

MATH 285 Midterm 1 Review

CARE

Disclaimer

- These slides were prepared by tutors that have taken Math 285. We believe that the concepts covered in these slides could be covered in your exam.
- HOWEVER, these slides are NOT comprehensive and may not include all topics covered in your exam. These slides should not be the only material you study.
- While the slides cover general steps and procedures for how to solve certain types of problems, there will be exceptions to these steps. Use the steps as a general guide for how to start a problem but they may not work in all cases.

- I. Classifying Differential Equations
- II. Slope Fields
- III. Existence and Uniqueness
- IV. Autonomous Equations
- V. Solving Methods:
 - I. Separable
 - II. Exact
 - III. Integrating Factor

Differential Equations

- "A differential equation is any relationship between a function (usually denoted y(t)) and its derivatives up to some order."
- **Slope Fields:** Help visually model a differential equation
 - Lines parallel to the derivative at each point
 - Can show overall direction and shape of the solution, as well as equilibrium values

Figure 1.4: A slope field for $\frac{dy}{dt} = -\frac{t}{y}$ (blue) together with a solution curve (red).

Differential Equations. Bronski J., Manfroi A., Figure 1.4

Classifications

Ordinary vs Partial	Linear vs Nonlinear	Order
 ODE's involve only standard derivatives PDE's involve partial derivatives 	 Linear differential equations only have linear terms of the function and its derivatives 	 The order of a differential equation is the degree of the highest derivative it contains
	 Nonlinear equations are everything else 	

Existence and Uniqueness Theorem

$$\frac{dy}{dt} = f(y,t) \qquad \qquad y(t_0) = y_0$$

- A solution to the differential equation is guaranteed to exist in the interval in which the first derivative is continuous around the initial value
- That solution is **guaranteed to be** unique if $\frac{\partial f(y,t)}{\partial y}$ is also **continuous around the initial value**

Autonomous Equations

• Autonomous equation: does not explicitly involve independent variable

$$\frac{dy}{dt} = f(y)$$

- Draw a **phase line**, identify points where the **derivative is 0**, and then **identify equilibria**
- Types of equilibria:
 - Stable: nearby points converge to the equilibrium
 - Semi-stable: points converge from one direction
 - Unstable: points diverge away from the equilibrium

Separable Equations

• Separable Equations can be written as:

$$\frac{dy}{dt} = f(y)g(t)$$

• If your equation is separable, it can be solved **directly through integration**:

$$\int \frac{dy}{f(y)} = \int g(t)dt + C$$

Exact Equations

• Exact equations have the form of:

$$N(x,y)\cdot y'+M(x,y)=0$$

• An equation is exact if the **partial derivatives of the two coefficient terms are equal**:

$$\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$$

Solving Exact Equations

1. Partially integrate either N or M:	$\int N\partial y$ or $\int M\partial x$
2. Set equal to Ψ + a constant of integration function:	$\Psi = \int N\partial y + f(x)$ or $\Psi = \int M\partial x + f(y)$
3. Take the derivative with respect to the opposite variable:	$\frac{d\Psi}{dx}$ or $\frac{d\Psi}{dy}$
4. Set equal to the other term you didn't integrate:	$rac{d\Psi}{dx} = M$ or $rac{d\Psi}{dy} = N$
5. Integrate to solve for f(x) or f(y) and plug back into step 2	$\int f'(x)dx$ or $\int f'(y)dy$

Exact Equation Example

Solve the following differential equation:

$$(5x^2y + 2x + 4)\frac{dy}{dt} + (5xy^2 + 2y + 7) = 0$$

Integrating Factor Method

1. Make sure your equation looks like:

2. Calculate the **integrating factor:**

3. **Multiply the entire equation** by the integrating factor:

4. Re-write the left-hand side as the **result of product rule:**

5. Integrate both sides and rearrange to solve for y(t)

$$\frac{dy}{dt} + p(t)y = q(t)$$

$$\mu(t)=e^{\int p(t)dt}$$

 $\mu(t)\frac{dy}{dt} + p(t)\mu(t)y = \mu(t)q(t)$

$$\frac{d}{dt}(\mu(t)y) = \mu(t)q(t)$$
$$\mu(t)y = \int \mu(t)q(t)dt$$

Integrating Factor Example

Solve the following differential equation:

$$y'+3y=2$$

Thanks for Coming!

