

MATH 285

Midterm 1 Review
CARE

Disclaimer

- These slides were prepared by tutors that have taken Math 285. We believe that the concepts covered in these slides could be covered in your exam.
- HOWEVER, these slides are NOT comprehensive and may not include all topics covered in your exam. These slides should not be the only material you study.
- While the slides cover general steps and procedures for how to solve certain types of problems, there will be exceptions to these steps. Use the steps as a general guide for how to start a problem but they may not work in all cases.

Topics

I. Classifying Differential Equations
II. Slope Fields
III. Existence and Uniqueness
IV. Autonomous Equations
V. Solving Methods:
I. Separable
II. Exact
III. Integrating Factor

Differential Equations

- "A differential equation is any relationship between a function (usually denoted $y(t)$) and its derivatives up to some order."
- Slope Fields: Help visually model a differential equation
- Lines parallel to the derivative at each point
- Can show overall direction and shape of the solution, as well as equilibrium values

Figure 1.4: A slope field for $\frac{d y}{d t}=-\frac{t}{y}$ (blue) together with a solution curve (red).

Differential Equations. Bronski J., Manfroi A., Figure 1.4

Classifications

Linear

$$
2^{\text {nd order }} \overbrace{\frac{d^{2} y}{d t^{2}}}+\sin (t) \frac{d y}{d t}+15 y=e^{t}
$$

Ordinary

Ordinary vs Partial

- ODE's involve only standard derivatives
- PDE's involve partial derivatives

Linear vs Nonlinear

- Linear differential equations only have linear terms of the function and its derivatives
- Nonlinear equations are everything else

Order

- The order of a differential equation is the degree of the highest derivative it contains

Existence and Uniqueness Theorem

$$
\frac{d y}{d t}=f(y, t) \quad y\left(t_{0}\right)=y_{0}
$$

- A solution to the differential equation is guaranteed to exist in the interval in which the first derivative is continuous around the initial value
- That solution is guaranteed to be unique if $\frac{\partial f(y, t)}{\partial y}$ is also continuous around the initial value

Autonomous Equations

- Autonomous equation: does not explicitly involve independent variable

$$
\frac{d y}{d t}=f(y)
$$

- Draw a phase line, identify, points where the derivative is $\mathbf{0}$, and then identify equilibria
- Types of equilibria:
- Stable: nearby points converge to the equilibrium
- Semi-stable: points converge from one direction
- Unstable: points diverge away from the equilibrium

Separable Equations

- Separable Equations can be written as:

$$
\frac{d y}{d t}=f(y) g(t)
$$

- If your equation is separable, it can be solved directly through integration:

$$
\int \frac{d y}{f(y)}=\int g(t) d t+C
$$

Exact Equations

- Exact equations have the form of:

$$
N(x, y) \cdot y^{\prime}+M(x, y)=0
$$

- An equation is exact if the partial derivatives of the two coefficient terms are equal:

$$
\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}
$$

Solving Exact Equations

1. Partially integrate either N or M :
$\int N \partial y$ or $\int M \partial x$
2. Set equal to $\boldsymbol{\Psi}+$ a constant of integration function:

$$
\Psi=\int N \partial y+f(x) \text { or } \Psi=\int M \partial x+f(y)
$$

3. Take the derivative with respect to the opposite variable:

$$
\frac{d \Psi}{d x} \quad \text { or } \quad \frac{d \Psi}{d y}
$$

4. Set equal to the other term you didn't integrate:

$$
\frac{d \Psi}{d x}=M \quad \text { or } \quad \frac{d \Psi}{d y}=N
$$

5. Integrate to solve for $f(x)$ or $f(y)$ and plug back into step 2

$$
\int f^{\prime}(x) d x \text { or } \int f^{\prime}(y) d y
$$

Exact Equation Example

Solve the following differential equation:

$$
\left(5 x^{2} y+2 x+4\right) \frac{d y}{d t}+\left(5 x y^{2}+2 y+7\right)=0
$$

Integrating Factor Method

1. Make sure your equation looks like:
2. Calculate the integrating factor:
3. Multiply the entire equation by the integrating factor:
4. Re-write the left-hand side as the result of product rule:
5. Integrate both sides and rearrange to solve for $y(t)$

$$
\frac{d y}{d t}+p(t) y=q(t)
$$

$$
\mu(t)=e^{\int p(t) d t}
$$

$$
\mu(t) \frac{d y}{d t}+p(t) \mu(t) y=\mu(t) q(t)
$$

$$
\frac{d}{d t}(\mu(t) y)=\mu(t) q(t)
$$

$$
\mu(t) y=\int \mu(t) q(t) d t
$$

Integrating Factor Example

Solve the following differential equation:

$$
y^{\prime}+3 y=2
$$

Thanks for Coming!

