
\end{array}
$$

Properties of Eigenvalues and Eigenvectors

For a 2×2 matrix:
$p(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)$

Multiplicity:

- Algebraic multiplicity is the multiplicity of λ in the characteristic polynomial
- Geometric multiplicity is the dimension of the eigenspace of λ

Trace: the sum of the diagonal entries of a matrix

- $\operatorname{Tr}(A)=$ sum of all eigenvalues
- $\operatorname{det}(A)=$ product of all eigenvalues

Markov Matrices

$$
\left[\begin{array}{ccc}
0 & .25 & .4 \\
1 & .25 & .2 \\
0 & .5 & .4
\end{array}\right]
$$

Definition: a square matrix with non-negative entries where the sum of terms in each column is 1

A probability vector has entries that add up to 1

The λ of a Markov Matrix:

- 1 is always an eigenvalue, and the corresponding eigenvector is called stationary
- All other $|\lambda| \leq 1$

Why is a Markov Matrix useful?

Theorem 65. Let A be an $n \times n$-Markov matrix with only positive entries and let $\mathbf{z} \in \mathbb{R}^{n}$ be a probability vector. Then

$$
\mathbf{z}_{\infty}:=\lim _{k \rightarrow \infty} A^{k} \mathbf{z} \text { exists, }
$$

and \mathbf{z}_{∞} is a stationary probability vector of $A\left(i e . A \mathbf{z}_{\infty}=\mathbf{z}_{\infty}\right)$.
This basically says you can left multiply A with zinfinitely and you will get a stationary probability vector (steady state)

x_{t} : \% of population employed at time t y_{t} : \% of population unemployed at time t

$$
\left[\begin{array}{l}
x_{t+1} \\
y_{t+1}
\end{array}\right]=\left[\begin{array}{l}
.9 x_{t}+.5 y_{t} \\
.1 x_{t}+.5 y_{t}
\end{array}\right]=\left[\begin{array}{ll}
.9 & .5 \\
.1 & .5
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]
$$

How to approach a Markov Matrix problem

1. Write out the Markov Matrix A. If it helps, make a graph like on the previous slide.
2. Determine what the question is asking you to solve for. Steady state? Intermediate state?
3. Write the probability vector of what you know of the initial state, if possible.
4. To solve for the steady state: Find A-1*। and solve for the nullspace, then find the probability vector in the nullspace
5. To solve for an intermediate state: multiply the initial state vector by the Markov matrix the appropriate number of times.

Diagonalization

$$
P=\left[\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{\mathbf{n}}
\end{array}\right]
$$

v are eigenvectors

For a matrix A to be diagonalizable:

- A must be square
- A must have as many unique eigenvectors as rows/columns (i.e. it has an eigenbasis)
- $A=P D P^{-1}$

Observe that

$$
A=P D P^{-1}=I_{\mathcal{E}_{n}, \mathcal{B}} D I_{\mathcal{B}, \mathcal{E}_{n}}
$$

Where B is the eigenbasis \rightarrow diagonalizing is a base change to the eigenbasis

In-Person Resources

CARE Drop-in tutoring:
7 days a week on the 4th floor of Grainger Library!
Sunday - Thursday 12pm-10pm
Friday \& Saturday 12-6pm

Course Office hours:
TAs: Monday - Thursday 5-7pm in English Building 108 Instructors: Chuang MW 4-5PM in CAB 233
Leditzky MW 2:30-3:30PM in CAB 39
Luecke Tu 1:30-3:30PM in Altgeld 105

Subject	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday \uparrow	Saturday
Math 257	3 pm -9pm	2pm-4pm	2pm-6pm	2pm-5pm	2pm-9pm	1pm-6pm	12pm-6pm
		8pm-10pm	8pm-10pm	6pm-10pm			

