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1. A wave propagating through the ocean is measured by a sensor and can be described by the
equation f(x, t) = cos(0.4x− 2t).

(i) What is the wavelength, frequency and amplitude of the wave?

(ii) In which direction is the wave traveling?

a) −x b) +x c) The direction is time depen-
dent

(i) λ = 15.71m, f = 0.318Hz, A = 1

The general harmonic wave equation is

A cos(kx− ωt+ ϕ)

This can be used with f = ω
2π

and λ = 2π
k
to get the frequency and wavelength while the amplitude

is the coefficient A.

(ii) The answer is (b). As we increase time, the value of x must also increase for the argument of the
wave equation to stay constant.

2. Three speakers lie on the perimeter of a circle. The sound intensity at each sorce is I0 while the
total intensity at the center of the circle is observed to be zero. Use phasors to determine the
relative phase shift of each speaker such that this is possible.
All three speakers are equidistant from the circle’s center. This means that any phase angle
between waves is a result of the sources being out of phase, not the path difference. The phasor
diagram of this system must be an equilateral triangle since the speakers have equal intensities,
and the phase between each speaker can be deduced to be (180 - 60) 120°.

Set-up:

Speaker

SpeakerSpeaker

Phasor Diagram:
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3. An interferometer with equal arm lengths is sourced by a laser of wavelength 700 µm. If the length
of one arm is increased by 0.12 mm, by what amount are the waves out of phase?

ϕ =
2πδ

λ
→ δ = 0.24× 10−3 m

ϕ = 2.15 radians

4. Continuing from the previous question, assuming that the intensity received at the detector was 4
W/m2 when the arm lengths were equal, what is the new intensity?
Values are given in W/m2

a) 2.95

b) 0

c) 0.898

d) 1.21

e) 4

The answer is (c). Since the detector received 4 W/m2 when the arm lengths were equal, we know
that the source intensity is 4. We established the phase difference between these two waves in the
previous question to be 2.15 radians. Using the equation

I = 4I0 cos
2
(ϕ
2

)
we can determine the new intensity in this interferometer. Remember that I0 in this case is 1
W/m2 because it is the amplitude is what splits, and since the intensity is proportional to the
amplitude squared, half the amplitude results in a quarter of the intensity.

5. The distance to the first minimum of a circular diffraction pattern is found to be 0.012 cm from
the center. Assuming the distance to the screen is 10 mm and the diameter of the opening is 200
µm, what is the wavelength of the light used? Values are given in µm

a) 1.97

b) 2.28

c) 0.94

The answer is (a). For a circular diffraction pattern, the equation

1.22λ = D sin
(
arctan

( y

L

))
is used. However, a small angle approximation would be appropriate here since the angle is really
small.
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λ ≈ Dy

1.22L
=

200× 10−6(0.012× 10−2)

1.22(10× 10−3)
= 1.97× 10−6 m

Once converted to micrometers we get 1.97 µm

6. A single slit diffraction experiment is set up such that the central bright spot is 10 cm in width,
and the screeen is 3 m away from the slit. Using light of 900 nanometers, calculate the slit spacing
a.

The full width of the central bright spot is 10 cm in width, meaning the distance from y=0 to the
first minima is 10/2 = 5 cm. Plugging this into our equation for slit theta:

y

L
= tan θ =⇒ θ ≈ 0.05/3 = 1.67× 10−2 radians

Solving for the slit width, we use a wavelenth of 900 nm

λ

sin θ
=

900× 10−9 m

0.0167
= a = 53.89 µm

7. A material with work function Φ = 3.4 eV has a laser beam with λ = 200 nm and power P =
2.3× 10−4 W.

a) Calculate the energy Ee− , the maximum energy of each ejected electron.

b) Calculate Nγ, the number of photons hitting the material per second.

c) Say we have a device that detects the power of the ejected electrons. Calculate the maximum
power P this device could measure (assuming every photon ejects an electron, and each electron
has maximum energy).

a) Ee− = 2.8 eV. The energy of each photon is equal to hc/λ = (1240 eV · nm)/(200 nm) = 6.2 eV.
Subtracting the work function gives Ee− = 2.8 eV.

b) Nγ = 2.319 × 1014 photons/s. We know the power, and the energy per photon was found to
be 6.2 eV = 9.92× 10−19 J. Performing units analysis:

Nγ =
2.3× 10−4J

s
· photon

9.92× 10−19 J
= 2.319× 1014 photons/s

c) 1.039 × 10−4 W. If each photon is ejecting an electron of maximum energy, then 2.319 ×
1014 electrons/s are being ejected, each with energy 2.8 eV. Multiplying these values yields
P = 6.492× 1014 eV/s = 1.039× 10−4 W.
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8. True or False: The light intensity at any location on a screen is proportional to the probability
that a photon arrives at that location, and that probability density is given by the square of the
absolute value of the wavefunction.
True. The light intensity is correlated with the probability of detecting photons. That is, photons
are more likely to be detected at those points where the wave intensity is high and less likely to
be detected at those points where the wave intensity is low.

By definition, the probability density function is found by square the magnitude of the wave-
function. The integral of this function, over all space, must equal one.

9. A wavefunction given by Ψ(x) = C1Ψ1 + C2Ψ2 + C3Ψ3 is a superposition of three eigenstates.
Let C1 = C2 = 0.5. What must C3 be for Ψ(x) to be normalized?

1 = 0.52 + 0.52 + C2
3 therefore C3 =

√
2

2
Remember, it is the probabilities that must sum to 1, not the wavefucntion coefficients.

10. Compute the magnitude of the normalization constant for Ψ(x) = Neikx over the interval 0 ≤ x ≤
3. Assume the wavefunction equals zero for all other regions of space.

a) 0.333

b) 0.577

c) 0.816

The answer is (b). Taking the absolute square of this wavefunction will give N2 as the probability
density function

Neikx ∗Ne−ikx = N2

If this is integrated from 0 to 3 and set equal to one (probabilities over all space must be equal to
one), then we are left with 3N2 = 1, which when solved for N gives 0.577.

11. An electron (me− = 9.109 × 10−31 kg) in an infinite square well is found to have energy E =
0.002407 eV. We are told that this is the n = 4 energy eigenstate.

(a) Find the length of the well.

(b) Determine the ground state energy in eV.

(c) When the electron drops to a lower energy eigenstate, it releases its energy in the form of a photon.
Determine all wavelengths of light this electron can produce from n = 4.

(a) L = 50 nm. We can rearrange the infinite square well energy equation to get

L =

√
ℏ2n2π2

2mE

which will give us the length of the well.
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(b) E1 = 1.505× 10−4 eV. Now that we know the length, we can find the ground state:

E1 =
ℏ2π2

2mL2

= 1.505× 10−4 eV

(c) Remember that we can write jumps in energy as

∆E =
ℏ2π2

2mL2
(n2

i − n2
f )

We’ve already calculated the left term that multiplies the difference, and we know that the values
for the difference must be 16− 9, 16− 4, and 16− 1. We get three energies:

∆E43 = 0.00105 eV

∆E42 = 0.00181 eV

∆E41 = 0.00226 eV

Converting these to wavelengths, we get 1.117 mm, 0.687 mm, and 0.549 mm.

12. An electron is found to be in an infinite square well. From the ground state, we find two wavelengths
of light that the electron is able to absorb: λ1 = 69.065 nm and λ2 = 8.633 nm. We are not given
what these energy levels are, but we’re told that they must be below n = 7.

(a) Determine the energy levels the electron is brought to by each light absorption.
Hint: Use the formula

En − E1 = E1(n
2 − 1)

coupled with the fact that n can only be natural numbers (1, 2, 3 . . .).

(b) Determine the ground state energy.

(c) Determine the length of the well, L.

(a) First, we know that an absorbing of energy translates to an energy difference between energy levels.
We can solve for the energies given the wavelengths:

Eλ1 =
1240 eV nm

69.065 nm
= 17.954 eV = 2.876× 10−18 J

Eλ2 =
1240 eV nm

8.633 nm
= 143.635 eV = 2.301× 10−17 J

Then, we can relate them to the square well energies, En:

Eλ1 = En1 − E1 = E1(n
2
1 − 1)

Eλ2 = En2 − E1 = E1(n
2
2 − 1)
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Even though we don’t know the ground state energy E1 yet, we can still solve for n1 and n2 by
dividing the equations:

Eλ1

Eλ2

= ��E1(n
2
1 − 1)

��E1(n2
2 − 1)

Plugging in the energies we calculated in the beginning, we get

0.125 =
n2
1 − 1

n2
2 − 1

With this, we find values of n1 and n2 that coincide with this ratio (which are below n = 7). Then
ones that work are n1 = 2 and n2 = 5.

(b) Now that we know each n value, we can go back and solve for E1.

Eλ1 = E1(n
2
1 − 1) =⇒ E1 =

Eλ1

n2
1 − 1

= 5.985 eV

(c) Recall the square well energy equation:

En =
ℏ2π2n2

2mL2

Let’s use n1 = 2. We can solve for E2:

Eλ1 = E2 − E1 =⇒ E2 = Eλ1 + E1

Then, we solve for L:

L =

√
ℏ2π2(2)2

2mE2

Doing this, we get L = 0.25 nm.

13. Suppose two particles in a quantum harmonic oscillator have different values of k, but identical
mass. Which graph corresponds to the particle with lower k? Orange or Blue?
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The blue graph since a lower value of k implies a wider parabola

U =
1

2
kx2

when these are approximated as small springs.

14. A particle is in the ground state of a quantum harmonic oscillator (ground state energy = 1
2
ℏω),

what would happen is some scientists shoot a photon with energy ℏω at it? What if they change
the photon energy to 0.9ℏω? 1.1ℏω?
If the photon energy matches the energy gap between two allowed energy states, the particles will
absorb the photon and jump over the energy gap to an excited state. If the photon energy does
not match the gap, it will not be absorbed. Therefore, in the case of a photon with energy ℏω,
the particle will be in the first excited state and nothing happens for photons with energy 0.9 ℏω
or 1.1 ℏω

15. Consider the oscillator below:

11 eV

9 eV

7 eV

5 eV

3 eV

1 eV

Six electrons are in a harmonic oscillator. Fill in the diagram to represent the oscillator’s lowest
excited state, using arrows to represent the spin of the electrons. What would the diagram look
like if it is irradiated with light of energy 3 eV?

11 eV

9 eV

7 eV

5 eV

3 eV

1 eV
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In the first excited state, the ground state is changed such that one electron is moved to a higher
energy state corresponding to the lowest possible change in the energy of the system. Here, a
single electron increased its energy by 2eV, moving to a higher band. Note that there can be two
electrons in each band; however, they must have opposite spin per the Pauli Exclusion Principle.
Also, the answer is correct even if the direction of the arrows in the 5eV and 7eV band are switched,
since the spin in a band with a single electron is inconsequential for our purposes.

If the system is irradiated with 3eV light, it will not change. Electrons will only absorb cer-
tain quantized amounts of energy, corresponding to the amount of energy they need to reach a
higher energy band. In the case of this diagram, the electrons can only absorb photons with energy
that is a multiple of 2 eV, or photons with energy above 4 eV (which would free an electron from
the oscillator.)

16. We have a material that is transparent to yellow light (λ = 750 nm), but opaque to cyan light
(λ = 510 nm).

(a) Given this information, give an energy range for the possible value of the electronic gap.

(b) Suppose we are now told that the material is opaque to green light (λ = 550 nm). Write a new,
smaller range for the possible electronic gap.

(a) 1.65 eV < Eg < 2.43 eV. We get these values by finding the energies that correspond with each
wavelength. Since yellow light is not absorbed, we know Eg should be higher than yellow light’s
energy. The material absorbs cyan light, so Eg should be lower than cyan light’s energy.

(b) 1.65 eV < Eg < 2.25 eV. Knowing that the material is able to absorb green light, Eg should be
lower than green light’s energy. This lowers the upper bound of our inequality.

17. According to the band structure model, which of the following materials has the largest and
smallest energy gap? Aluminum (good conductor), silicon (semiconductor), and silicon dioxide
glass (good insulator).
According to the band structure model, no energy gap in the material leads to good conductance
as it’s easier for electrons to move. A large gap would make the material a good insulator because
it is an energy barrier. And a medium gap usually indicates a semiconductor.

18. Suppose we have an unpolarized beam of photons with intensity I◦. We have a horizontal filter,
i.e. a polarizer that only allows photons in the ΨH state to pass through.

(a) If the beam is incident on the horizontal filter, determine the resultant intensity in terms of I◦ as
well as the wavefunction of photons exiting the filter.

(b) Now suppose we rotate the horizontal filter by 90◦, effectively creating a vertical filter. Write the
resultant wave function of the exiting photons in this scenario.

(c) Next, we rotate the filter such that it makes a 45◦ angle with the horizontal. Once again, write
the resultant wave function.

(d) In (a)-(c), we didn’t add any additional filters; we just rotated the prexisting one. Do these
rotations influence the resultant intensity?
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(e) Keeping the filter at 45◦, we place another horizontal filter into the system, after the first filter.
Determine the probability for a photon to pass through this second filter.

(a) I = I◦/2, Ψ = ΨH . When unpolarized light passes through a polarizer, the intensity is halve.
Because a horizontal filter is used, the resultant wave function only has a horizontal component.

(b) Ψ = ΨV . Now that we’re using a vertical filter, only the vertical component survives.

(c) Ψ = 1√
2
(ΨH +ΨV ). At 45

◦, portions of the horizontal and vertical components survive. The 1/
√
2

factor normalizes the wavefunction.

(d) I = I◦/2 in all scenarios. Unpolarized light has no orientation; a linear filter rotated at any angle
is still just a linear filter. The intensity is always halved when unpolarized light passes through.

(e) P = 0.5. The beam is diagonally polarized, meaning the wave function of each photon has an
equal proportion of the horizontal and vertical components. Thus there is a 0.5 chance for each
photon to be observed in the horizontal state.

19. We have the following Stern-Gerlach experiment setup:

(a) Assuming the silver atom beam is initially unpolarized in spin (i.e. it has equal components up
and down), determine the probability of a silver atom to reach the +x path in step three.

(b) Now let’s assume the silver atoms are described by the wave function

Ψ =
1

5
(4Ψ↑ + 3Ψ↓)

Given this information, determine the new probability of a silver atom reaching the +x path.

(a) P = 0.125. Going step by step: first, the unpolarized silver atom beam is split 50/50 between the
±z paths. From Step 1 to Step 2, we can use the formula P (S) = |S∗ · Ψ|2, with the initial state
being Ψ↑:

P (+y|+ z) =

∣∣∣∣ 1√
2
(Ψ↑ − iΨ↓) ·Ψ↑

∣∣∣∣2
= 0.5
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We do the same to find the probability from Step 2 to 3:

P (+x|+ y) =

∣∣∣∣ 1√
2
(Ψ↑ +Ψ↓) ·

1√
2
(Ψ↑ + iΨ↓)

∣∣∣∣2
=

∣∣∣∣ 1√
2
(1 + i)

∣∣∣∣2
=

1

4
(1− i)(1 + i)

= 0.5

Thus the joint probability for all three steps is simply (0.5)(0.5)(0.5) = 0.125.

(b) P = 0.64 ∗ 0.5 ∗ 0.5 = 0.16. Given the new wave function, let’s redo the first probability (from the
initial silver atom beam to Step 1):

P (+x) =

∣∣∣∣Ψ↑ ·
1

5
(4Ψ↑ + 3Ψ↓)

∣∣∣∣2
=

∣∣∣∣45
∣∣∣∣2

= 16/25 = 0.64

After this, the probabilities for the successive steps are 0.5, so the final probability is (0.64)∗(0.5)∗
(0.5) = 0.16.
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