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No ground truth needed: unsupervised sinogram inpainting for
nanoparticle electron tomography (UsiNet) to correct
missing wedges
Lehan Yao 1, Zhiheng Lyu1,2, Jiahui Li1 and Qian Chen1,2,3,4✉

Complex natural and synthetic materials, such as subcellular organelles, device architectures in integrated circuits, and alloys with
microstructural domains, require characterization methods that can investigate the morphology and physical properties of these
materials in three dimensions (3D). Electron tomography has unparalleled (sub-)nm resolution in imaging 3D morphology of a
material, critical for charting a relationship among synthesis, morphology, and performance. However, electron tomography has
long suffered from an experimentally unavoidable missing wedge effect, which leads to undesirable and sometimes extensive
distortion in the final reconstruction. Here we develop and demonstrate Unsupervised Sinogram Inpainting for Nanoparticle
Electron Tomography (UsiNet) to correct missing wedges. UsiNet is the first sinogram inpainting method that can be realistically
used for experimental electron tomography by circumventing the need for ground truth. We quantify its high performance using
simulated electron tomography of nanoparticles (NPs). We then apply UsiNet to experimental tomographs, where >100 decahedral
NPs and vastly different byproduct NPs are simultaneously reconstructed without missing wedge distortion. The reconstructed NPs
are sorted based on their 3D shapes to understand the growth mechanism. Our work presents UsiNet as a potent tool to advance
electron tomography, especially for heterogeneous samples and tomography datasets with large missing wedges, e.g. collected for
beam sensitive materials or during temporally-resolved in-situ imaging.
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INTRODUCTION
Electron tomography has attracted extensive attention in three-
dimensional (3D) characterization of nanomaterials due to its
unpaired nanometer and even atomic spatial resolution. For
example, electron tomography has been used to obtain 3D maps
of atomic coordinates in crystals to understand their defect and
grain structures1–5, of polymer film morphologies to build the
morphology‒function relationship in applications such as mole-
cular separation and optoelectronic devices6,7, and of nanoparticle
(NP) shapes to guide their synthesis and self-assembly8,9. In
electron tomography, a sample is tilted over a range of angles,
and the projected (scanning) transmission electron microscopy
((S)TEM) images which record the material thickness integrated
over the electron beam paths at the pixel level are reconstructed
to generate the 3D volumetric images. The 3D images not only
capture the surface morphology of samples, but reveal internal
voids, which are inaccessible by surface characterization methods
of a similar resolution such as scanning probe microscopy and
scanning electron microscopy7.
However, due to geometric constraints of electron microscopes

and sample holders, electron tomography is fundamentally
limited by the missing wedge effect. Using the simplest inverse
Radon transform as an example, a typical 3D reconstruction in
electron tomography can be decomposed into multiple elemen-
tary steps of 2D reconstructions. When the tilt series (projection
images in x and y coordinates at different tilt angle α, Fig. 1a, b)
are transposed to switch the tilt axis (y-axis in this example) with
angular axis (α in Fig. 1b), sinusoidal wave-like patterns (in x and α
coordinates at different locations on y-axis, Fig. 1c) are yielded,

known as sinograms. In other words, tilt series and sinogram
stacks are the same data but viewed from different axes. For each
sinogram (in x and α coordinates) in a sinogram stack, a
mathematical operation of inverse Radon transform is used to
reconstruct an image in x and z coordinates (Fig. 1d). Finally, the
reconstruction from each sinogram is restacked along the tilt axis
(y-axis in this example) to give the final 3D reconstruction in x, y, z
coordinates (Fig. 1e). Meanwhile, due to instrument limitations,
the tilt range is usually limited to ‒60° to +60° (hereinafter
referred to as ±60°)6,7 or ±70° (Fig. 1b, c)8,9. The lack of tilt images
at higher angles leads to band-like missing patterns when
transposed into sinograms (Fig. 1c). As a result, during the
reconstruction, the lack of information at those missing angles
causes feature distortion with wedge-like shapes (Fig. 1d,e)10,
which is called as the missing wedge artifacts11.
Various data analysis algorithms have been developed to

correct the missing wedge effect. Different from the simple
inverse Radon transform12, iterative reconstruction algorithms
including Simultaneous Iterative Reconstruction Technique
(SIRT)13, Model Based Iterative Reconstruction (MBIR)14, Discrete
Algebraic Reconstruction Technique (DART)15, and Low-tilt Tomo-
graphic Reconstruction (LoTToR)16 have been shown to suppress
the missing wedge artifacts in electron tomography. Among them,
SIRT is versatile but cannot correct all missing wedge-related
distortion as discussed in the comparison with our approach
below, while other methods require assumptions such as
homogeneous material density throughout the sample and are
prone to complicated fine choices of input parameters. More
recently, machine learning methods such as neural networks have
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emerged to contribute to high-performance information recovery
of missing wedge artifacts in electron tomography. On one hand,
neural networks have been shown to correct missing wedge
distortions in existing 3D reconstructions produced by conven-
tional reconstruction algorithms such as weighted back projection
(WBP, a discretized version of inverse Radon transform) and
MBIR11,17,18. On the other hand, neural networks can also generate
the missing contents in the sinograms at the unmeasured tilt
angles to fundamentally prevent the formation of the missing
wedge artifact19. Such generation of missing information can be
achieved by the algorithm known as image inpainting, where an
incomplete or partially masked image serves as the input to
retrieve the missing regions. This method has been applied to
tasks such as corrupted photograph restoration20 and removal of
obscure features in satellite images21 or self-driving22. However, in
the existing machine learning-based missing wedge correction
methods for electron tomography11,19, supervised training is
consistently required. As a result, an ideal training dataset fully
tilted over ±90°, without missing wedge artifacts, must be
provided for model training. Such dataset is impractical to obtain
experimentally in electron tomography. Thus, simulated images,
X-ray computed tomography (CT) images, digital photos, and
random polygon images have been used as the training dataset
with ground truth for model training in electron tomography11,19.
In these studies, the inevitable discrepancy between training

dataset and experimental datasets limits the extent of missing
wedge correction.
Here we present Unsupervised Sinogram Inpainting for

Nanoparticle Electron Tomography (UsiNet), the first sinogram
inpainting method that can be realistically used for experimental
electron tomography by circumventing the need for ground truth
(i.e., no training data at the full tilt range is needed). This method
is inspired by the unsupervised image inpainting models used in
photography restoration and medical CT sinogram inpainting
tasks, including several generative adversarial network (GAN)
models23–25 such as AmbientGAN26 and MisGAN27. Instead of
using the GAN architecture, where a generator network and a
discriminator network have to be trained jointly, only one simple
U-Net is employed in our UsiNet training. U-Net, which is an
image-to-image convolutional neural network (CNN), can directly
predict the restored sinogram (Fig. 1c, f) from the experimental
sinogram stack with missing angles, by minimizing the objective
function (loss) between the restored images and the experimental
images28. Here missing angles are defined as the angles at which
features or projections of the sample are missed. Compared with
these existing supervised machine learning methods, UsiNet can
fundamentally avoid the difficulty in obtaining the missing
wedge-free ground truth that shares similar feature with the
sample of interest and the paradox of simulating the training
dataset without knowing the sample morphology in advance. The
unsupervised inpainting in UsiNet is achieved by collectively

Fig. 1 Schematics of missing wedge artifact in the conventional electron tomography and our UsiNet workflow. a Schematic showing the
tilt-and-project process during the tilt series acquisition. The beam (black arrows) never reaches within the missing angles annotated by the
red lines due to the beam blocking from the holder. b The tilt series, which is a stack of projection images taken at different tilt angle α. The
missing angles appear as missing projection images at certain tilt angles shown as red slices. c The sinogram stack, which contains the same
data as (b) but is just simply transposed to switch the α- and y-axis. Due to the transpose, the missing projections in the tilt series appear as a
band-shaped missing angle mask in the sinogram stack as denoted by the red dashed box. d Separating the sinogram stack gives individual
sinograms. Each individual sinogram undergoes inverse Randon transform to yield the reconstruction slice. Due to the missing angle, wedge-
shaped distortion appears in the reconstruction slices, as denoted by the red dashed boxes. e The reconstruction slices are restacked to give
the final 3D reconstruction, which also shows the missing wedge artifact. f UsiNet inpaints each individual sinogram, leaving no missing
wedge artifact in the reconstruction slices. g Restacking the UsiNet inpainted reconstructions yields no missing wedge artifact.
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learning from the sinograms of every NP in the sample. Mean-
while, no spatial averaging is needed, making the method
compatible with heterogeneous and polydisperse samples while
still resolving the 3D shapes of every NP.
Specifically, in this study, we first benchmark UsiNet using the

sinograms of simulated 2D polygons and 3D polyhedra, repre-
senting the shape diversity of NPs to facilitate direct comparison
with ground truth. UsiNet is evaluated and compared with WBP
and SIRT by a set of quantitative metrics including mean squared
error (MSE), peak signal-to-noise ratio (PSNR), and structural
similarity index measure (SSIM). UsiNet demonstrates consistently
higher performance in the comparisons, even given small training
datasets of sinograms containing only 20 NPs in the view and of
narrow tilt ranges ( ± 45°), highlighting its robustness in practical
settings. UsiNet is then applied to experimentally obtained
electron tomography tilt series, containing 126 gold NPs with
sizes ranging from 40 nm to 80 nm and various shapes including
regular polyhedrons such as decahedra and octahedra, and other
irregular shapes. Comparing with SIRT reconstruction without
inpainting, we show that UsiNet generates more reasonable NP
shapes without missing wedge-caused shape distortion and with
much sharper boundaries. Morphology sorting is further used to
elucidate a synthesis‒morphology relationship. Our work presents
UsiNet as a potent tool to advance electron tomography with
special advantages in accommodating sample heterogeneity and
electron tomography datasets with large missing wedges such as
those of beam sensitive materials and collected during
temporally-resolved in-situ imaging for applications in battery,
catalysis, self-assembly, and composite manufacturing.

RESULTS
Overview of the UsiNet workflow
In Fig. 1, we show that the tilt image stack, which has a
dimensionality of M × N × D (M and N are the height and width of
each tilt image, and D is the number of tilt angles), can be
regarded as N stacked sinograms with a size of M×D, which are
generated by slicing the image stack along the tilt axis direction.
Taking one sinogram as an example (Fig. 2a), the missing angles
are present in the sinograms as a band-like mask (Fig. 2b). The
most straightforward sinogram inpainting can be achieved by
training a CNN model to learn from the ground truth (Fig. 2a) of
the measured sinogram with missing angles (Fig. 2b). But in
practice, the ground truth of experimental tomographic dataset is
not known. Thus in UsiNet training, a randomly initialized U-Net is
first asked to make a noisy prediction of inpainting from the
original sinogram with missing angles (Fig. 2b, c). We refer to this
prediction as the first inpainting result. Then, another same-sized
band-like mask is applied to the first inpainting result at a random
position, resulting in a masked first inpainting result (Fig. 2d). The
same U-Net model is asked to fill the masked first inpainting result
(Fig. 2d) by using the first inpainting result (Fig. 2c) as the ground
truth. The MSE loss is calculated between the consequent second
inpainting result (Fig. 2e) and the first inpainting result (Fig. 2c)
and backpropagated to update the U-Net model. In Fig. 2, steps
c–e are performed iteratively until the loss converges (Fig. 2f). This
training workflow design bypasses the need for a ground truth
sinogram and thus achieves the unsupervised sinogram inpainting
solely relying on the experimental tilt series with missing angles.
The architecture of the U-Net model used in this work is shown in
Fig. 2g.
In this training procedure, UsiNet learns and predicts the

masked regions from the experimental sinograms containing
samples (NPs here or other nanoscale features to be recon-
structed) that are similar but exhibiting random orientations.
Namely, the recovery of the missing features in sinogram A relies
on the similarity between sinogram A and sinogram B and the fact

that the same feature masked in A is not masked in sinogram B.
Such assumption is similar to the parameterized, stochastic
measurement process used in other unsupervised image inpaint-
ing studies23,26, where the positions of the masked regions need
to be random in each incomplete image to allow inpainting. In
practice, we satisfy this assumption by shifting the missing angles,
i.e., the masks, to random positions (Methods). To do so, the NPs
collectively need to sample the full range of out-of-plane
orientations. Otherwise, certain features will be always masked
by missing angles and will not be learned by the model. The fully
infilled sinograms (Fig. 2f) will be used as inputs for reconstruction
with missing wedge artifacts corrected.
Note that the NPs of different out-of-plane orientations do not

need to be identical. UsiNet works well for heterogeneous samples
as shown below. NPs with extended facets tend to sit flat on the
TEM grid to maximize van der Waals force between the NPs and
the TEM grid (Supplementary Fig. 1). We develop a polymer
coating technique which facilitates random out-of-plane orienta-
tion of NPs, proved effective even for triangular prisms of
extended flat planes (Methods and Supplementary Figs. 1, 2).

Validation of UsiNet on simulated 2D polygonal shapes
As discussed in Fig. 1, the reconstruction of single sinograms
serves as the elementary step of reconstructing 3D shapes. Thus
we first validate the applicability of UsiNet on the inpainting of
single sinograms, which can be generated from 2D polygons.
Simulated sinograms of 2D triangles with known ground truth are
used for validation. First, the sinograms of a full tilt range of ±90°
at 3° interval are simulated for a total of 3,000 triangles with
different sizes, corner truncations, orientations, and centroid
positions (Fig. 3a, left). Next, masks covering a 60° range
positioning at random tilt angles are applied to the sinograms
(the angular axis is labeled in Fig. 3a) to represent the missing
angles in tilt series (Fig. 3a, middle). The training process described
above is then implemented. During one epoch, defined as one
iteration starting from Fig. 2c to Fig. 2e, a randomly sampled
subset (1,000 images here) of the training dataset is fed into the
U-Net. We define epoch size as the number of sinogram images
used in the subset, which is similar to the concept of batch size
but with two differences. First, every image updates the neural
network weights. When epoch size= 1000, the neural network is
updated 1,000 times in an epoch. Second, the images are
randomly sampled instead of evenly split. This random sampling
of a fixed number of images (as the epoch size) is needed to fix
the number of forward and backpropagation for regulating the
convergence in each iteration so that the progress of convergence
in each epoch is affected by the abundance instead of the total
size of training dataset. The performance is then evaluated by the
MSE between the first inpainting result and second inpainting
result (Fig. 3b, blue line, the actual loss we optimize during
training). Convergence of this training MSE is effectively minimiz-
ing the MSE between the first inpainting result and the ground
truth sinogram (Fig. 3b, orange line, hereto after referred to as
validation MSE), although the model does not use ground truth
sinogram throughout the training. With the intensity values of the
sinograms normalized in the range of 0–255, both the training and
validation MSE losses converge to values less than one, in
comparison with the baseline MSE (~570) representing the
difference between the ground truth and the freshly masked
sinograms (Fig. 3b, black line). The mean PSNR and SSIM between
the ground truth (Fig. 3a, left) and final prediction (Fig. 3a, right) of
all 3,000 simulated sinograms are measured to be 50.19 and
0.9993 respectively, indicating high fidelity of the inpainting
results. As to the impact of epoch size, it turns out larger epoch
size combined with lower learning rate leads to more stable
convergence and lower final MSE, which is favorable (Supple-
mentary Note 1 and Supplementary Fig. 3) at the cost of longer
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training time. For our experimental data, an epoch size of 2,000 is
shown as sufficient to balance the training efficiency and desired
training loss.
Next, the inpainted sinograms are forwarded to reconstruction

algorithms (WBP, SIRT) and compared with the reconstructions
from the sinograms without inpainting. As shown in Fig. 3c, for the
sinograms without inpainting, the edge of the ground truth
triangle is reconstructed as a wedge shape by the WBP algorithm
due to the missing angles. Although the SIRT algorithm shows a
more effective suppression of the missing wedge artifact than

WBP, it predicts a blurry edge. In contrast, when the UsiNet
inpainted sinograms are used as inputs, the reconstructions
generated by both WBP and SIRT restore the sharp edges in the
ground truth triangle and shows no distortion, demonstrating
superior correction of the missing wedge artifacts. Quantitative
evaluations of the reconstruction results are listed in Fig. 3d, e,
where the reconstructions of all 3,000 sinograms in the training
dataset are binarized and compared with the ground truth using
the intersection-over-union (IoU) and boundary F1 (BF) scores. For
WBP reconstruction, our UsiNet improves the IoU from 0.8848 to

Fig. 2 Schematic of UsiNet training workflow. a A ground truth sinogram, which exists but cannot be obtained experimentally. b The
measured sinogram with missing angles. c The first inpainting result produced by the U-Net model. d The inpainting result in (c) masked by a
mask with the same size as the missing region in (b) but at a random location. e The second inpainting result produced by the same U-Net
model using (d) as the input. Next, (c) serves the ground truth to optimize the inpainting (e) in each training iteration. f The final inpainting
result of (b) after 100 training epochs. g Schematic of the U-Net model used in this work.
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0.9738 and BF from 0.7233 to 0.9995, with >10% improvement in
both metrics. For SIRT reconstructions, although missing wedge
correction mechanism is already included, our UsiNet still
improves the IoU from 0.9739 to 0.9927 and BF from 0.9897 to
0.9995.

Validation of UsiNet on simulated 3D polyhedral shapes
For electron tomography, inpainting and reconstruction are
implemented on 3D tilt series (sinogram stacks) instead of 2D
projections (single sinograms). Here we adopt the 2D inpainting
method discussed above to every 2D sinogram slice in the 3D tilt
series along the tilt axis. Although this approach could sacrifice
some spatial correlation information in 3D, it is chosen over the
direct inpainting of 3D tilt series using a 3D U-Net29 due to much
smaller computation cost. For validation, we build 3D models of
triangular nanoprisms with different edge lengths, thicknesses,
corner truncations, orientations, and centroid positions, and
project these models in a tilt angle range of ±90° with a 3°
interval as the ground truth (Fig. 4a, b). Each ground truth tilt
series is sliced along the tilt axis (y-axis in Fig. 4a) to generate the
sinogram stack, and a randomly selected mask of a 60° range (red
dashed box in Fig. 4c) is applied to the sinograms, which will be
used as the training dataset. In a typical training dataset, tilt series
of 300 particles are simulated and around 32,000 sinogram images
are sliced. After the training process, the missing angles in the
sinogram are filled by the U-Net model as shown in Fig. 4c. Slicing
the sinogram stack along the angle axis (α-axis in Fig. 4a)
reproduces each tilt image in the tilt series. The comparison
between the ground truth image and the U-Net prediction is
shown as Fig. 4b, d, demonstrating the capability of this method
to ‘fabricate’ previously non-existing tilt image. Quantitatively, the
training MSE and validation MSE converge to around 4 and 2 after
200 epochs, respectively (Supplementary Fig. 4a). These MSE
values are slightly higher than those of 2D images (Fig. 3b), which
can be attributed to the complication that in 3D inpainting,
different intersectional shapes are generated from different slicing
of the 3D object, increasing the diversity of sinogram patterns. The
mean PSNR and SSIM are 44.00 and 0.9967 respectively, showing

high similarity between the ground truth and predicted
sinograms.
The training of UsiNet relies on learning from many NPs

sampling random out-of-plane orientations. To systematically
evaluate the number of NPs needed for training, we decrease
the total number of NPs included in the training dataset while
keeping the epoch size (number of sinograms sampled in each
epoch) the same. Thus the total number of backpropagations
remains the same and the only difference is the size of the training
dataset. The SSIM and PSNR of the models trained on 300, 100, 50,
and 20 NPs are shown in Fig. 4e (see Supplementary Fig. 4 for their
MSE evolution during epochs). We find that decreasing the
training dataset size down to 20 can still produce inpainting
sinograms with high similarity to the ground truth (the mean SSIM
and PSNR above 0.9800 and 40.00, respectively). 3D reconstruc-
tions from the inpainted dataset based on the models trained by
different numbers of NPs all consistently show improvements,
with their MSE < 1.000 × 10−3 and IoU > 0.9500 (Fig. 4f). In
comparison, the reconstructed 3D images from the missing angle
sinograms have higher MSE and lower IoU of 3.263 × 10−3 and
0.8251 respectively. Meanwhile, we observe that there is a chance
of non-convergence during training with 10 tilting series or
unstable training process leading to divergence of loss since every
round of training is random due to weight initialization, stochastic
gradient descends, sample shuffling, and other factors. In
experiments, combination of non-ideal conditions such as tilt
series misalignment and complex shape composition can make
more tilt series in the training dataset desirable for reliable
training. As for the tilt angle range of the training dataset, other
than the ±60° tilt angle range conventionally accessible in most
electron tomography studies, the tilt angle range can be narrower
in practice given the choice of sample holder, the relative position
of the sample on the TEM grid, and the total dose that the sample
can tolerate with. To test the extreme of the method, we simulate
tilt series with a ± 45° tilt range at the same 3° tilt interval. As
shown in Fig. 4e, the inpainting results are still improved a lot and
are much closer to the ground truth compared with the tilt series
with missing angles (see Supplementary Fig. 4 for the MSE
evolution during epochs). Moreover, the ±45° model produces

Fig. 3 Unsupervised sinogram inpainting implemented on 2D images. a From left to right: the ground truth sinogram at ±90° tilt range, the
masked sinogram at ±60° tilt range, and the prediction sinogram at ±60° tilt range after inpainting. b The MSE loss evolution during the
training. Training loss is calculated between the first and second inpainting results as indicated in Fig. 2. Validation loss is calculated between
the first inpainting results and the ground truth. The baseline is the loss between the ±60° and ±90° sinograms. c From left to right, the 2D
triangle image which gives the sinogram in (a); the ±60° sinogram reconstructed by WBP; the ±60° sinogram reconstructed by WBP after
inpainting; the ±60° sinogram reconstructed by SIRT; the ±60° sinogram reconstructed by SIRT after inpainting. d The IoU and BF scores of the
images reconstructed by WBP with and without inpainting. e The IoU and BF scores of the images reconstructed by SIRT with and without
inpainting. Error bars represent the standard deviation of images in the training dataset.
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reconstructions with MSE and IoU close to those of the ±60°
models (Fig. 4f). Model training with training dataset of even
smaller number of NPs and narrower tilt range is difficult
(Supplementary Notes 2 and 3). During the practical application,
the existence of noise could affect the performance of UsiNet
inpainting. To evaluate the effect of imaging noises in experi-
mental images on the performance of UsiNet, Poisson noises are
introduced into the sinograms during model training. As shown in
Fig. 4g and Supplementary Fig. 5, UsiNet is still able to generate
good inpainting results with PSNR of 36.52 and SSIM of 0.9785
when the signal-to-noise ratio (SNR) decreases to 5 in the training
dataset, which is similar to the experimental condition. Supple-
mentary Fig. 5 clearly shows that the inpainting results are noise-
free and do not exhibit visible artifact at the SNR values tested. All
resulting reconstructions achieve an IoU around 0.95 while the

high MSE should be explained by the introduction of noise itself
(Fig. 4h). Besides that, training datasets containing shape mixtures
of polyhedrons (e.g., octahedron, tetrahedron, cube, tetrahexahe-
dron, irregular polyhedron) are simulated to represent the diverse
nanoparticles one might analyze in experiments (Supplementary
Fig. 6). Consistently, the models show good inpainting and
reconstruction quality on these training datasets (Fig. 4i, j and
Supplementary Fig. 6).
The 3D spatial correlation along the tilt axis direction can be

important. Although the inpainting of each split sinogram is
expected to be independent, in reality the existence of noise and
misalignment of tilt images can make the 3D spatial correlation
along the tilt axis direction valuable for correctly predicting the
missing sinogram patterns. For example, in Supplementary Fig. 7,
we show that in the presence of Poisson noise, the synthetic tilt

Fig. 4 Unsupervised sinogram inpainting implemented on 3D images. a The simulated 3D sinogram stack at a ± 90° tilt range, which is
simply 2D sinograms stacked along the y-direction. Viewing the sinogram stack through slicing at certain tilt angle α gives individual tilt
images. b An example of individual tilt image from the ground truth. c Sinogram inpainting results stacked along the y-direction. The region
annotated by the red dashed box is removed from (a) and then predicted by the model. d The inpainting result from the tilt image view the
same as (b). e The SSIM and PSNR evaluating the sinogram inpainting quality with different training dataset sizes and tilt ranges. Baselines are
scores of the sinograms without inpainting. f The MSE and IoU evaluating the WBP reconstruction quality from sinograms under different
training conditions indicated in the legends in (e). Baselines are scores of the reconstructions from sinograms without inpainting. g The SSIM
and PSNR evaluating the sinogram inpainting quality under different amounts of Poisson noise. h The MSE and IoU evaluating the WBP
reconstruction quality from sinograms under different training conditions indicated in the legends in (g). i The SSIM and PSNR evaluating the
sinogram inpainting quality with different numbers of polyhedron shapes included in the training dataset. Single shape: triangular prism; two
shapes: triangular prism and cube; three shapes: triangular prism, cube, and octahedron; six shapes: triangular prism, cube, octahedron,
tetrahedron, tetrahexahedron, and random polyhedron. j The MSE and IoU evaluating the WBP reconstruction quality from sinograms under
different training conditions indicated in the legends in (i).
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image shows wavy boundary and line-like features because each
slice is independently inpainted. While such imperfection could
only cause minor wavy features on the reconstructed surface, as
shown in Supplementary Fig. 7e, by simply inputting three
consecutive neighboring slices instead of the middle one only, the
3D spatial correlation is restored and the inpainted tilt image is
much smoother. Note that this modification of input channels
otherwise only leads to neglectable improvement on the
evaluation metrics of inpainting and reconstruction. Such
modification only involves adding two more channels in the
input layer of the U-Net model, which does not significantly
increase the computational cost. The restoration of 3D spatial
correlation is expected to be more complete with more input layer
channels, i.e., the number of consecutive neighboring slices.
Meanwhile, note that inpainting is independent from the
following-up reconstruction algorithms. The inpainted sinograms
could be stacked back together and used as tilt images instead of

split sinograms, just like those used for conventional tomography
reconstruction process. As a result, the 3D correlation along the tilt
axis can also be considered by advanced reconstruction algo-
rithms such as SIRT and MBIR.
Importantly, missing wedge effects tend to be more pro-

nounced for the NPs with large flat facets oriented orthogonal to
the beam direction, which can still be addressed by UsiNet. Using
triangular prisms as an example, we simulate the sample tilt series
in the range of ±60° with a 60° missing angle range at different
out-of-plane particle orientation θ relative to the substrate (Fig. 5a).
When the sinograms with missing angles are used as the inputs,
both WBP and SIRT reconstructions show the θ-dependent MSE
and IoU (Fig. 5b, c). The reconstruction quality (of low MSE and
high IoU) drops dramatically with decreasing θ, i.e., the NP
changing from standing to lying on the TEM grid. This θ-
dependence can be visualized by the 3D grayscale rendering
(Fig. 5d–h) as well as slicing of the reconstructions along the tilt

Fig. 5 Orientation-dependent missing wedge artifact and comparison between different reconstruction algorithms. a Schematic showing
the definition of particle orientation θ (white), which is different from the tilt angle α (black). θ measures the dihedral angle between the basal
plane of the prism and the substrate. b MSE of triangular prism particles at different θ reconstructed by different algorithms. The inpainting
reconstructions consistently have lower MSE at all θ from 0° to 90°. c IoU of triangular prism particles at different θ reconstructed by different
algorithms (after binarization). The inpainting reconstructions consistently have higher IoU at all θ from 0° to 90°. d The 3D grayscale
rendering of a triangular prism particle model with θ= 0° (lying on the substrate). e–h The 3D grayscale rendering of the particle in (d) after
projection and reconstruction by different methods. The tilt range is ±60°. i A sliced view of the same triangular prism particle model in (d).
j–m The same sliced views of the particle in (i) after projection and reconstruction by different methods. The tilt range is ±60°. n A sliced view
of a triangular prism particle model with θ= 90° (standing on the substrate). o–r The same sliced views of the particle in (n) after projection
and reconstruction by different methods. The tilt range is ±60°. White arrows in (k, m) and (p, r) indicate the discrepancy between particle
shape measurements with and without inpainting.
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axis (Fig. 5i–r). In the sliced view, when the orientation of a feature
deviates from the beam direction more than the tilt range
(90°–60°= 30°, which means for any line segments along the
contour within ±30° angle to the horizontal axis), the missing
wedge artifact shows up in the WBP reconstruction, leading to
feature spreading along horizontal contours while leaving the
vertical contours undisturbed. As shown in Fig. 5i, j and Fig. 5n, o,
for a lying nanoprism (θ= 0°), it contains more horizontal contours
than a standing one (θ= 90°), leading to more distorted
reconstruction with spreading features. The SIRT reconstruction
in general suppresses the spreading features appeared in the WBP
reconstruction and produces smoother NP contours at small θ
angles. However, it fails to extract the true shape of the particle.
Expansion of the shape along z-axis can still be observed
(highlighted in Fig. 5d, f, Fig. 5i, k and Fig. 5n, p). This distortion
can lead to significant errors when measuring the prism thickness
(Fig. 5i, k). On the other hand, reconstructions from the inpainting
tilt series show higher quality using both WBP and SIRT
reconstruction algorithms and at all possible out-of-plane particle
orientations (θ= 0°‒90°, Fig. 5b, c) under both MSE and IoU
metrics. Figure 5g, h, l, m, q, r show that the missing wedge
artifacts are eliminated.
The validation using simulated 3D NP dataset demonstrates the

capability of UsiNet to robustly correct missing wedge effect. The
method learns directly from tilt series of multiple particles with
missing angles, which do not require any manual labeling30 or
image simulation process31 to generate training labels. The
inpainted sinograms not only visually resemble the ground truth
tilt series, but also show high SSIM, PSNR, and give satisfying
reconstruction results. Moreover, UsiNet is shown to work with a
training dataset size as small as 20 NPs, which can be easily
cropped from a few low-magnification tilt series (<3 tilt series in
most cases) in experiments (see Methods for cropping details),
and a tilt range as narrow as ±45°. It is also reasonable to
anticipate UsiNet’s applicability to multi-component nanoparticle
samples. For example, UsiNet can be applied to high-angle
annular dark-field (HAADF) STEM32 or bright field TEM33 tomo-
graphy data containing material components with different
contrast. The input of UsiNet can also be STEM-energy-
dispersive X-ray spectroscopy (EDX) tomography data34, which
applies to multi-metallic nanoparticles and each elemental map
can be independently reconstructed. While the former might
challenge the inpainting accuracy of the current UsiNet to provide
distinguishable material contrast in the final reconstruction, STEM-
EDX tomography is known to have very low SNR and thus difficult
to inpaint. The implementation of both directions could be
achieved by larger training datasets, more kernels in the neural
network, and the fine-tuning of the hyperparameters during
model training.

Application of UsiNet to experimental heterogenous NPs
After the validation of UsiNet on simulated dataset, we apply
UsiNet to experimentally collected electron tomography dataset
of gold decahedral NPs. Decahedral NPs consist of large, flat facets
which are susceptible to missing wedges as discussed in Fig. 5d–h.
The as-synthesized sample is heterogeneous, containing decahe-
dral NPs and byproducts of other polyhedral shapes and irregular
impurities (Supplementary Fig. 1). Low magnification HAADF STEM
tilt series of the samples are taken over a tilt range of ±60° at an
angle increment of 3°. The resulting tilt series are then cropped to
generate the tilt series of each individual NP (Methods and
Supplementary Fig. 2). Tilt series of 126 individual NPs are
obtained and serve as both the training dataset and the testing
dataset for inpainting and reconstruction. In Fig. 6a, we show two
representative NPs of a decahedron (NP 1, desirable product) and
a triangular prism (NP 2, byproduct), both of which happen to lie
flat (θ ≈ 0°) on the TEM grid. Reconstructions using WBP and SIRT

generates either spreading or blurry contours (Fig. 6b–g). Those
missing wedge artifacts are attributed to their missing side views
in the experimental tilt series (highlighted by the red dashed
boxes in Fig. 6a). Implementing UsiNet on the gold decahedron
sample fills the sinograms at high tilt angles (Fig. 6b, e) and thus
retrieves the full tilt range of ±90°, leading to smooth side views of
the particles (Fig. 6a). Clearly, the trained model well inpaints both
two shapes and is applicable to heterogeneous samples. In the
sliced reconstructions (Fig. 6c, f) of NPs 1 and 2 in Fig. 6a, non-
physical, wedge-like protrusion is clearly shown in the WBP and
SIRT reconstructions from the tilt series without inpainting. In
contrast, the reconstructions from inpainted tilt series shows solid
edge even on the particle surfaces orthogonal to the beam
direction, where most severe distortions tend to occur. The line
profiles of the image pixel intensity (Fig. 6d, g) across the particle
boundaries in the SIRT slices (as denoted by the white dashed
boxes) show solid boundary in the inpainted reconstructions,
which is revealed by sharp intensity transition as compared to the
smooth, gradual intensity increase in the profiles of reconstructed
particle without inpainting. Note the dip in the line profile of the
inpainted reconstruction is caused by the non-linear damping of
the signal intensity of the equipment instead of the sinogram
inpainting, which is known as the cupping artifact35. Although this
is beyond the scope of the current research, we would like to
point it out that the cupping artifact could be solved by
recalibrating the intensity values to be linear with material
thickness or more complicated reconstruction algorithms, such
as MBIR14,35.
This sharp intensity transition in the inpainted reconstructions

also facilitates segmentation of the NPs by pixel intensity
thresholding, which is a foundational step for quantitative analysis
of particle morphology. In 3D view (Supplementary Fig. 8), in the
reconstructions without inpainting, the missing wedge artifact
appears as diffuse intensity values on the particle surfaces and
blurs the real particle boundary position, in contrast to either WBP
or SIRT reconstructions with inpainting where the particle
boundary is clear. We apply the reconstruction to all 126 inpainted
sinograms and perform subsequent segmentation of individual
NPs for quantitative analysis (Fig. 7 and Supplementary Figs. 9–11).
For polyhedral products with well-defined shapes, decahedron
accounts for the majority population (26%, Fig. 7a, b), which are
reported to be enclosed by {111} facets and can be regarded as an
assembly of five tetrahedral units sharing common faces36. It is
followed by prism (16%) and icosahedron (13%), with the former
characterized by two {111} basal planes and the latter as a packing
of 20 tetrahedra. All three types of particles share a twinned
structure, either grown from multi-twinned seeds or seeds with
stacking faults, resulting from a slow initial reduction rate37.
Literatures have reported that icosahedral NPs are stable at
smaller particle sizes compared to decahedral NPs, which matches
with our observation that the mean volume of icosahedra is
smaller than that of decahedra (Fig. 7c)38,39. Aside from twinned
NPs, we also observe octahedra and truncated tetrahedra
accounting for 11% and 2%, respectively, of the polyhedral NP
product. These two shapes are both single-crystalline, enclosed by
{111} facets. The dominance of {111} facets in the product
suggests their selective stabilization during Au growth in the
presence of poly(vinyl pyrrolidone) (PVP), consistent with previous
density functional theory calculations that PVP-covered Au(111)
surface is thermodynamically more stable relative to Au(100)40.
To quantify the shape heterogeneity of the NP sample, five

dimensionless scalar descriptors—including three major axis
length ratios, solidity, and sphericity—are extracted from each
segmented NP model41,42 and dimension-reduced via principal
component analysis (PCA) to show the shape distribution of the
NPs (Fig. 7d–f). Suggested by the scree plot (Fig. 7d), the first two
principal components (PCs) containing 99.5% of total variance are
plotted for data visualization. As shown in the datapoint
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distribution in the PC 1–PC 2 space (Fig. 7e, f), the long projection
vector lengths of the major axis ratios (L1/L2, L1/L3, and L2/L3)
indicate those descriptors contribute more to the sample
heterogeneity. Meanwhile, the shortest projection vector length
of solidity suggests a small variance of the particle solidity across
the sample, which is reasonable considering the highly convex
shape of all product NPs, giving solidity values close to 1. The
datapoints representing decahedral NPs locate in the 4th
quadrant, consistent with the direction of the L2/L3 projection.
The flattened and rounded shape of the decahedral NPs leads to
similar L1 and L2 (longest and second longest major axis length)
and very short L3. In contrast, the elongated shape of trigonal
bipyramid causes long L1 but short L2 and L3, which makes their
datapoint distribution highly correlate with the direction of L1/L2.
The separation of datapoints from these two types of NPs
illustrates their distinct shapes.
The shape distinctions in the PC space learnt from known

particles can help the identification of unknown irregular
impurities. For example, two gray datapoints with arrow annota-
tions located at the top right corner of Fig. 7f turn out to be two
plate-like particles with high L1/L2, L1/L3, and L2/L3. Instead, the
gray datapoint population spanning in the second quadrant
should be particles of shapes between octahedron (pink) and
trigonal bipyramid (red) with elongation on one major axis
direction, suggested by their high L1/L2 but low L1/L3 and L2/L3.

These impurities could be intermediate structures during the
growth of decahedron, prism, or octahedron43. Such sorting of the
desired shapes and identification of byproducts will contribute to
the understanding of the synthesis yield, which also potentially
benefits the development of effective purification methods.

DISCUSSION
We purpose UsiNet, an unsupervised sinogram inpainting method
to correct the missing wedge effect in electron tomography. The
unsupervised training in UsiNet does not require ground truth,
manual annotation, or tilt image simulation, and thus is practically
applicable to real electron tomography datasets where full angle
tilt series are not obtainable. We demonstrate that UsiNet works
with a small number of training dataset (down to 20 NPs) and
narrow tilt range (±45°), which can be immediately useful for
beam sensitive polymeric and biological materials where the tilt
range can be limited by accumulated beam damage. The
tolerance with a narrow tilt range could be critical for studies
involving in-situ electron tomography—for example, on the
evolution of the 3D shapes of NPs during chemical reactions
such as electrochemical cycling, catalysis, and corrosion—where
only scarce tilt series can be collected to ensure temporal
resolution. Moreover, UsiNet does not require sample averaging
and can thus apply to a broad range of heterogeneous NP systems

Fig. 6 Comparison of 3D reconstructions of experimentally synthesized NPs with and without inpainting. a The experimental tilt series of
a decahedral NP (top row, NP 1) and a triangular nanoparism (bottom row, NP 2). The experimental tilt range is ±60° and the tilt images in the
red dashed box region are synthesized by the model. b The sinogram of NP 1 after inpainting. The red dashed box regions annotate the
sinogram pattern generated by UsiNet at high angles. c The sliced views of NP 1 reconstructed by WBP and SIRT, without and with sinogram
inpainting. d The line profile of intensity values along the vertical direction suggested by white dashed boxes in (c). e The sinogram of NP 2
after inpainting. The red dashed box regions annotate the sinogram pattern generated by UsiNet at high angles. f The sliced views of NP 2
reconstructed by WBP and SIRT, without and with sinogram inpainting (g). The line profile of intensity values along the vertical direction
suggested by white dashed boxes in (e).
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such as electrode NPs used in rechargeable ion batteries,
catalytical NPs, and nanoplastics. The missing wedge effect is
otherwise particularly problematic for heterogeneous systems by
generating anisotropic distortion. Although our demonstration
focuses on colloidal NPs, the principle of unsupervised inpainting
is expected to work for other samples containing 3D nanoscale
morphology details, such as microstructural domains in alloys and
crumples in polyamide separation membranes. UsiNet brings the
full potential of electron tomography in charting the relationships
of morphology with synthesis and performance of materials. A
wide scope of applications can be enabled by UsiNet, such as
uncovering degradation mechanisms of battery or catalytical
nanomaterials, understanding morphologies and aggregation

behaviors of naturally formed nanoplastics, and optimizing
synthetic protocols of NPs with varying compositions.

METHODS
Chemicals
Gold(III) chloride trihydrate (≥49.0%, HAuCl4·3H2O, Sigma-Aldrich),
poly(vinyl pyrrolidone) (PVP, average Mw~55,000, Sigma-Aldrich),
diethylene glycol (DEG, 99%, Sigma-Aldrich), polystyrene-block-
poly(acrylic acid) (PS-b-PAA) (PS154-b-PAA49, Mn= 16,000 for the
PS block and Mn= 3,500 for the PAA block, Mw/Mn= 1.15, Polymer
Source Inc.), polystyrene-block-poly(4-aminomethyl styrene) (PS-b-
P4AMS) (PS96-b-P4AMS34, Mn= 10,000 for the PS block and

Fig. 7 Visualizing the heterogeneity of experimentally synthesized NPs. a 3D rendering of all 126 NPs reconstructed and segmented from
the decahedral NP sample and colored according to their shapes. Blue: decahedra; Green: triangular prisms; Purple: icosahedra; Pink:
octahedra; Orange: truncated tetrahedra; Red: trigonal bipyramids; Gray: impurities with irregular polyhedral shapes. Two particles denoted by
the arrows correspond to the denoted datapoints in (f). b The fractions of the species in (a) among all particles. c The volume distribution of
the species in (a). The white circles represent average volumes. d The scree plot of the descriptor PCA. e A plot showing how the descriptors
are projected into the PC 1–PC 2 space. L1, L2, and L3 stand for the major axis lengths of a 3D shape. f Descriptors from each NP in the
reconstruction projected into the PC 1–PC 2 space. Two datapoints denoted by the arrows correspond to the denoted particles in (a).
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Mn= 4500 for the P4AMS block, Mw/Mn= 1.2, Polymer Source
Inc.), 2-naphthalenethiol (2-NAT, 99%, Sigma-Aldrich), N,N-
dimethylformamide (DMF, anhydrous, 99.8%, Sigma-Aldrich),
tetrahydrofuran (THF, AR, Macron), ethanol (200 proof, Decon
Laboratories, Inc.) were purchased and used without further
purification. Water used in this work was nanopure water (18.2
MΩ·cm at 25 °C) purified by a Milli-Q Advantage A10 system.

Synthesis of gold decahedral NPs
The gold decahedra were synthesized following a method
previously reported, with slight modification44. Typically, 7.0 g of
PVP was added to 25mL of DEG hosted in a 100mL flask, and the
mixture was heated at 180 °C in an oil bath till PVP completely
dissolved. Afterwards, 2.0 mL of DEG solution containing 20mg of
HAuCl4 was injected in one shot with a pipette. The reaction
continued for 10 min and was then quenched by immersing the
flask in an ice−water bath. The solution was split into two
portions, with each portion (around 13.5 mL) mixed with 16.5 mL
of ethanol. The solid product was collected by centrifugation at
11,000 rpm for 45 min, after which most of supernatant was
removed and the remaining 400 μL of sediments was redispersed
in 2 mL of water and 18mL of ethanol. After the second round of
centrifugation at 14,000 rpm for 20 min, 19.6 mL of supernatant
was removed, and the final product was redispersed in 19.6 mL of
water. The resulting solution was measured to give 11.058 OD at
its maximum UV-Vis absorption peak at 561 nm.
Before the polymer coating, the solution prepared above was

centrifuged to reduce the OD to 5 at its maximum UV-Vis
absorption peak at 561 nm. 113.0 µL of solution was transferred
into a 1.5 mL centrifuge tube and diluted with water to reach a
final volume of 1.5 mL. The diluted solution was then centrifuged
at 5800 rpm for 20 min. After centrifugation, 1.48 mL of the
supernatant was removed from the tube. The sediments were
then diluted with water to reach a final volume of 250 µL (stock
solution I).

Polymer coating of gold decahedral NP
To learn the missing wedge information from different particles,
different regions on the particles have to be covered in the
missing angles. This is hard to realize when the NPs frequently
show one preferred orientation on the TEM grid, such as those
with a shape of triangular prism or decahedron. To randomize
their out-of-plane orientations, we coated polymer layers on the
NP surface. Two block copolymers including PS-b-PAA and PS-b-
P4AMS were tested. After the polymer coating, we found that the
NPs coated with PS-b-P4AMS showed more random orientation
on the TEM grid while those coated with PS-b-PAA did not. Thus,
the PS-b-P4AMS-coated NPs were finally used for the tomography.
The PS-b-PAA coating on decahedral NPs followed a literature

method45. Specifically, a 2-NAT solution (40 µL, 2 mg·mL−1 in DMF)
was mixed with 780 µL of DMF in an 8mL glass vial. 100 µL of
stock solution I and 100 µL of water was then sequentially added
into the vial dropwise using pipette with vortexing, followed by
addition of PS-b-PAA solution (80 µL, 8 mg·mL−1 in DMF) in one
shot without vortexing. The vial was capped tightly with a Teflon-
lined cap and sonicated for 10 s, parafilm-sealed, heated at 110 °C
in an oil bath, and left undisturbed for 2 h. The reaction mixture
was then cooled down to the room temperature in the oil bath,
which typically took 90min. The solution was transferred to a
1.5 mL microcentrifuge tube and centrifuged three times
(5000 rpm, 25 min; 4,500 rpm, 15 min; and 4500 rpm, 15 min) to
remove the unreacted 2-NAT and PS-b-PAA from the NPs. After
each centrifugation, 1.45 mL of the supernatant was removed and
the remaining 50 µL of sediment was re-dispersed with 1.45 mL of
water. After the third round of centrifugation, the 50 µL of
sediment containing PS-b-PAA-coated NP was diluted with 50 µL

of water. 4 µL of the diluted NPs was drop-casted onto an air
plasma-treated TEM grid and left dry in the air.
The PS-b-P4AMS coating process on decahedral NPs was similar

to that of PS-b-PAA. A 2-NAT solution (40 µL, 2 mg·mL−1 in DMF)
was mixed with 635 µL of DMF in an 8mL glass vial. 100 µL of
stock solution I and 100 µL water was then sequentially added into
the vial dropwise using pipette with vortexing, followed by adding
PS-b-P4AMS solution (240 µL, 2 mg·mL−1 in a mixture solvent with
18% water, 36% DMF, and 46% THF in volume fraction) in one
shot without vortexing. The vial was capped tightly with a Teflon-
lined cap and sonicated for 10 s, parafilm-sealed, heated at 110 °C
in an oil bath, and left undisturbed for 2 h. The reaction mixture
was cooled down to room temperature in the oil bath, which
typically took 90min. The solution was transferred to a 1.5 mL
microcentrifuge tube and centrifuged three times (5000 rpm,
25min; 4500 rpm, 15min; and 4500 rpm, 15 min) to remove the
unreacted 2-NAT and PS-b-P4AMS from the NPs. After each
centrifugation, 1.45 mL of the supernatant was removed and the
50 µL of sediment was re-dispersed with 1.45 mL of water. After
the third round of centrifugation, the 50 µL of sediment contain-
ing PS-b-P4AMS-coated NP was diluted with 50 µL of water. 4 µL of
the diluted NPs was drop-casted onto an air plasma-treated TEM
grid and left dry in the air.

Tilt series acquisition
A ThermoFisher Scientific Talos F200X G2 (S)TEM at 200 kV was
used for taking the tilt series images of polymer-coated gold
decahedral NPs at STEM-HAADF mode. The probe spot size was
set to 8 and the dwell time was 1 µs, which led to a frame time of
23.56 s and kept the polymer coating on NPs undamaged. A total
of 41 tilt images were acquired over a tilt range of ‒60° to +60°
with an angle increment of 3°. During the acquisition, the stage
was aligned and set to eucentric height automatically by the
software Tomography STEM provided by ThermoFisher. In total, 5
tilt series were taken at low magnification (1720 nm field of view)
and large image size (4096-by-4096 pixel).

2D image simulation
A customized MATLAB code was used to generate 2D images of
triangles at 256-by-256-pixel sizes as well as their corresponding
sinograms. The triangles were defined by the convex hull of three
circles positioned in an equilateral arrangement. The orientations,
edge lengths, vertex circle radii, and triangle pixel intensities were
given by random variables following uniform distributions in
reasonable ranges. Meanwhile small perturbations were imposed
to the triangle centroid and vertice positions following Gaussian
distributions in reasonable ranges. The built-in function radon.m
was used to generate the rotational projection of each triangle
image at the angle range from –90° to +90° at a 3° interval, which
resulted in the sinogram containing 61 line-projection slices at a
size of 61-by-256 pixel. For the purpose of unsupervised model
training, the continuous 20 out of 61 line projections starting from
random locations were replaced by zero in each sinogram. This
corresponded to a tilt range of ±60° as used in the experimental
acquisition.

3D image simulation
Similar to 2D image simulation, a customized MATLAB code was
used to generate volumetric images of triangular nanoprisms as
well as other polyhedron shapes at 256-by-256-by-256-pixel sizes
defined by the convex hull of several spheres positioned at the
vertices of the polyhedrons. The orientations, sizes, and tip sphere
radii were given by random variables following uniform distribu-
tions in reasonable ranges. The MATLAB version of ASTRA
Toolbox46,47 was used to generate the tilt series of each triangular
prism at the angle ranging from –90° to +90° with a 3° interval,
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which resulted in the tilt series containing images at 61 different
angles at a size of 61-by-256-by-256. For the unsupervised model
training, a 3D mask with size of 20-by-256-by-256 pixel was first
applied to random locations to replace the corresponding pixels
by zero, which resembled the ±60° tilt range as used in the
experimental acquisition. Each tilt series were then split along the
tilt axis direction to give 256 individual sinograms with sizes of 61-
by-256 pixel ready for serving as the training data.

Tilt series alignment
Although the images were aligned during the tilt series acquisition
by mechanically shifting the stage, the resulting alignment still
needed to be refined. The low magnification images were aligned
using the patch tracking module in the open-source software
IMOD 4.9.3 (University of Colorado, http://bio3d.colorado.edu/)48.
During the patch tracking, 16 patches with a 512-by-512-pixel size
were tracked and pixels within a 205-pixel margin near the
boundary were trimmed. The aligned low magnification tilt series
were then cropped to give the tilt series of individual NPs.

Cropping individual tilt series
A customized MATLAB code was used to crop the individual NP
images in the tilt series at all angles in three steps. (1) Centroid
translation. NPs at zero-tilt angle were first detected by a simple
thresholding (Supplementary Fig. 2a). The particles within a 1024-
pixel margin near the lateral image boundaries were eliminated
because they would be out of focus at high tilt angle and resulted
in poor model training and reconstruction quality (Supplementary
Fig. 2a). For every NP, the tilt images at zero-tilt angle were
translated to shift the particle centroid at zero-tilt angle to the
center of the images, where Lx and Ly were used to annotate the
translation on x-axis and y-axis (tilt axis), respectively (Supple-
mentary Fig. 2b). Here the Ly was also directly applied to tilt
images at all tilt angle α and Lx was further corrected in step 2. (2)
Tilt axis translation on x-axis. The lateral translation of each NP at
nonzero-tilt angles Lx(α) was determined through geometric
modeling. As shown in Supplementary Fig. 2c, the translation
Lx(α) was given by Lx(0)cos(α), where Lx(0) is the zero-tilt Lx as in
step 1. This translation moved the tilt axis so it can pass individual
NP centroids in the projection. After this step, all individual particle
images should be correctly aligned and ready for reconstruction.
(3) Tilt axis translation on z-axis. Different height (z-coordinate) of
NPs causes lateral translation in the tilt series, which still gives
correct reconstructions but increases the diversity of the
sinograms and makes the training more difficult. In this step,
the tilt series were further aligned according to their z-coordinates.
Here all individual tilt series were first reconstructed by a SIRT
algorithm (see Reconstruction algorithms) and filtered by a
Gaussian filter with excessive sigma, which discarded all shape
details and only kept a rough 3D centroid coordinate of the
particle. Then the z-coordinate (h in Supplementary Fig. 2d) of
each NP was extracted through binarization of the reconstruction.
The final lateral translation also followed the geometric modeling
as shown in Supplementary Fig. 2d and was given by Lx(0)
cos(α)− hsin(α), where h stands for the distance from the particle
centroid to the substrate. For each NP, the surrounding area with a
size of 320-by-320 pixel was finally cropped and resized to 256-by-
256 pixel to match the size of the neural network. After cropping,
thresholding and masking were used to remove other particles in
the field of view at all tilt angles. However, if particle overlapping
was found through manual inspection at any α, this tilt series
would be discarded.

Angle shifting of experimental tilt series
One requirement for the unsupervised inpainting method to work
is that the mask region (or the missing angles) has to be random

instead of fixed. Benefited from the random orientations of NPs on
the substrate, the tilt series can be shifted to move the missing
region to random angles. As shown in Supplementary Fig. 2e, the
real full tilt range is actually ±180° instead of ±90°. But because of
the nature of the orthogonal projection, any tilt images with a
180° angular difference are just a mirrored image of each other. As
a result, ±90° tilt range is enough to reconstruct all the 3D
information. Thus, we first combine the missing angle regions
separated at +60°−+90° and –90°− –60° into one region with
regular size. Specifically, the sampled tilt series at ±60° (green
region in Supplementary Fig. 2e) were first mirrored to give the tilt
series at +120°−+180° and –180°− –120° (blue region in
Supplementary Fig. 2e). Then a continuous subset spanning 180°
range was sampled from the angle range annotated by the red
arrows in Supplementary Fig. 2e to create the sinograms with
missing angles located in the middle instead of two ends. Similar
to the simulated tilt series, the experimental tilt series after
missing angle shifting were also split along the tilt axis direction to
give 256 individual sinograms with sizes of 61-by-256 pixel, which
later served as the model training or predicting inputs. For making
the experimental tilt series training dataset, a mini augmentation
was done by repeating the random angle shifting mentioned
above for three times on each tilt series to increase the diversity of
the training data.

Unsupervised training workflow
The training procedure followed the flow chart in Fig. 2. A 2D
U-Net with an architecture given by Fig. 2g, an Adam optimizer,
and MSE loss were used for the unsupervised image inpainting,
and the sinograms either produced from image simulation or
cropped from experimental tilt series were used as the training
datasets. Using the experimental dataset as an example, splitting
all 126 tilt series along the tilt axis (y-axis) after the augmentation
gives 126 × 256 × 3= 96,768 sinograms (three for the mini
augmentation mentioned in the last paragraph). However,
because at the high- and low-ends of the y-axis, a lot of sinograms
turned to be purely black, we removed 99% of the black
sinograms to speed up the training, which finally resulted in
44495 sinograms in the training dataset. In each training epoch, a
certain number of sinograms (epoch size) were first sampled from
the training dataset and predicted by the U-Net model. Each
prediction was then randomly masked at an angle range
corresponding to 60° (or a belt-like mask with 20-pixel height).
Next, the 1st round predictions and their masking results were
used as the ground truth and input for U-Net training,
respectively, for one epoch of training. The updated U-Net was
used in the next epoch and such process was iterated until the
loss converged. The epoch size used in experimental data training
is 2000. For the effect of epoch size (sinograms sampled in each
epoch), learning rate of the Adam optimizer, and number of
epochs, please refer to Supplementary Note 1. The training was
done on Google Colab platform using the TensorFlow library.

Reconstruction algorithms
The U-Net predictions on sinogram stacks (tilt series) were directly
reconstructed by the WBP and SIRT algorithms. For the WBP
reconstructions, the MATLAB built-in function iradon.m was used
to perform the inverse radon transform on every slice in the
sinogram stacks and the results were stacked together to give the
reconstructions. For the SIRT reconstructions, the SIRT3D_CUDA
algorithm in the MATLAB version of ASTRA Toolbox was directly
applied to reconstruct the 3D sinogram stacks. This algorithm
used GPU acceleration. The SIRT iteration number was set to
be 500.
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Binarization and analysis
For the binarization of the reconstructions of simulated data, to
make fair comparisons between different algorithms, the binariza-
tion threshold of each reconstruction was searched by comparing
with its corresponding ground truth to give the highest IoU. For
the binarization of experimental data, all reconstructions were first
processed by a 3D median filter with a 5-by-5-by-5-pixel size and a
3D Gaussian filter with 2-pixel sigma. The filtered 3D images were
then binarized with the Otsu thresholding algorithm49 to give the
binary NP models. The volume, major axis length, solidity, and
sphericity were all measured by the MATLAB built-in function
regionprops3.m. The PCA was done by the MATLAB built-in
function pca.m with an input matrix containing 5 descriptors as
columns and each NP as rows.

DATA AVAILABILITY
The simulated and experimental datasets can be found at https://doi.org/10.13012/
B2IDB-7963044_V1.

CODE AVAILABILITY
The codes used for UsiNet model training can be found at https://github.com/
chenlabUIUC/UsiNet. Additional codes for data preprocessing and analysis are
available from the corresponding author upon request.
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