MATH 241

Midterm 2 Review

Keep in mind that this presentation was created by CARE tutors, and while it is thorough, it is not comprehensive.

QR Code to the Queue

The queue contains the worksheet and the solution to this review session

Partial Derivatives

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \quad f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

$$
f(x, y) \quad \Rightarrow \quad f_{x}(x, y)=\frac{\partial f}{\partial x} \& f_{y}(x, y)=\frac{\partial f}{\partial y}
$$

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(f_{x}\right)=\left(f_{x}\right)_{x}=f_{x x} \\
& \frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}\left(f_{y}\right)=\left(f_{y}\right)_{y}=f_{y y}
\end{aligned} \quad \begin{aligned}
& \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}\left(f_{x}\right)=\left(f_{x}\right)_{y}=f_{x y} \\
& \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}\left(f_{y}\right)=\left(f_{y}\right)_{x}=f_{y x}
\end{aligned}
$$

Linear Approximation

- If $z=f(x, y)$ and f is differentiable at (a, b), then the value of $f(m, n)$ can be approximated by

$$
\begin{gathered}
f(\mathrm{~m}, \mathrm{n}) \approx L(\mathrm{~m}, \mathrm{n}) \\
L(\mathrm{~m}, \mathrm{n})=\mathrm{f}(\mathrm{a}, \mathrm{~b})+\mathrm{f}_{\mathrm{x}}(\mathrm{a}, \mathrm{~b}) \cdot(\mathrm{m}-\mathrm{a})+\mathrm{f}_{\mathrm{y}}(\mathrm{a}, \mathrm{~b}) \cdot(\mathrm{n}-\mathrm{b})
\end{gathered}
$$

Example Question \#1

- A contour map for a function f of x, y, and a point P in the plane are given below. Determine if the following quantities are negative, zero, or positive: $f_{x}(P), f_{x x}(P), f_{x y}(P)$

Example Solution \#1

- $f_{x}(P)$: positive
- $f_{x x}(P)$: positive
- $f_{x y}(P)$: negative

Limits and Continuity

- When computing multivariable limits,
- Check multiple paths (lines and power functions) to see if there are conflicting values. If so, limits DNE
- Factor (difference of squares)
- Use polar coordinates
- Try squeeze theorem

Example Question \#2

- Compute the following limits

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+y^{2}} \quad \lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}} \quad \lim _{x \rightarrow 0} x^{3} \cos \left(\frac{2}{x}\right) \quad \lim _{(x, y) \rightarrow(-1,0)} \frac{x^{2}+x y+3}{x^{2} y-5 x y+y^{2}+1}
$$

- Determine whether the following function is continuous at $(0,0)$

$$
f(x, y)=\left[\begin{array}{ll}
\frac{\mathrm{xy}}{\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2}},(x, y) \neq(0,0) \\
0 & ,(x, y)=(0,0)
\end{array}\right]
$$

Example Solution \#2

- Compute the following limits

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+y^{2}}=0 \quad \text { (Use polar coordinates) } \\
& \lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}}{x^{2}+y^{8}}=\text { DNE } \quad\left(\text { Check } x=y^{4} \text { and } x=-y^{4}\right) \\
& \lim _{x \rightarrow 0} x^{3} \cos \left(\frac{2}{x}\right) \quad=0 \quad \text { (Squeeze Theorem) } \\
& \lim _{(x, y) \rightarrow(-1,0)} \frac{x^{2}+x y+3}{x^{2} y-5 x y+y^{2}+1} \quad=4 \quad \text { (Plug in }(-1,0) \text { directly) }
\end{aligned}
$$

Example Solution \#2

- Determine whether the following function is continuous at $(0,0)$

$$
f(x, y)=\left[\begin{array}{ll}
\frac{\mathrm{xy}}{\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2}}, & (x, y) \neq(0,0) \\
0 & ,(x, y)=(0,0)
\end{array}\right]
$$

On line $y=x, f(x, y)=1 / 3$ at any point except $(0,0)$. Since there is a discontinuity at $(0,0)$, the function is not continuous.

Extreme Value Theorem

If $f(x, y)$ is continuous on a closed and bounded set D, then it is guaranteed that f has an absolute minimum and maximum value

- The absolute min and max will either occur at the critical points of f, or on the endpoints of the boundary D

https://math.stackexchange.com/questions/1190640/what-is-the-difference-between-clos ed-and-bounded-in-terms-of-domains

Example Question \#3

- Consider the function $f=x^{3}+y^{3}+3 x y$. If the critical points of f are $(0,0)$ and ($-1,-1$), classify them into local mins, maxes, and saddle points.

Example Solution \#3

- Consider the function $f=x^{3}+y^{3}+3 x y$. If the critical points of f are $(0,0)$ and $(-1,-1)$, classify them into local mins, maxes, and saddle points.

$$
\begin{gathered}
\mathrm{f}_{\mathrm{x}}=3 \mathrm{x}^{2}+3 y \quad \mathrm{f}_{\mathrm{y}}=3 \mathrm{y}^{2}+3 x \quad \mathrm{f}_{\mathrm{xx}}=6 x \quad \mathrm{f}_{\mathrm{yy}}=6 y \\
\mathrm{f}_{\mathrm{xy}}=\mathrm{f}_{\mathrm{yx}}=3
\end{gathered}
$$

$$
\text { At }(0,0), D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right|=-9 \rightarrow \text { Saddle Point }
$$

At $(-1,-1), D=\left|\begin{array}{cc}-6 & 3 \\ 3 & -6\end{array}\right|=27 \rightarrow$ Because $f_{x x}=-6<0 \rightarrow$ Local Max

Gradient and Directional Derivatives

$$
\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

- The gradient will always point perpendicular to the level curves/surfaces of f
- $\quad \nabla f=0$ at a local minimum/maximum

$$
D_{\mathbf{u}} f(x, y, z)=\nabla f(x, y, z) \cdot \mathbf{u}
$$

- Tells you how the function f changes along the vector u

Lagrange Multiplier

- Solve the following system of equations for λ (Lagrange Multiplier)
- Where f is the function, and g is the constraint

$$
\begin{aligned}
\nabla f(x, y, z) & =\lambda \nabla g(x, y, z) \\
g(x, y, z) & =k
\end{aligned}
$$

