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ABSTRACT: This review highlights recent efforts on applying electron microscopy (EM)
to soft (including biological) nanomaterials. We will show how developments of both the
hardware and software of EM have enabled new insights into the formation, assembly, and
functioning (e.g., energy conversion and storage, phonon/photon modulation) of these
materials by providing shape, size, phase, structural, and chemical information at the
nanometer or higher spatial resolution. Specifically, we first discuss standard real-space two-
dimensional imaging and analytical techniques which are offered conveniently by
microscopes without special holders or advanced beam technology. The discussion is
then extended to recent advancements, including visualizing three-dimensional morphology
of soft nanomaterials using electron tomography and its variations, identifying local structure and strain by electron diffraction, and
recording motions and transformation by in situ EM. On these advancements, we cover state-of-the-art technologies designed for
overcoming the technical barriers for EM to characterize soft materials as well as representative application examples. The even more
recent integration of machine learning and its impacts on EM are also discussed in detail. With our perspectives of future
opportunities offered at the end, we expect this review to inspire and stimulate more efforts in developing and utilizing EM-based
characterization methods for soft nanomaterials at the atomic to nanometer length scales in academic research and industrial
applications.
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1. INTRODUCTION

This review highlights recent progresses at the intersection of
electron microscopy (EM) and soft materials. Electron
microscopy utilizes electrons, which are charged particles
that can be focused and positioned with magnetic lenses.
When accelerated to high energies (keV−102 keV), they
become ultrafine probes with large scattering cross sections,
ideal for nanoscale resolution characterization. New detectors,
beam technologies, and data science promise to capture images
and movies on-demand with unprecedented speed, precision,
and attenuation of beam effects. A diversity of systems that
were traditionally considered as the wild west for EM imaging
are now made possible to study, with nanoscale structure and
dynamics unveiled and understood. Soft materials (different
from metallurgy and ceramics) are among those systemsa
huge and ever-growing class of materialsfirst defined by de
Gennes in his 1991 Nobel lecture. Soft materials describe
broadly soft and “squishy” systems that are complex and
flexible, constructed often from tiny constituents that can be
agitated by thermal fluctuations in a suspended liquid media
during synthesis, processing, and functioning.1 For these
systems, questions of interest can range from the structural,
phase, and functional changes of the system as a whole (such
as in a colloidal suspension or a thin film assembled from
conjugated polymers) to the crystallinity, strain, defects,
transformation of a single constitute such as a colloidal
nanoparticle (NP), coordinated organic frameworks, polymer
molecules, and proteins. Those questions belong to different
fields of research as diverse as colloid and surface science,
polymer physics, structural biology, and biochemistry, with
designated tools such as dynamic light scattering (DLS), X-ray
diffraction (XRD), small-angle X-ray/neutron scattering
(SAXS/SANS), differential scanning calorimetry (DSC), and
crystallography that address samples at discrete length scales
and often on an ensemble level. Thus, it is exciting to see an
emergent, unified theme of developing and utilizing soft-
materials friendly EM technologies as a general route to
investigate and image the spatial and temporal structures and
behaviors at the atomic to nanoscale.
This review thus focuses on these exciting advancements and

user applications, and points toward the future of this exciting
and newly formed frontier, especially to invite crosstalk
between the communities of EM (M&M meetings in the

US) and soft materials (scattered in APS, ACS, MRS meetings
in the US) to stimulate more active research. As shown in
Figure 1, we will focus on colloidal NPs and their synthesis,
assembly, reaction, and application, polymers and their
assembly forms, various types of carbonaceous materials,
coordinated organic frameworks, and biostructures. We will
review the technological developments to address key issues in
characterizing those materials using the commonly accessible
techniques of scanning electron microscopy (SEM), trans-
mission electron microscopy (TEM), and scanning trans-
mission electron microscopy (STEM), together with a suite of
functional modules to enable imaging in three-dimension
(3D), alongside the temporal, composition, and structural
order dimensions. These technological developments are
covered to give the soft materials readers a jump start on the
history and possible techniques to use for their own purpose,
with the types of measurable properties introduced by
extensive user examples. Based on this survey of state-of-the-
art EM technologies and what have been applied to soft
materials, it is clear for us to spot the remaining uncharted
territories that we see as promising directions in the next five
to ten years.
Given the rich reconfigurability, structural complexity, and

spatiotemporal heterogeneity of soft materials, massive datasets
are generated as one investigates them using EM.2 As a result,
this review also contains a huge section with forward-looking
views on how data science has been used and will be used
further in analyzing EM data, and even in acquiring and
controlling data in how we understand interfaces, how we
discover new materials with new functionality, and even how
we do EM.
We would like to also point out that EM has drawn various

initiatives and attention worldwide and it is a timely
contribution now to review the current status and future of
EM on soft materials, one of the areas that has traditionally
escaped EM's investigation. This goes beyond the Nobel prize
recognition of cryogenic EM in 2017. In the US, the
Department of Energy recently published a roundtable
discussion on “Research Opportunities in the Physical Sciences
Enabled by Cryogenic Electron Microscopy”.3 In Europe, it
has been decades of years to build and maintain the “European
Network for Electron Microscopy” to consolidate the EM
resources and provide access to leading European state-of-the-
art EM research infrastructures for translating research. We
hope to stimulate a wider range of academic and industrial
research communities to use EM for the analysis and
engineering of new materials in physical, chemical, and
biological science in the long run.

2. STANDARD REAL-SPACE, TWO-DIMENSIONAL
(2D) IMAGING BY EM

Among the EM techniques, SEM, TEM, and STEM are the
most commonly used in soft material characterization. In this
section, we will describe each of them with a focus on standard,
so-called “ex situ” imaging of 2D features of the samples that is
accessible on all common machines without complicated
adaptation. The applications and challenges in characterizing
different materials, ranging from colloidal inorganic NPs to
polymers and biomaterials, will be introduced, together with
the utilization of versatile analytical techniques (energy
dispersive X-ray spectroscopy (EDX), electron energy loss
spectroscopy (EELS), and energy-filtered TEM (EFTEM)) to
unveil their chemical and plasmonic properties.
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2.1. Introduction to SEM, (S)TEM, and Cryo-EM

By scanning samples with a focused electron beam of an
accelerating voltage <30 keV and collecting the signals from
scattered electrons and generated X-rays, one can obtain
information about surface topography and composition of the
sample using SEM with 0.5−4 nm resolution. Compared to
TEM and STEM, SEM brings weaker damage to the sample
and, instead of penetrating through the sample, maps the
interaction of electron with the surface. It does not have a
limitation on the sample thickness and provides topology and
elemental characterization of surface structures. The contrast
due to more secondary electrons emitted at a sharp edge of a
feature can also bear immediate information on the 3D shape
of the samplewhile one might not differentiate between
triangular plates and tetrahedron based on their projected view
in TEM, the corner and faceted shapes of tetrahedron would
be clearly captured by SEM with its great depth of field (a few
micrometers to several millimeters).10 While such a surface-
dominant interaction could lead to the accumulations of
charge on insulating materials, strategies such as conformal
conducting coating (e.g., a few nanometers of carbon or gold)
and low voltage (∼0.3−5 keV) at which the emitted electron
current can balance the beam current are proved convenient
and efficient.
In TEM and STEM, an electron beam of a high accelerating

voltage (60−400 keV) is transmitted through the sample,
focused by a series of electromagnetic lenses, and projected
onto a screen or camera to produce images, enabling a higher
resolution of 0.5−2 Å in imaging. In the obtained TEM or

STEM images, information such as (i) the size and shape
(based on bright-field (BF) TEM images), (ii) atomic
arrangement and crystal structure, orientation, and strain
(high-angle annular dark field (HAADF) images based on
STEM or diffraction patterns), and (iii) composition (EDX
and EELS based on STEM) can be obtained at high resolution.
Thin samples (for optimized resolution, typically less than 200
nm), such as a thin film or a suspension on a grid, are usually
required for TEM imaging to allow the penetration of
electrons. Due to the high voltage applied, samples such as
organic materials that may be easily deteriorated by electron
beam need to be treated carefully (see Section 2.2.2 for more
details).11 Specifically, high-resolution TEM (HRTEM), also
referred to as phase-contrast TEM, utilizes transmitted and
scattered electrons to create an interference image of high-
enough resolution to detect arrays of atoms in crystalline
structures. In comparison, in STEM, the electron beam is
focused into a fine spot (with a typical size of 0.05−0.2 nm)
and raster scans across the sample to enable various imaging
and analytical modes, such as annular dark-field (ADF)
imaging, EDX, and EELS, the signal of which can be obtained
at the same location or even simultaneously. Combined with
aberration corrector, the electron probes can be further
focused to sub-Angstrom diameter in size, allowing location
of individual atoms in the HAADF mode, in which the contrast
in the HAADF image is highly sensitive to variations in the
atomic number (Z) and the sample thickness.12,13 For low-Z
samples, the difficulty in STEM imaging is increased due to
their small scattering cross section and sensitivity to radiation

Figure 1. Illustration showing the application of EM, with assistance of ML, in the characterization of soft nanomaterials. The EM images and
illustrations are adapted with permission from refs 4−9. Copyrights 2020 Springer Nature under CC-BY 4.0 [https://creativecommons.org/
licenses/by/4.0/], 2022 The Royal Society of Chemistry, 2022 AAAS under CC BY-NC 4.0 [https://creativecommons.org/licenses/by-nc/4.0/],
2017 American Chemical Society, 2019 American Chemical Society, 2019 American Chemical Society.
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damage. Note that both TEM and STEM usually provide 2D
projection of a material. For example, it is hard for STEM to
characterize the vertical structure of a material, such as
distinguishing the atoms distributed above or beneath a certain
(x,y) plane. To obtain 3D structures, it is necessary to utilize
tomography methods by taking a tilt-series of a sample
(Section 3).
Cryo-EM is a subclass of EM that allows the visualization of

samples in a solvated environment by rapidly cooling a
solution sample to ultralow temperatures (85−100 K). The
recent achievement of near atomic resolution cryo-EM imaging
through improved detector technology and reconstruction
algorithms has attracted more attention and applications
beyond imaging biomolecules (Section 2.2.2).14 The potency
of flash-freezing samples in their solvated environments and
reducing damage from the electron beam makes cryo-EM a
powerful tool for imaging polymer specimens15 and air/oxygen
sensitive materials in batteries.16 It is also an emerging trend to
incorporate cryo-EM (Section 2.2.1) and liquid-phase TEM
(Section 5) to obtain both high resolution and temporal
changes in the presence of solvents to understand the
dynamics of nanomaterials during formation, processing, and
function.12

2.2. 2D Real-Space EM Imaging Techniques

2.2.1. Inorganic Colloidal NPs. Colloidal NPs have
attracted a lot of attention in various research fields, including
chemistry, materials science, biology, and physics, as they
exhibit optical, electrical, and chemical properties that are
different from their bulk counterparts.17 Among various

research topics, one important task is to characterize the
structure of NPs, as well as their assemblies, and understand
the structure−performance relationship. Most inorganic NPs
are made of metals or metal oxides that are stable against an
electron beam, allowing the leverage of different modes of
electron microscopes and beam energies for comprehensive
characterization. Electron microscopy methods provide con-
venient and efficient high-resolution imaging of individual NPs,
which is of particular significance to heterogeneous nanoma-
terials if one is eager to know the precise shape, structure, and
elemental distribution of the material.

NP Size, Shape, Crystal Structure, Strain, and Assembly.
Use trisoctahedral (TOH) Au@Pd NPs, which are a promising
candidate for catalytic reactions due to the high-density atomic
steps and kinks on surface, as an example on shape and surface
structure analysis.18 By conformally growing Pd layers on
concave TOH Au seeds, Au@Pd core−shell NPs featuring a
similar shape were obtained and their exact size, shape, facets,
as well as surface structures can be resolved by EM. As shown
in Figure 2a−c, the uniform size distribution and concavity of
the products were confirmed by SEM, and images from
different orientations further helped construct the particle’s 3D
shape. From TEM images (Figure 2d,e), the projection angles
in selected crystallographic directions were measured, which
were later used to determine the high-index facets exposed on
the surface. For instance, viewing from the ⟨110⟩ direction, the
four edge-on facets of the TOH Au@Pd NP were identified as
{552} facets as the projection angles were measured to be
around 140°, 95°, and 150°, consistent with theoretical values

Figure 2. (a) High- and (b) low-magnification SEM images of TOH Au@Pd NPs. (c) Individual NPs in different orientations with corresponding
3D models (right of each SEM image). (d, e) TEM images showing (d) the overall morphology of TOH Au@Pd NPs and (e) a single NP viewed
from the ⟨110⟩ direction with the measured projection angles marked. Inset in panel e: the corresponding electron diffraction pattern. (f) HRTEM
image showing the edge of a TOH Au@Pd NP, revealing the atomic steps made of {221} and {331} subfacets in the surface. Inset: the
corresponding FFT pattern. (g, h) TEM images and schematics with angle notation showing the self-assembly of patchy prisms into (g) twisted star
and (h) slanting diamond structures. (i) HAADF-STEM image of amorphous Pd NPs, and (j) FFT pattern of the selected area marked in panel i.
(k) SAED pattern of amorphous Pd NPs. (l) HAADF-STEM image of 2H−Pd NPs. (h) Magnified HAADF-STEM image and (i) FFT pattern of
the selected areas marked in panel g. (o−q) Characteristic projections of binary superlattices self-assembled from different NPs: (k) 13.4 nm γ-
Fe2O3 and 5.0 nm Au; (l) 7.6 nm PbSe and 5.0 nm Au; (m) 6.2 nm PbSe and 3.0 nm Pd. The lattice projection is labeled above the scale bar in
each panel. Scale bars: (c) 50 nm, (g, h) 50 nm, and (o−q) 20 nm. (a−f) Reprinted with permission from ref 18. Copyright 2010 American
Chemical Society. (g, h) Reprinted with permission from ref 21. Copyright 2019 American Chemical Society. (i−n) Adapted with permission from
ref 25. Copyright 2020 American Chemical Society. (o−q) Reprinted with permission from ref 33. Copyright 2006 Nature Springer.
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(Figure 2e). Besides, the Miller indices of high-index facets can
be also examined by HRTEM, where the arrangement of atoms
in the edge-on facets was characterized and analyzed (Figure
2f). On the surface of the NP, a series of alternating {221} and
{331} subfacets were captured, resulting in an overall profile
close to the {552} facet, consistent with the conclusion from
projection angles. Interestingly, the Au/Pd interface showed no
disruption in the lattice pattern from HRTEM, which indicated
epitaxial growth of Pd on the Au seed, as well as the capability
of ex situ TEM in understanding the reaction mechanism.
In BF-TEM imaging, elements with large differences in Z

will give rise to different contrasts. Such a capability of
distinguishing different components can be useful for hybrid
materials. Representative examples include Janus and patchy
particles.19 For example, in Au-organosilica Janus NPs, the
metallic and silica domains can be simply resolved in TEM
images.20 Similarly, one can also easily tell the polymers and
quantum dots from noble metals, and their positions in patchy
particles can be identified such as coatings at vertices, edges, or
faces of metallic cores (Figure 2g,h).21−23 For elements with
close Z numbers, HAADF-STEM with higher sensitivity to Z-
contrast and EDX or EELS with high energy resolution in
detection of elements can provide more reliable results than
BF-TEM (more discussions on analytical techniques in Section
2.3).24 Besides, aside from the Z of elements, the contrast
shown in TEM images can arise from many other factors, such
as thickness, crystal orientation, and strain, which should be
noted for interpretation.
The capability of EM in resolving atomic scale structures of

NPs also shows great significance in unveiling unconventional
crystal structures of metals and amorphous materials. For
instance, it was shown that amorphous Pd NPs can be
synthesized by reducing palladium(II) acetate in oleylamine
with 1-dodecanethiol serving as a surfactant.25 With HAADF-

STEM, the arrangement of atoms inside Pd NPs can be clearly
observed, the randomness of which indicates the unusual
amorphous structure of the sample. The conclusion was further
verified through fast Fourier transform (FFT) pattern,
selected-area electron diffraction (SAED), and XRD, as
shown in Figure 2i−k. Interestingly, by heating the amorphous
Pd NPs dispersed in oleylamine in air and under vacuum, a
thermodynamically stable face-centered cubic ( fcc) phase and
an unconventional 2H phase were obtained, respectively. The
HAADF-STEM images clearly present the typical “ABCABC”
atomic stacking along the [111]f direction of fcc-Pd and the
“ABAB” stacking along the [001]h direction of 2H−Pd (Figure
2l−n), the latter of which was reported for the first time and
are expected to find wide applications in the synthesis of
heterophase nanostructures and catalysis. Similar cases can also
be found in many other metal NPs synthesized from well-
designed one-pot or epitaxial growth methods, where atomic-
resolution STEM images serve as a powerful means for
confirming their novel crystal structures.26−28

In addition to the overall external size, shape, structure, and
rough elemental distributions in single NPs, EM can also
resolve structure-alteration-induced strain in NPs. As an
example, the lattice spacings of Pd in Pd nanosheets with
different atomic layer thicknesses can be measured from
aberration-corrected HRTEM images, from which the strain
inside the nanosheets was calculated.29 Due to attraction
between surface atoms, the nanosheets experienced larger
compressive strain when their thickness got smaller. This
intrinsic strain was later proved to be a key factor affecting the
catalytic performance of catalysts, revealing the significance of
characterization methods in assisting the discovery of reaction
mechanisms and catalyst design. Similar strain control can also
be realized by tuning lattice parameters of supports. The
resulted expansion or contraction in catalysts can be visualized

Figure 3. (a−d) Ex situ SEM images of Ag and AgCl NPs obtained at different stages during the synthesis of Ag nanocubes: (a) 5, (b) 30, (c) 90,
and (d) 120 min. The octahedral NPs are made of AgCl, while the small, bright dots are Ag NPs generated from the decomposition of AgCl upon
exposure to electron beam, suggesting the potential existence of Ag nuclei in AgCl octahedra before SEM imaging. Scale bar: 500 nm. (e)
Electrochemical cell with (f) carbon-coated gold grid as working electrode. (g, h) IL-TEM showing the same location of Pt NPs (g) before and (h)
after 1000 potential cycles between 0.05 and +1.3 V. Effects of coalescence and migration are marked in panel h. (a−d) Reprinted with permission
from ref 36. Copyright 2016 American Chemical Society. (e−h) Reprinted with permission from ref 45. Copyright 2015 American Chemical
Society.
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and quantified from atomic-resolution STEM images, which
was further correlated to their catalytic performance and used
for understanding the mechanisms.30,31
Besides imaging individual particles at the atomic scale, an

electron microscope can also be used to characterize the
ensemble of NPs, such as self-assemblies, to visualize their
structure.32 For example, from TEM images of samples at
different tilt angles without performing extensive tomography,
the twisted dimeric structures of patchy particle assemblies
were observed and misaligned angles between patches were
measured, assisting further explanation of their formation
mechanism involving electrostatic repulsion and steric
hindrance (Figure 2g,h).21 Under a lower magnification, a
larger scale of ordered NPs can be characterized, with their
positions, orientations, and components clearly identified
under electron microscope. Figure 2k−m shows some
characteristic projections of binary superlattices self-assembled
from different materials and in a variety of structures.33 The
tight placement of NPs also suggested the maximization of
packing density as a driving force for the formation of binary
superlattices. By tuning the size, shape, component, surface
ligand, and charge of building blocks, one could expect more
diversified superlattices to be realized with programmable
physical and chemical properties.
Pseudodynamics of Colloidal NPs. Before the advent of in

situ EM, standard TEM utilizes the strategy of taking static
images of aliquots of samples quenched in a time sequence
(e.g., during a synthesis or assembly process) to understand
the formation mechanism. Such quenching can be done on a
regular TEM where the products obtained at different time
steps can be centrifuged out of the reaction solution and thus
maintain a “paused” state of growth, processing, or assembly.
One prominent type of examples is in morphology-controlled
synthesis of NPs.34−36 For instance, during the synthesis of
sharp-cornered Ag nanocubes with CF3COOAg serving as the
precursor and cetyltrimethylammonium chloride (CTAC) as
the surfactant, TEM images at different stages provided
important evidence of the growth mechanism. The generation
of AgCl nanoscale octahedra was observed at the initial stage
(5 min into reaction, Figure 3a), followed by nucleation and
growth of Ag nanocrystals both on the surface and in the
interior of the AgCl octahedra (Figure 3b−d), which finally
evolved into cubic shapes in the presence of CTAC and
FeCl3.

36 Aside from the nucleation and growth pathways of
NPs, the change in crystal structure of NPs during various
processing conditions, such as heating and ligand exchange,
can also be characterized using this quenching method.37,38
For example, the transformation of Pd NPs from fcc to an
amorphous phase after ligand exchange was faithfully recorded
by ex situ HRTEM image series and corresponding SAED
patterns.38 The crystalline Pd NP transformed into a core−
shell structure containing a crystalline core and an amorphous
shell after replacing oleylamine with bismuthiol I as surface
ligands for 1 h, and finally into an amorphous phase after 24 h
with Pd atoms arranged in a non-close-packed manner. In this
case, HRTEM serves as a powerful tool for resolving the crystal
structures and thus unveiling the reaction process.
Aside from regular TEM, cryo-EM is also widely used for

characterizing the growth of inorganic NPs where NPs in a
solution could be flash-frozen and quenched. The advantages
over the “quenching” for a regular TEM experiment are that (i)
beam-sensitive NPs can be protected better with the vitrified
ice and the optimized low dose conditions in cryo-EM,

enabling studies such as the transformation of amorphous
aggregates to crystals for zeolite NPs39 and the nucleation and
growth of polystyrene (PS) nodules on silica NPs,40 (ii)
species other than NPs in solution, such as shape-directing
molecular assemblies and ligand complex, can also be
maintained and imaged under TEM.41 A representative
example is the morphology change of cetyltrimethylammo-
nium bromide (CTAB) micelles in the synthesis of Au
nanorods (NRs).42 It was observed that the addition of
Hofmeister salts (e.g., NaNO3, NaCl, NaHSO4) increased the
proportion of ellipsoidal (1.5 < aspect ratio <3) and rod-like
(aspect ratio >3) micelles, affecting the aspect ratio of final
products. Complex NP assemblies with beam-sensitive
materials can also be characterized by cryo-EM, such as binary
NP superlattices whose formation was guided by protein
cages.43
By comparing the particle position before and after

reactions, the motion of NPs can be inferred, such as their
aggregation after electrochemical activation characterized using
identical location (IL) TEM.44,45 In a typical experiment, a
TEM grid is loaded with catalyst particles and used as a
working electrode for electrochemical reactions such as oxygen
reduction reaction (ORR) and water splitting (Figure 3e,f).
The morphology and location of NPs are recorded before and
after experiment, providing a wealth of information about the
degradation mechanism of catalysts, including element
leaching, aggregation, and detachment from carbon support,
among others (Figure 3g,h). It should be noted that compared
to ex situ characterizations, recording the shape evolution or
movement of nanomaterials in real time can be more direct,
which is now possible by the development of in situ TEM
including environmental EM (ETEM), gas-heating EM, and
liquid-phase EM. More details will be discussed in Section 5.5.

2.2.2. Organic and Biological Nanomaterials. Com-
pared to the imaging strategies developed for inorganic NPs,
imaging organic and biological nanomaterials presents addi-
tional challenges in low contrast due to low-Z elements46 and
surface charge build-up in SEM.47−50 Besides, they also show
high sensitivity to beam effects (e.g., charging, ionization,
heating51), which usually result in structural deformation and
chemical damage. When it comes to biological materials with
high water content, the challenge is exacerbated as EM is
performed under high vacuum. Thus, optimization in sample
preparation, special instrumentation of EM, and advanced
postimage and data processing methods are often implemented
for imaging these samples.

Surface Morphology and Internal Structures of Nano-
materials Using SEM Techniques. Surface and cross-sectional
structures are often imaged in SEM. In doing SEM, sputter
coating samples with a thin film (<5 nm) of noble metals, such
as Au, Pd, or their alloys, or lower acceleration voltages
between 5 keV and as low as 0.3 keV are used to reduce beam
damage caused by accumulated charges built on a semi-
conducting surface.47,52 The former solution may introduce
damages to the sample substrate and may even result in a
nonuniform coating, thereby damaging the sample integrity.47
For the latter method, a decrease of the signal-to-noise ratio
(SNR) could occur, which ultimately affects the final image
quality53 and can be compensated with advanced image
processing methods. For example, a machine learning (ML)-
based method was reported to super-resolve low-resolution
SEM images, where a convolutional neural network (CNN)
was trained using a set of low-resolution SEM images and the
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high-resolution counterparts.49 In a similar study, SEM-based
secondary electron spectroscopy and secondary electron
hyperspectral imaging was used to examine the structure of
semicrystalline poly(3-hexylthiophene).54 By coupling SEM
with simulation and ML, this study presented the fraction of
amorphous and crystalline regions in poly(3-hexylthio-
phene).54
Since its development in the 1970s, focused ion beam (FIB)-

milling has been widely used as a sample preparation method
for soft materials to obtain electron-transparent samples
suitable for TEM and, more prominently, coupled with SEM
to view the cross-sectional morphology.55 The technique,
known as FIB-SEM, can be coupled with cryogenic sample
preparation methods and used for a myriad of applications in
organic and biological soft material characterization, such as
differentiating domains of block copolymers56 and cell
envelope thickness measurements during bacterial biofilm
formation.57 For example, a study demonstrated using
cryogenic sample preparation methods to characterize solid−
liquid interfaces using the FIB-SEM technique.58Figure 4a,b
shows the FIB-SEM images of the interfacial layer of
lanthanum ferrite and bismuth ferrite on a strontium titanate
substrate, where the sample was prepared by freezing a drop of
water on the surface, followed by depositing a layer of
organometallic platinum to facilitate a high-resolution cryo-
SEM micrograph and cryo-EDX elemental mapping of a solid−
liquid interface.58 FIB-SEM was also used to image the spatial
distribution of micro- and nanoparticles in Liesegang band
patterns seen in the periodic precipitation processes of silver
nitrate−chromium(VI) in a gelatin gel medium.59 It showed
that the micro- and nanoparticle bands were not only confined
to the surface, but also spread across the thickness of the gel
film (Figure 4c,d).59
Size and Shape Characterization Using TEM Techniques.

Comprehensive understanding of the size and shape of
nanoscale organic and biological samples has been achieved
in TEM imaging. To increase the TEM contrast, one of the
commonly used methods is staining. Stains also distribute the
energy from the electron beam over a larger area of sample

compared to unstained samples, effectively reducing the beam
damage.46 A myriad of staining chemicals exist, which mostly
consist of a heavy metal element interacting with the sample to
generate contrast by scattering electrons at high angles.60
Positive stains, such as iodine, ruthenium, and ruthenium
tetroxide, preferentially react with certain chemical bonds (e.g.,
heavy metals react with anionic carboxyl, phosphoric acid, and
sulfhydryl groups in biological tissue61) in the soft material
sample, hence localized in certain regions. In comparison,
uranyl acetate, ammonium molybdate, phosphotungstic acid,
and other electron-opaque negative stains cover the sample
exterior, acting to enhance the outline. Characterization of
deoxyribonucleic acid (DNA) origami structures under TEM
commonly uses negative staining as a means of enhancing the
inherently low contrast of DNA.62−65 DNA origami involves
folding the nucleic acid into well-defined 2D and 3D shapes by
utilizing hydrogen bonds between complementary base
pairs.63,64,66,67 In one example, by staining with uranyl formate,
DNA origami designs of a wireframe beach ball, concave and
convex triangles were clearly resolved, which was achieved by
targeted insertion and deletion of base pairs in bundled DNA
strands (Figure 5a).63 Interestingly, coating DNA origami
structures in a silica shell was recently reported, leading to a
higher image contrast from the electron-dense Si atoms when
compared to the uranyl negative stain (Figure 5b).67 While the
latter stains the background, the former directly coats silica
onto DNA origami and thus more efficiently increases its
contrast.
Due to the diversities of accessible designs, nowadays DNA

origami assemblies have been widely used as templating
materials for NPs,68−72 nanowires,73 lipids,66 peptides,74
carbon nanotubes (CNTs),75−77 and graphene.78 It was
demonstrated that DNA-lipid complexes can be produced by
assembling multilamellar lipid structures around a DNA
origami template through electrostatic interactions between
the positively charged lipid and negatively charged DNA
groups (Figure 5c).66 This DNA-lipid assembly was clearly
visible in negatively stained HRTEM images (Figure 5d).66

Another study presented the electron microscopic investiga-

Figure 4. (a) Cryo-FIB SEM image of the solid−liquid interface of strontium titanate substrate, layer of alternating lanthanum ferrite/bismuth
ferrite and frozen water droplet. (b) Magnified cryo-SEM image of the solid−liquid interface shown in panel b. (c) SEM micrograph of Liesegang
band patterns seen in silver nitrate−chromium(VI) system in gelatin medium. (d) FIB-SEM image of the cross section of the band pattern showing
the particle distribution along the thickness of the gel film. Scale bars: (a) 50 μm, (b) 500 nm, and (c, d) 10 μm. (a, b) Adapted with permission
from ref 58. Copyright 2020 American Chemical Society. (c, d) Adapted with permission from ref 59. Copyright 2016 The Royal Society of
Chemistry.
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tions into DNA origami structures (Figure 5e) using stained
and unstained samples on free-standing graphene or
amorphous carbon films, giving interesting insight on how
the sample preparation methods affect image contrast and
resolution.79 The work showed that the negatively stained
DNA origami nanoplates mounted on free-standing graphene
has the highest contrast (Figure 5f), whereas the unstained
counterparts showed both lower contrast and resolution
(Figure 5g).79 Interestingly, the negatively stained DNA
origami nanoplates on an amorphous carbon substrate
depicted the best image quality (Figure 5h,i), which was

attributed to the heavy-metal stain and the lack of interactions
between the carbon substrate and the DNA origami sample.79

Despite these examples, it should be noted that 2D imaging is
far from enough to illustrate the complex 3D morphology of
DNA origami. To this end, 3D characterization methods such
as electron tomography will be more suitable in capturing such
complex 3D morphologies (see Section 3.2 for more
examples).
Beam-induced radiation damage is a common challenge in

soft material characterization using EM. At the atomic level,
the electron beam interacts with the specimen to break

Figure 5. (a) DNA origami designs of a beach ball (left), concave triangle (middle), and convex triangle (right). (b) TEM images of uranyl
formate-stained DNA origami rings (left) and DNA origami rings coated in silica (right) with high magnification insets. (c) Structure of the DNA-
lipid complex with DNA origami template covered with multilamellar lipid sheets. The interactions between the positively charged lipid head and
negatively charged DNA backbone is shown. (d) HRTEM images of negatively stained DNA-lipid complexes, with the schematic representation of
the areas in dotted lines. (e) Schematic of DNA origami nanoplate imaged in panels f and g. (f, g) STEM images of (f) uranyl acetate-stained and
(g) unstained nanoplates on graphene substrate showing the contrast difference. (h) STEM image of stained DNA origami nanoplates on
amorphous carbon and (i) a zoomed-in view of the dashed area. Scale bars: (a) 20 nm, (b) 300 nm, 30 nm (inset), and (c) 200 nm. (a) Adapted
with permission from ref 63. Copyright 2009 The AAAS. (b) Adapted with permission from ref 67. Copyright 2018 Wiley-VCH. (c, d) Adapted
with permission from ref 66. Copyright 2020 Wiley-VCH. (e−i) Adapted with permission from ref 79. Copyright 2017 Wiley-VCH.
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chemical bonds by displacing atoms.50 This chemical damage
is manifested as structural deformations such as thinning,
shrinking, and warping of the sample under the electron
beam.50 Radiation damage of an electron beam can be
effectively reduced by decreasing the electron dose rate and
total doses.53 TEM imaging of polyamide (PA) membranes by
An et al. used a low dose rate of 4.0−6.9 e− Å−2 s−1 to preserve
the heterogeneous membrane morphology.80 Membrane
protrusions, i.e., crumples, were imaged with minimized
electron beam damage, and elucidated a relationship between
the monomer concentrations used in the synthesis and
topological parameter of thickness (Figure 6a,b).80 Another
example used a low accelerating voltage (≤15 keV) to analyze
the surface of plasma-modified and unmodified poly(ε-
caprolactone) scaffolds to show that both surfaces are
morphologically similar.47

Recently, graphene has emerged as a support substrate in
EM, particularly in TEM techniques, because it reduces
damage from the electron beam81 and its low thickness reduces
both elastic and inelastic scattering,82,83 resulting in high-
contrast79and sometimes high-resolution48,84images. A
study which used graphene-coated TEM grids to image
amyloid fibrils compared unstained and stained specimens.85

Although the stained amyloid samples showed an overall
higher contrast due to the strong scattering of electrons by
heavy metal ions in the staining agent (Figure 6c,d), with the
use of graphene-coated grids, overlapping fibers of unstained
amyloid fibrils were better resolved as darker regions compared
to individual fibers, attributed to the mass-thickness contrast85

(Figure 6e,f). Such detail was unobservable in the stained
images, emphasizing the benefits of graphene in soft material
EM.

Concluding the challenges and strategies described above,
electron microscopic imaging has found wide applications in
the study of organic and biological materials, and this is also
evident from a myriad of reviews and papers on different
aspects of the topic,86−89 such as polymers,53 biological and
biobased soft matter,88 and battery materials.16,89

2.3. 2D Real-Space EM-Based Analytical Techniques

2.3.1. Composition in Hybrid NPs and Polymer

Membranes. Both EDX and EELS are commonly used
techniques for chemical characterization and elemental analysis
of heterogeneous soft nanomaterials, providing high-resolution
elemental mapping even down to the atomic scale. For EDX
measurements, as the sample is excited by the electron beam,
the characteristic X-ray generated from different elements are
separated into an energy spectrum, enabling the mapping and
quantification of material composition. EDX is generally better
suited for the detection of high-Z elements, as the detection of
low-Z elements is limited by their low fluorescence yield,
difficulty in absorption correction, and the potential absorption
from the detector window.90 Also, EDX identifies elements but
does not provide more detailed chemical information such as
electronic structure and chemical bonding of the sample.91 As
a comparison, EELS shows higher detection efficiency for low-
Z elements, for which the excitation edges tend to be sharp and
well-defined, but the signal gets weaker beyond around 3 keV
energy loss, making its detection on high-Z elements not
comparable to EDX. EELS is a technique measuring the energy
loss of electrons that pass through the sample and undergo
inelastic scattering,92 which can give more information about
the chemical and dielectric properties of a sample. EELS’s
unique ability to differentiate different valences of the same
element, originating from the higher energy resolution of

Figure 6. (a, b) Grayscale intensity-based plots of a TEM micrograph of a PA membrane, imaged under low-dose conditions: (a) Colored plot
based on intensity and (b) a line-plot showing the thickness as 20.4 nm. (c−e) TEM images of (c) negatively stained and (d) unstained amyloid
fibrils, and (e) unstained amyloid fibrils on graphene coated grids which showed high contrast in regions where the fibrils overlap. Scale bars: 100
nm. (f) Intensity profile of the fibrils along the lines marked in panel e. The overlapping region (green) shows twice as much the grayscale intensity
as those of individual fibrils (blue and red). (a, b) Adapted with permission from ref 80. Copyright 2019 The Royal Society of Chemistry. (c−f)
Adapted with permission from ref 85. Copyright 2013 Elsevier.
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Figure 7. (a) HAADF-STEM image, (b) secondary-electron (SE)-STEM image, and (c) EDX mapping of CoFe@LSCFM. (d) Atomic-resolution
elemental mapping of LSCFM marked by a green box in panel a. (e) Normalized EELS spectra of Mn from the core (green) and shell (red) of a
MnO@Mn3O4 NP. (f) The valence states distribution of Mn in a typical MnO@Mn3O4 NP, in which Mn3O4 and MnO are colored in red and
green, respectively. (g) ADF-STEM image of SiC specimen with a stacking fault located at the center. (h) Line profile of the angle-resolved
vibrational spectra across the stacking fault in the direction denoted by the black arrow in panel g. Color scale shows the signal intensity normalized
by its maximum. TA, LA, TO, and LO represent the transverse acoustic, longitudinal acoustic, transverse optical, and longitudinal optical modes,
respectively. (a−d) Reprinted with permission from ref 96. Copyright 2020 Wiley-VCH. (e, f) Reprinted with permission from ref 101. Copyright
2018 Wiley-VCH. (g, h) Reprinted with permission from ref 102. Copyright 2021 Nature Springer.
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EELS, is a strong advantage over EDX. However, more
complex data processing is usually required for EELS.
Generally, EDX is much easier in operation and data

analysis, enabling the identification of different atomic
compositions in a heterogeneous nanomaterial. For example,
the presence of elements can be easily revealed by EDX in
bimetallic NPs, showing their side-by-side, tip-coated, core−
shell, or mixed distribution.93,94 Aside from colloidal NPs, the
position of heavy-metal ions on polymers can also be resolved
by EDX, such as the widespread and site-localized distribution
of Zn2+ and Pb2+ ions, respectively, after adsorption to PA
membrane.95 With the development of modern technology,
the attainable signal is largely improved and EDX can now be
performed even at atomic resolution. For instance, the atomic-
resolution EDX mapping clearly showed the distribution of
different atoms in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ (LSCFM)
substrate and confirmed the exsolution of CoFe alloy NPs,
where all the elements were evenly distributed in the substrate
whereas only Co and Fe were detected in the NPs outside the
substrate (Figure 7a−d).96 The as-generated metal-oxide
interface was later demonstrated as the active site for CO2
adsorption and activation, contributing to a higher CO2
electrolysis performance than the LSCFM counterparts. The
atomic-scale EDX provides a viable method to understand the
atomic structures and their functionalities in nanomaterials.
EFTEM is another technique that can be used for elemental

mapping of hybrid NPs.97 In EFTEM, a beam of high-energy
electrons interacts with the specimen and results in elastic or
inelastic scattering. After the electron energy loss spectrum
forms, an adjustable energy slit can be used to allow only
electrons with certain energy loss to pass through, forming
compositionally sensitive images. If one chooses electrons that
have no loss to pass, named zero-loss filtering, the inelastically
scattered electrons will be blocked. In this way, the image
contrast and resolution can be improved.98,99 By imaging with
the electrons that have an energy loss corresponding to core
losses of particular elements, one can obtain elemental
information with high spatial resolution using EFTEM. For
example, a BF-TEM image, alongside EFTEM Co L2,3 and Fe
L2,3 maps, clearly showed the high concentration of Co in the
cores and the tendency for iron and oxygen accretion to form a
shell in Co@Fe3O4 core−shell NPs, demonstrating the
capability of EFTEM in elemental mapping.100
2.3.2. Valence State, Plasmonic Properties, and

Vibrational Spectroscopy of Colloidal NPs. Compared
to EDX, EELS can not only reveal the elemental distribution in
a nanomaterial, but also its physical and chemical information,
such as valence state of elements and interactions of atoms
with their neighbors. For example, EELS mapping showed the
atomic-scale elemental distributions of Pt and Co in hundreds
of Pt−Co NPs across different stages of catalyst aging, relating
Pt-shell thickness to heat or acid treatment, particle size,
surface orientation, and ordering.103 In another report, the
valence-state distribution of Mn in a MnO@Mn3O4 NP was
detected by EELS mapping, verifying its core−shell structure
that is hard to be distinguished by EDX (Figure 7e,f).101 By
comparing the measured EELS spectra with standard ones, the
chemical environment around atoms can be indicated. Using
Al-doped TiO2 NPs as an example, EELS spectra confirmed
the entering of Al atoms into TiO2 lattice, as well as the
transition of local structure around Al atoms from a TiO2-like
environment to an Al2O3-like environment as the dopant
concentration increases.104 The observation of the transition

was realized through the comparison of EELS data of samples
to the Al2O3 standard one.
EELS is also a powerful tool for studying localized surface

plasmon resonance (LSPR) in metallic NPs, allowing the
visualization of LSPR modes in NPs with high spatial
resolution. For example, with STEM-EELS, the LSPRs and
bulk plasmons can be probed on arrays of AuAg and AuPd
nanodisks with varying Au contents, with the electron beam
positioned 5−10 nm away from the edge of the nanodisks and
passing through the center of disks, respectively.105 The
complex permittivity function can be derived as a function of
Au content. The results highlighted the wide tunability of
LSPRs with composition and charted different trends in optical
properties (e.g., LSPR peak position and width) of AuAg and
AuPd with varying compositions. EELS can also be used to
investigate the various coupling interactions of metal−
semiconductor nanocomposites, such as the strong coupling
between the excitons of ZnO nanowires and the LSPRs of Ag
NPs.106 Besides, it can also be employed to measure the
position and density of interband impurity states in non-
stoichiometric oxides, to investigate the optical and electronic
properties of atomic and nanoscale defects in electrically
conducting and optically active oxides.107
Recent developments in aberration correction technology

have improved the attainable energy resolution in STEM-EELS
to a record of ∼10 meV, allowing vibrational spectroscopy to
be carried out in the STEM.108,109 Such a technique promises
the analysis of vibrational modes at fine structural features such
as surfaces, interfaces, and grain boundaries with high spatial
resolution (0.1−1 nm), and enables the direct detection of
even hydrogen in organics and hydrogen storage materials.
Taking advantage of this technique, mapping of the vibrational
spectra of individual crystal defects was reported recently,
unveiling how the imperfections in solids influence thermal
conductivity and diffusivity.102 It has been demonstrated that
crystal defects can affect the heat-transport properties of
materials by scattering phonons and modifying phonon
spectra. With SiC as a model material, a red shift of several
millielectronvolts were detected in the energy of acoustic
vibration modes near a single stacking fault, as well as an
intensity change and the confinement of the changes to within
a few nanometers of the stacking fault (Figure 7g,h), indicating
the impediment of thermal transport and reduction in local
phonon propagation caused by the defects.102 Aside from
structural defects and thermal properties, nanoscale vibrational
spectroscopy collected by STEM-EELS has shown great
impact in investigating different properties of nanomaterials,
though still an emerging field. Typical examples include the
measurement of surface and bulk vibrational excitations in
MgO nanocubes,110 phonon dispersion in hexagonal and cubic
boron nitride nanoflakes,111 and measuring the temperature of
a nanomaterial with precision down to 1 K.112,113

3. ELECTRON TOMOGRAPHY OF THE 3D
STRUCTURE, MORPHOLOGY, aND COMPOSITION
OF NANOMATERIALS

Building on the efforts and procedures in Section 2 for
standard 2D real-space imaging, there are ever-growing needs
and advancements in imaging nanomaterials’ 3D structure,
morphology, and composition. In particular, with advanced
knowledge on the manipulation of biomaterials and biomi-
metic soft materials, synthetic soft nanomaterials such as
polymeric membranes, nanocomposites, as well as colloidal
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and patchy NPs can reach the complexity of their natural
counterparts, such as cellular organelles, viruses, proteins, and
lipid assemblies. Imaging merely 2D projections is insufficient
and 3D characterization is necessitated. 3D characterization
carries different challenges for colloidal inorganic NPs and
organic, biological materials. The former is robust against
imaging electrons and can be reconstructed conventionally at a
few nm resolution. The challenge lies in pushing for resolving
single atom positions and corresponding strains, which are
found relevant to their applications in catalysis, charge
transport, and mechanical devices. For organic and biological
materials, the radiation damage in the TEM mode is more
serious when it comes to 3D imaging which requires constant
showering of electrons onto the same sample area to collect a
tilt series. Moreover, they exhibit complex and irregular 3D
morphologies that are hard to quantify using simple shape
parameters. In this section, the principles and applications of
electron tomography to heterogeneous soft nanomaterials
including the recent development of cryo-electron tomography
(cryo-ET) will be discussed, ended with an introduction to
emerging techniques including single particle analysis, atom
electron tomography (AET), and Brownian one particle
reconstruction.

3.1. Introduction to Electron Tomography

3.1.1. Brief History of Electron Tomography and
Other 3D Imaging Techniques. Historically, laser-scanning
confocal microscopy and X-ray computerized tomography are
two imaging techniques commonly used in characterizing 3D
structures of soft materials. The former was first introduced by
Jinnai et al. in the mid-1990s, to resolve the morphology of
bicontinuous polymer mixtures,114−116 and the latter has been
reported in imaging fiber-reinforced or porous polymers.117,118
While both imaging techniques allow 3D visualization, their
spatial resolutions are traditionally limited to micrometer-scale
with the recent innovation of pushing it to 7 nm in resolving
NP lattices and multimaterial frameworks,119 still far below
that of electron beam-based methods (0.1−0.3 nm for TEM
and 0.5−1 nm for SEM).120 On the other hand, field ion
microscopy was introduced in 1951, which resolved individual
atoms in 1955, evolved into a 3D imaging technique called
atom probe tomography (APT) in 1980s.121−123 While APT
offers a high resolution below 0.15 nm on composition,124 it
has a few drawbacks; the most prominent one is that APT is a
destructive technique.125−127 Apart from consuming the
specimen during analysis, APT also has limited sample size
and requires special sample preparation methods such as FIB-

Figure 8. (a) Schematic of electron tomography showing the tilting of a cryogenically fixed sample. Tomography involves (b) collecting projections
of the object and then (c) combining the projections to reconstruct the object in 3D. (d) Continuous rotation and recording approach applied to
Pd@SiO2 aggregates with different acquisition times of 6, 8, and 7 s (left to right). (e) Corresponding reconstructed volumes of Pd@SiO2
aggregates. (a−c) Adapted with permission from ref 134. Copyright 2018 Elsevier. (d, e) Adapted with permission from ref 135. Copyright 2019
Elsevier.
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milling and chemical fixation, which may interact with samples
and introduce unwanted artifacts.128
Thus, electron tomography remains a versatile means of

high-resolution (up to Å) 3D imaging by utilizing 2D
projections to construct 3D structures, enabling the visual-
ization and quantification of the complex structures of various
samples. The possibility of using a series of 2D images to
reconstruct a 3D object was mathematically postulated in 1917
by Randon.129 Since its introduction, the technique was first
applied in the field of medicine in 1963,130 for the
development of the computer-aided tomography (CAT)
scanner, which has been even extended today as a diagnostic
tool. In 1968, the first studies on the theory and application of
electron tomography were proposed by De Rosier and Klug,131
Hart,132 and Hoppe et al.133 At that time, the computational
power required for practical application of electron tomog-
raphy was lacking. With the developments in computation,
microscopy (especially on automation) and spectroscopy,
electron tomography is now widely used as a tool to elucidate
complex 3D structures at nanoscale resolutions. In summary,
electron tomography enables the access to the 3D morphology
of an object via a three-step process (Figure 8a−c): (i) image
series acquisition by tilting the sample typically at a range of
±70°, at a certain fixed or varied angle increment, (ii) tilt series
alignment to correct for axis and angle positions, and (iii)
tomogram generation by computer-aided reconstruction
methods (Sections 3.1.2−3.1.4).
3.1.2. Tilt Series Acquisition. Electron tomography

regardless of TEM, STEM, or EDX modes commonly involves
sequentially tilting the sample about an axis, i.e., the tilt axis, to
acquire 2D image projections of a 3D object. The projections
around the tilt axis are taken over a negative and positive angle
range primarily via two methods. The first method involves
tilting the object at equal angle intervals. In this case, the

resolution of the tomogram (d) depends on the number of
projections (N) and the thickness of the sample (D), as
proposed by Crowther et al.136

=d D
N (1)

Thus, increasing the number of projections with equal angle
intervals within a given tilt range improves the resolution of the
final tomogram.137 To this end, angle increments between 1°
and 3° are usually employed in electron tomographic
reconstruction.137,138 It should be noted that eq 1 only
shows the theoretically achievable resolution, while the real
resolution of the tomogram will be lower due to specimen
positioning, tilt angle accuracy, and image quality. Using a fixed
angle of increment assumes the sample to be spherical, with its
thickness constant across the tilt range. However, this
assumption does not hold true for most soft nanomaterials,
such as polymer membranes, nanofibril assemblies, and porous
hydrogels, where the thickness of the sample increases at
higher tilt angles. For instance, for a cuboid-like sample, the
thickness increases with the tilt angle α by 1/cos α.139,140 To
address this issue, a Saxton scheme was developed, where the
tilt increments become smaller at higher tilt angles
compensating for the increase in sample thickness due to
tilting.141 A Saxton scheme requires a larger number of image
projections when compared to the equal angle increment
method, but it inputs data evenly in the Fourier space, which
renders higher resolution tomograms.
Compared to hard materials, electron tomography of soft

nanomaterials faces a unique challenge due to their beam
sensitivity given the needed large number of tilt images and
imaging time. This challenge can be overcome by using low-
dose imaging and cryogenic sample preparation.95,142 As an
example, the tomographic reconstruction of PA membranes

Figure 9. (a, b) Schematics of (a) sample tilting in electron tomography with the tilt angle α labeled, and (b) the missing wedge of information. (c,
d) Reconstruction of (c) sample with missing wedge showing elongation along the beam direction, and (d) sample reconstructed without missing
wedge. (e, f) Schematics showing the missing wedge (f) replaced by a missing pyramid (e) in dual axis tomography. (g, h) Missing domains of
poly(styrene-block-isoprene) in the (g) single axis electron tomographic reconstruction, as opposed to the (h) dual axis reconstruction. (a) Adapted
with permission from ref 95. Copyright 2019 American Chemical Society. (b−d) Adapted with permission from ref 149. Copyright 2019 Springer
Nature. (e−h) Adapted with permission from ref 156. Copyright 2005 American Chemical Society.
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used a constant 2° angle increment across a tilt range of −60°
to +60° to acquire 61 projections with a low electron dose rate
of 7.4 e− Å−2 s−1.95 Moreover, it has been recognized that
manual tilting to acquire images is time-consuming and leads
to high accumulative dose. To overcome this issue, semi-
manual and automated image acquisition methods have been
introduced.143 For example, an automated, continuous rotation
and recording approach was reported in 2019.135 Even with
limitations such as image blurring, Pd@SiO2 aggregates were
successfully reconstructed by acquiring tilt recordings in the
range of +72° to −71° in 6−8 s,135 as opposed to manual
tilting of the samples which can take 2−5 h144 (Figure 8d,e).
Additionally, soft materials have a low TEM contrast which can
be remedied by sample staining or improving the amplitude
contrast46 (see more details in Section 2.2.2).
Both manual and automated image acquisition may

introduce misalignments in the x-tilt axis and tilt angle.
Hence, the projected images need to be aligned onto a
commonly defined x-tilt axis at the tilt angle intervals, using
fiducial tracking,145 patch tracking95 and cross-correlation,146
to ensure the quality of the final tomographic reconstruction.
As an example, the tomographic reconstruction of the active
layer of a polymer solar cell containing an alternating
copolymer of fluorene and fullerene derivative used 10 nm
Au NPs as fiducial markers to align the projected images.147
The tomographic reconstruction of PA membranes instead
used patch tracking for alignment.95 In recent years, ML has
attracted increasing interest in improving the image quality
through minimizing the tilting alignment and missing wedge
problems, and more details will be discussed in Section 6.4.
3.1.3. Missing Wedge Effect. As shown in eq 1, the

tomogram resolution can be increased by tilting the sample at a
larger range. However, eq 1 does not account for experimental
constraints, such as mechanical limitations of the sample
holder, limited space between the objective lenses in electron
microscopes, and sample thickness which blocks the electron
beam and reduces image contrast at high tilt angles due to
inelastic scattering.137 These tilt range limitations gives rise to
a wedge of missing data in the Fourier space of the tomogram,
which translates to a low resolution tomogram in real space
(Figure 9a,b).138 Theoretically, this so-called missing-wedge
effect causes undesirable artifacts such as elongation along the
z-axis (beam direction)137,148,149 and structure distortion,150
thereby affecting the integrity of the final tomographic
reconstruction (Figure 9c,d). Note that in practical applica-
tions of tomography, the common maximum tilt range is −70°
to +70°, which can already result in successful reconstructions,
even without any corrections to the missing wedge
effect.153−152

The missing-wedge effect can be reduced by employing dual
axis tomography, where the sample projected image series
around two tilt axes are combined, replacing the missing wedge
by a missing pyramid (Figure 9e,f).154,155 Dual axis electron
tomography increases the tomogram resolution along the plane
and depth of the object.155 Furthermore, it is capable of
reconstructing morphological features in soft materials with
fiber-like,154 cylindrical, and lamellar nanostructures,156 which
fail to appear in single tilt tomography due to elongation
artifacts. Reconstruction of the anisotropic nanodomains of
poly(styrene-block-isoprene) block copolymer demonstrated
the ability of dual axis electron tomography to capture
cylindrical morphologies.156 While single-axis electron tomo-
graphic reconstruction of the block copolymer showed missing

domains, a dual axis tomography was able to reconstruct the
complete 3D nanomorphology (Figure 9g,h).156 Interestingly,
the same group also introduced a special sample preparation
method and a special holder to achieve a tilt range of −90° to
+90°.157 A rod-shaped sample of a metal−polymer nano-
composite, fabricated by FIB, was attached to a modified
molybdenum grid to acquire 181 images in the range of ±90°,
thereby eliminating the missing-wedge effect.157
To completely rule out the missing-wedging effect, one

method is to use the concept of “Brownian one particle
reconstruction” (also known as “Brownian tomography”)
coined by Jungwon Park and his co-workers,158 which utilizes
the free rotation of a sample when dispersed in liquid to collect
the 2D projections in all orientations, thereby reducing and
nearly eliminating the missing-wedge effect. This approach was
proposed and implemented by Park et al. in reconstructing the
3D morphology of colloidal Pt NPs in solution, sandwiched in
a graphene liquid cell.144 The random orientations of the tilts
were aligned using a probabilistic initial 3D model generation
procedure,159 followed by 3D reconstructions using an image
series containing 1,561 and 1,171 projections, to reveal the
asymmetric structure of the Pt nanocrystals.144 In a recent
study,160 the heterogeneity of 3D atomic arrangement of Pt
nanocrystals in solution was studied, through acquiring a large
range of projections from the Brownian motion of crystals
within a short time span at 400 frames/s and using 1,000−
3,000 projections for the 3D reconstruction. A resolution
higher than 0.72 Å was reported, allowing the mapping of
atomic positions within individual nanocrystals and quantita-
tive studies of strain and lattice distortion.160 As evident from
the above examples, single particle tomography uses a higher
number of projection images when compared to tilt series-
based tomography to eliminate the missing-wedge effect, and
to match the orientation of the random projections to the 3D
structure of the sample. More discussion on this method can
be found in Section 3.4.3.

3.1.4. Tomogram Reconstruction. Early tomography
reconstruction work used a Fourier-space approach which is
currently replaced by back-projection and algebraic recon-
struction techniques. Back-projection involves superimposing
and aligning each of the projected 2D images to yield the 3D
reconstruction of the object. Depending on the sample filter
used to correct an imbalance caused by nonuniform frequency
sampling, two back-projection methods have been proposed:
weighted back-projection (WBP) using a weighting filter to
correct for the sampling error, and filtered back-projection
(FBP) applying a high-pass filter (Figure 10a).161 An algebraic
reconstruction technique was presented by Gordon et al. in
1970,162 which was later improved by Andersen et al. through

Figure 10. Central xz-slices showing missing wedge corrections of
tomograms generated by (a) WBP, (b) SIRT, (c) Iterative
compressed-sensing optimized nonuniform fast Fourier transform
reconstruction (ICON) and (d) MBIR. Among them, only MBIR
shows data in the missing wedge region. Adapted with permission
from ref 167. Copyright 2019 Elsevier.
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the introduction of the simultaneous algebraic reconstruction
technique (SART).163 The simultaneous iterative reconstruc-
tion technique (SIRT), presented by Gilbert in 1971,164 is an
algebraic reconstruction method which uses back-projection
with iterative cycles (Figure 10b).138 Even with the wide use of
FBP and SIRT approaches, as well as improvements to these
traditional techniques (e.g., discrete algebraic reconstruction
technique165 and weighted SIRT138), these methods show
limitations in correcting artifacts caused by the missing wedge,
tilt axis, angle alignment variations,137,138 and low SNR caused
by low-dose conditions used in soft nanomaterial tomography.
To address these issues, Venkatakrishnan et al. introduced a
model-based iterative reconstruction (MBIR) technique and
highlighted that this approach improved the resolution and
contrast of the final tomogram while reducing artifacts due to
missing wedge,166 when compared to WBP and SIRT methods
(Figure 10d).167 Recently, there is an increasing interest in
ML-based methods to further improve the quality of
reconstruction, the details of which will be discussed in
Section 6.4.
3.2. Visualizing the 3D Structure and Morphology of
Nanomaterials

3.2.1. Inorganic Colloidal NPs. Various properties of
inorganic NPs, such as size, 3D shapes, and spatial distribution
in a matrix, can be imaged by electron tomography. One
notable example is the 3D reconstruction of Pd−Ru bimetallic
NPs supported on mesoporous silica by Midgley et al.,168

where HAADF-STEM tomography was first introduced. Since
then, this technique has been applied to imaging the 3D
structure of a variety of inorganic systems.169−172 For example,

the distribution of Pt NPs within a porous ceria nanocrystallite
aggregate was characterized.173 The 3D reconstruction
revealed two types of pores existing in the ceria crystallites:
micron-sized mesopores and nanosized micropores, contribu-
ting to their imperfect assembly. Furthermore, nearly half the
3−4 nm Pt NPs were found to be embedded within the ceria
aggregate, revealing that the fraction of the Pt NPs exposed on
the surface was lower than expected and a significant number
of active sites for catalysis were lost.173 Another example
involves the leverage of HAADF-STEM tomography to reveal
the size-dependent distribution of Au NPs on a TiO2 dielectric
matrix.174 Smaller-sized Au NPs were found to embed into a
dielectric TiO2 matrix, whereas larger NPs are positioned on
the surface of the matrix, showing a bimodal distribution of Au
NP sizes after annealing (Figure 11a,b).174 TEM tomography
can also be applied to analyze the spatial distribution of
inorganic NPs in polymers, where the quality of grafted silica
NP dispersions in polymer matrices was quantified. The silica
NPs were subjected to watershed treatment for segmentation,
followed by Voronoi tessellation to map the interparticle
distance and number of neighboring NPs (Figure 11c,d).175

3.2.2. Hybrid Structures with Organic or Biological

Polymers Coated on Inorganic NPs. Nanoparticles
patterned with synthetic or biopolymer patches have gained
research interest due to their capability to act as molecular
analogous building blocks. The polymer patches on the NPs
are often of nm−10s of nm in size and arranged in 3D over the
NP surface. The patch arrangement is important in such
systems, which determines the NPs’ packing structure through
directed assembly and contributes to applications such as drug

Figure 11. (a) STEM-HAADF image of the Au-TiO2 thin film. (b) Orthogonal cross sections through the matrix of the reconstructions showing
the distribution of larger and smaller NPs in the TiO2 matrix. (c) Watershed analysis of silica NPs with the reconstructed volume (bottom right).
(d) Voronoi cell tessellation (top) and closest neighbor identification (bottom) of silica spheres. (e) Representative tilt projections of the DNA-Au
NP handcuff assembly showing the raw images with a signal-to-noise ratio of ∼0.31 for the DNA strands in the first column, followed by
intermediate and final projection views during iterative refinement. The last column shows the 3D reconstruction views at the given tilt angles. (f)
3D density map of the DNA strands at a SNR ratio of ∼2.44. (g) Final reconstruction of the DNA-Au handcuff assembly showing the AuNPs and
DNA strands. Scale bar: 10 nm. (a, b) Adapted with permission from ref 174. Copyright 2018 American Chemical Society. (c, d) Adapted with
permission from ref 175. Copyright 2014 American Chemical Society. (e−g) Adapted with permission from ref 176. Copyright 2016 Springer
Nature.
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delivery, nanorobotics, and mechanical metamaterials.21 Many
studies employ electron tomography as a means to determine
patch arrangement in 3D. For example, in reconstruction of PS
patches on spherical Au NPs, a tilt range of ±70° and tilt angle
intervals of 2° was used, with the WBP approach for tomogram
generation.152 This study used an interesting trick to increase
the contrast of the low-intensity polymer patches against the
Au NP core, where the projection images were defocused to
create a Freshnel fringe, which was used as a boundary to
identify the polymer from the background.152

The first reconstruction of an individual double-stranded
DNA (dsDNA) was reported by Zhang et al. with the TEM
tomographic imaging of a dsDNA-Au nanosphere conjugate,
where two nanospheres are bound together by dsDNA in a
handcuff-like assembly (Figure 11e,f).176 This work used a
reconstruction method called individual particle electron
tomography, which addresses tilt errors and image distortions
by applying automatically generated masks and filters to small
regions of the projections, giving rise to high resolution
reconstructions.176−178 The negatively stained dsDNA had an
average SNR of 0.56 in the acquired tilt images, which was
improved to ∼3.26 after image alignment to achieve a final
reconstruction resolution of ∼17.1 Å. In a more recent
example, electron tomographic reconstruction was applied to
visualize the distribution of particles in assemblies of DNA-
modified Au NPs.153 The work presented a method of
selectively blocking Au NP surface with a polystyrene-b-
poly(acrylic acid) copolymer and modifying the polymer free
surfaces with single-stranded DNA, thereby facilitating the
assembly of NPs via complementary strand interactions.153

The reconstruction of the assembly between the polymer-
coated, DNA-modified nanocubes and nanospheres resolved
not only the Au NPs orientations but also the polymer coating
using FBP reconstruction.153 Both studies used TEM for image
acquisition, with tilt ranges of ±60° and ±70°, along with tilt
angle increments of 1.5° and 2°, respectively.153,176

A common limitation acknowledged by such studies is the
effect of substrate on the reconstruction of patchy NPs. In the
case of the PS-patched NPs, the TEM grid caused the patches
to form into a meniscus, which was attributed to partial wetting
of the grid by PS.152 In the DNA-modified nanocube and
nanosphere assembly, the face of the cube resting on the
substrate cannot be reconstructed.153 Similar to the patchy NP
examples presented above, TEM tomography was also used to
map the spatial arrangement of NPs in nanoclusters formed
from Au NPs stamped with DNA patches179 and the
anisotropic growth of benzene-1,4-dithiol patches on Au
NPs.180

3.2.3. Polymeric Nanomaterials and Assemblies.

Polymeric materials are often structurally complex due to
synthesis and processing conditions such as reactant gradients
in polymerization processes, stratification, and phase separa-
tion of multicomponent polymer blends.
Electron tomography was first applied to polymers in 1988

by Spontak et al. to reconstruct the microphase separated
domains in a styrene-butadiene-styrene copolymer.181 This
study was followed by a similar study in 2003, which imaged a
block copolymer self-assembling into a nanoscale microphase-
separated morphology.182 As a popular type of systems
employing TEM tomography, block copolymers with bicon-
tinuous morphologies have the challenge that they are hard to
be reconstructed using TEM tomography due to insufficient
contrast difference between different polymer phases. In TEM
tomography of such systems, selective staining of one phase is
commonly employed. An impressive example is the use of a
combination of staining and EFTEM to identify the micro-
domains of a PS, poly(dimethylsiloxane) (PDMS), and
polyisoprene (PI) star terpolymer (Figure 12a−d).182 At
zero energy-loss (ΔE = 0), the unstained star terpolymer
showed PDMS domains as high contrast regions due to the
presence of Si atoms. Since the ionization energy for the K-
shell electrons of Si atom is 99 eV, the inelastically scattered
electrons from Si-rich PDMS decreased when ΔE > 99 eV,

Figure 12. (a) Schematic for the microdomain structure of star terpolymer and (b) cross-sectional view showing PI (black), PS (white) and PDMS
(gray) phases. (c, d) Two viewing angles of the reconstructed terpolymer. (e) Tomographic reconstruction of double gyroid and hexagonally
packed cylinder phases with (f) the sample region used for reconstruction shown in the TEM image. (g) TEM and 3D structures of PS-b-PI
copolymer NPs showing multipod structures with PS phase in blue and PI phase in green. Scale bar: 100 nm. (a−d) Adapted with permission from
ref 182. Copyright 2003 American Chemical Society. (e and f) Adapted with permission from ref 185. Copyright 2009 American Chemical Society.
(g) Adapted with permission from ref 183. Copyright 2016 Wiley VCH.
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Figure 13. (a) Grayscale intensity-based tomographic reconstructions of PA membranes belonging to six different synthesis conditions. The
concentrations of m-phenylenediamine (MPD) and trimethosoyl chloride (TMC) monomers used to synthesize each membrane are given within
parentheses. (b) PA crumple reconstruction and the shape parameters extracted. (c, d) Perspective views (left) and cross sections (right) of water
diffusion pathways of two PA films. (e) Tomographic reconstruction of the polymer particle and (f) the clusters (left) and matrix (right) segmented
to show internal clusters. (a, b) Adapted with permission from ref 6. Copyright 2022 AAAS. (c, d) Adapted with permission from ref 190.
Copyright 2021 AAAS. (e, f) Adapted with permission from ref 192. Copyright 2019 American Chemical Society.
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resulting in brighter PDMS microdomains at high energy-loss
(ΔE = 230 eV) and darker PI and PS domains. Taking
advantage of the contrast change at different energy-loss levels,
selective staining was used to further differentiate between the
PI and PS domains of similar contrast. Osmium tetroxide was
used to selectively stain PI, giving it the highest contrast at ΔE
= 0 with PDMS and PS having comparatively lower contrast.
When switching to ΔE = 230 eV, PDMS microdomains
emerged as the brightest regions, whereas PI and PS regions
were dark, allowing for the successful identification of the three
different domains. In similar studies, Higuchi et al., Jinnai et al.,
and Park et al. stained the PI phase of PS-b-PI bicontinuous
systems on multiple occasions and successfully reconstructed
the corresponding microdomain morphologies (Figure
12e,f).183−185 Three-dimensional confinement of the PS-b-PI
copolymer yielded tennis-ball, mushroom, and multipod
structures, which were resolved using selective staining and
TEM tomography (Figure 12g).183 However, staining might
cause structural changes to the sample, which is worth
attention.186 Furthermore, in most cases, selective staining
cannot be used for in situ imaging as it fixates the structure and
hinders any dynamics,187 except for special instances such as
beam-induced staining on liposomes in liquid-phase TEM.188

In comparison, STEM-based tomography methods, where the
contrast depends on the chemical differences of the phases, can
eliminate the need for staining and are sometimes more suited
for tomography of dynamic systems.187

Beyond recognizing the 3D shape and microstructures of
polymeric materials, recent study on PA membrane recon-
struction demonstrated the utilization of TEM tomography for
quantitative morphometric studies (Figure 13a). Shape
parameters such as the surface area-to-volume and mass-per-
area were measured and local thickness and surface curvatures
of the PA membrane were mapped.95 Groups of distinct
morphologies showing the protruding structures of the PA
membranes, named crumples, were presented. In a follow-up
study, unsupervised ML was used to group the crumples into
three categories, named dome, dimple, and pancake, based on
a collection of more than 50 shape parameters derived from
electron tomograms (Figure 13b, details on ML in Section
6.5.1).6 Importantly, unlike previous examples in Section 3.2,
MBIR method was used in this study for tomograph
reconstruction to minimize missing-wedge effect.6 In both
studies, tomographic reconstruction was applied to visualize
internal void and pores. Tilt ranges of ±60° or ±70°, with
angle increments of 2°, for collection and back-projection
methods for tomogram reconstructions were used, as common
settings for polymer tomographic reconstructions.189

In addition to TEM-based tomography, the HAADF-STEM
mode is widely used to generate contrast through Z-
contrast,168 mass, and thickness.190 For example, a recent
study used HAADF-STEM tomography to analyze a PA
membrane.191 After reconstruction, the local polymer density
variation was mapped to show a higher water permeance at
regions of the PA membrane with a lower average density.191

In combination with EFTEM, the average density, free volume,
and the water diffusion coefficient were calculated, followed by
modeling the water diffusion pathways through the films
(Figure 13c,d).190 The 3D intensity distributions from the
tomograms were converted to density, followed by calculating
the fractional free volume, to show that the water diffusivity is
low in regions of high PA density and low fractional free
volume and vice versa. Similarly, Rajabalinia et al. demon-
strated the cluster size characterization for structured polymer-
polymer latex particles using the 3D reconstruction of STEM
tomography, achieved by removing the polymer matrix to
visualize internal and external clusters (Figure 13e,f).192
Composite systems commonly used in photovoltaic devices

have also been characterized using electron tomography.
Polymer solar cells, for example, where the active layer
constitutes blends of polymer and derivatives of fullerene,193

are morphologically complex because the two phases separate
to form a vast interface area between the polymer donor and
the fullerene-derivative acceptor, which affects the performance
of the solar cell.194,195 Atomic force microscopy (AFM) is
conventionally used to characterize such interfaces,196,197 along
with X-ray scattering,198 SEM,199 and TEM.200 However, AFM
is a surface characterization technique and is unable to provide
a 3D representation of the different phases.147 In the late
2000s, Andersson et al. reported the use of electron
tomography to visualize the active layer of polymer solar
cells.147 This electron tomography-based 3D reconstruction
was adopted in subsequent studies not only to visualize the
morphology of the active layer, but also for quantitative
morphological analysis.201,202 In another example, HAADF-
STEM was used to tomographically reconstruct a blend of
poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenyleneviny-
lene] polymer and CdSe NPs, discovering regions with highly
connected networks of CdSe NPs and those surrounding areas
with low connectivity and density.202

3.2.4. Cryo-ET of Biological Soft Materials. When
subjected to high vacuum environments, a biological sample
dehydrates, thereby destroying its structural integrity. To
overcome this challenge, in 1974, Taylor and Glaeser proposed
a frozen hydration method to preserve the structure of protein
crystals in electron diffraction studies.203 This work was

Figure 14. (a, b) Cryo-ET reconstruction of the (a) outer surface and (b) cross section of the herpes simplex virus showing the membrane (blue),
glycoproteins (yellow), capsid (light blue), and the tegument (orange). (c−e) Cryo-EM images (top) and reconstructions (bottom) of budding
events of SARS-CoV-2 virus infected cells showing (c) early virion budding stage, (d) assembled viron in close proximity to the infected cell
membrane, and (e) further away from the cell membrane. Scale bars: 100 nm. (a, b) Adapted with permission from ref 209. Copyright 2003 AAAS.
(c−e) Adapted with permission from ref 212. Copyright 2020 Springer Nature.
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followed by McDowall et al., who introduced the plunge
freezing method in the 1980s,204,205 where the sample in a thin
liquid film is plunged into liquid nitrogen-cooled ethane to
capture the sample within a layer of thin amorphous ice.206

Over the years, this method has developed into a powerful tool
to characterize fragile soft material nanomorphologies, by
capturing them in their native hydrated states.
Cryo-ET is widely used in visualizing heterogeneous

morphologies of biological materials with resolutions of 3−4
nm.207,208 For example, it was applied to reconstruct the
structure of the Herpes simplex virus, with the viral envelope,
glycoprotein spike protrusions, interior tegument, and intra-
viral nucleocapsid clearly segmented (Figure 14a,b).209 Unlike
viruses, using cryo-ET to reconstruct cells is quite challenging
due to their larger size. Like most tomographic methods, cryo-
ET uses dose-limiting conditions to preserve the chemical and
structural integrity of the biological material by minimizing
beam damage. Most cells are too thick to be used in these
dose-limited conditions as the size exceeds the range of the
mean-free path of inelastically scattered electrons. Therefore,
samples are sliced to obtain thin sections which are transparent
to the electron beam. There are two widely used approaches
for sample slicing: mechanical sectioning of the cryogenic

sample using microtome knife, and FIB milling. As the former
introduces more artifacts, such as blade indentations and
crevasses,210 FIB-milling is widely used in cryo-ET of interior
structures in large cells.211 A recent study of SARS-CoV-2 virus
used FIB-SEM to obtain sections with a thickness of 150 nm
coupled with cryo-ET to reconstruct the budding and
reassembly of the SARS-CoV-2 virion in entering a host cell
(Figure 14c−e).212 To facilitate cryo-ET of larger samples,
such as biological tissues or small organisms, a special cryo-FIB
lifting technique was recently introduced.213 This method uses
special TEM grids and gripper-tips to cut-out sample sections
for cryo-ET. They demonstrated the viability of this method by
reconstructing the ribosomes within a Caenorhabditis elegans
worm.213 In comparison with the single-particle analysis (see
Section 3.4.1), though they both use similar cryogenic sample
preparation methods, cryo-ET analyses tilt projections of a
given sample unit, while single-particle analysis examines
different orientations of a collection of sample units to
determine the 3D structure.
3.3. Spectroscopic Electron Tomography of Soft
Nanomaterials

Recent development in EDX and EELS also allows them to be
combined with electron tomography, enabling the character-

Figure 15. (a) Zero-loss BF image and (c) EF image of bulk-heterojunction thin film with poly(3-hexylthiophene) and butyric acid methyl ester
phases. (b, d) The phase distribution at different depths obtained from tomograms reconstructed from (b) zero-loss BF images and (d) EFTEM
images with field views of ∼900 nm. (e) Reconstructions of different ratios of polyisoprene rubber (light blue) and styrene-butadiene (dark blue)
rubber blends with silica distributed between the two phases (purple and yellow). Scale bars: 200 nm. (f) Plot of silica distribution as a function of
blend ratio. (a−d) Adapted with permission from ref 151. Copyright 2010 American Chemical Society. (e, f) Adapted with permission from ref
220. Copyright 2021 Wiley-VCH.
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ization of 3D elemental distribution in NPs.214 Though there
are lots of difficulties in realizing tomography using EELS or
EDX signals, including the relatively low SNR, change in
projected specimen thickness during a tilt-series acquisition,
large datasets, and complication in interpretation, a number of
different strategies were proposed for addressing these
challenges, such as compressed sensing and total variation
minimization (TVM) approaches.215 These strategies have
enabled EDX and EELS tomography for nanomaterials, such as
mapping the elemental distribution in an Al−Si alloy, galvanic
replacement of a Ag nanocube by Au, and the oxidation state
in iron oxide NPs. Compared to EDX, STEM-EELS
tomography can be more powerful in resolving not only the
elemental distribution, but also oxidation state and plasmonic
properties of a nanomaterial. For example, the 3D images
showing the spatial distribution of LSPRs of an individual Ag
nanocube can be reconstructed through STEM-EELS and
electron tomography, mapping the excitation across a range of
orientations.
EFTEM and STEM-EELS tomography have also been used

to visualize different components in organic materials. For
example, poly(3-hexylthiophene) and butyric acid methyl
ester, which show low differential contrast under BF-TEM,
are widely used in organic solar cells as bulk-heterojunction
thin films. Though their 3D morphology can be analyzed by
TEM tomography,199,216,217 most studies use phase contrast as
a mechanism to differentiate the two phases, which is low in
spatial resolution and suffers from image blurring. Further-
more, unlike amplitude contrast that can be achieved by
staining methods, phase contrast is not related to the mass
thickness of the sample, so the bright and dark contrast in
tomogram reconstructions cannot be simply considered as low
and high mass thicknesses, respectively. To avoid potential
misinterpretation, EFTEM tomography was introduced to
differentiate the phases in bulk-heterojunction thin films
(Figure 15a,c).151 The researchers used the Saxton scheme
(see Section 3.1.2) to acquire 141 EFTEM images in a tilt
range of ±70°, with an energy slit of ΔE = 5 eV centered at E =
19 eV on the low-energy shoulder of the bulk plasmon peak for
the thin film, to provide the optimal contrast between the
poly(3-hexylthiophene) and butyric acid methyl ester phases
(Figure 15b,d).151 The image contrast in EFTEM is generated
by the differences in chemical structures between the
components of the system,218 and elemental mapping can be
further obtained from EELS.219
A recently developed multidetector EDX system contains

four silicon-drift detectors placed symmetrically around the
optical axis near the specimen, which allows for the acquisition
of elemental maps with equal quality and high-detection
efficiency over the entire range of tilt angles. One example is
the utilization of STEM-EDX and HAADF-STEM tomography
on beam-sensitive composites consisting of silica distributed
between two phases of PI rubber and styrene-butadiene rubber
(Figure 15e).220 The reconstructions showed that silica was
preferentially distributed in the styrene-butadiene rubber
phase, but it could also be found in the PI rubber phase
when the PI rubber fraction reached higher than 40 wt %
(Figure 15f).220
Incorporating into different types of electron microscopes,

EDX and EELS can provide chemical information on
nanomaterials in a wider range of situations. For example,
with cryo-EM, EDX and EELS permit the characterization of
native state or in situ analysis of NPs in aqueous suspensions.

In one study, cryo-TEM and cryo-STEM were compared. It
was found that relative to TEM mode, far higher total electron
fluences were needed to induce damage to the vitreous ice in
STEM mode, indicating the opportunity for individual NP
identification using EDX and EELS with cryo-STEM. Besides,
2D EDX and EELS mapping have also been used with liquid-
phase TEM, enabling in situ characterization of elemental and
valence distribution inside NPs during chemical reactions
(Section 5). Considering the developments in EM, we are
expecting more future research on combining in situ
techniques with spectroscopic electron tomography, uncover-
ing the 3D distribution of elements/components in NPs in
their native states or during reactions.
3.4. Recent Developments in Electron Tomography

3.4.1. Single Particle Analysis of Synthetic Soft
Materials. Electron crystallography is used to determine the
structure of proteins at the atomic resolution.221,222 This
method, however, requires ordered 2D crystals, which is
challenging to grow. In 1975, Joachim Frank proposed that,
instead of using 2D protein crystals, the structure of the
protein can be reconstructed by combining and aligning
images of different orientations of similar protein particles.223
In combination with cryo-EM, a method called single particle
analysis was developed, for which the 2017 Nobel prize was
awarded. Since its introduction, single particle analysis has
been widely used to determine the structures of biological
macromolecules, and is now introduced to reconstruct the
structure of synthetic materials by imaging different
orientations within a cryogenically fixed sample.224−226 The
major advantage of single particle analysis as a biomaterial
imaging technique is that it requires neither crystallization (as
needed in crystallographic techniques) nor large amounts of
sample (as needed in nuclear magnetic resonance, NMR) and
has been widely used to analyze biosamples such as small
ribonucleic acid (RNA) molecules, membrane proteins,227 and
nanoassemblies with multiple conformations. It should be
noted that single particle analysis usually requires identical
samples, both morphologically and structurally, which may set
barriers to synthetic materials.
A low electron dose of ∼20−40 e− Å−2 is usually leveraged

in single particle analysis to avoid beam-related damage to the
samples. This significantly reduces the SNR of the acquired
images.228 When compared to conventional EM tomography, a
larger number of images need to be collected for a successful
reconstruction. The number of images may range from 104 to
106, depending on the sample and reconstruction algorithm
used.228 The major challenge in single particle analysis is
identification of relative orientations of the samples. One
method is to use projection matching, where the acquired
images are assigned an orientation based on a reference model
of the structure.229 Later in the early 2000s, software
incorporating iterative methods of assigning orientations was
developed, which improves resolution and corrects for the
contrast transfer function of the microscope.230−232 Another
challenge is to analyze conformationally heterogeneous
samples. To address this issue, computational tools, such as
RELION introduced by Scheres in 2012,233 have been
developed with the ability to classify different conformations
into different structural subsets,233,234 even using noisy images.
With the development of programmable self-assembly of soft

materials to create conformationally identical nanosystems,
single particle analysis becomes also accessible to those

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00461
Chem. Rev. 2023, 123, 4051−4145

4071



systems. For example, it was applied to reconstruct silica cages
of sizes smaller than 10 nm, with dodecahedral symmetry.235
This study used a ML algorithm to assign the orientation of the
collected images, while simultaneously identifying and
reconstructing the particles.235 RELION software was used
in this work for reconstruction. Single particle analysis was also
used to determine the structure of Au68 clusters at the atomic
resolution (Figure 16a).236 The reconstructions of Au atom

positions revealed a truncated fcc-like packing, with interatomic
distances of 2.72−3.1 Å, where 12 atoms were arranged in a
cuboctahedron surrounding a central atom, followed by 24
atoms assembled in the fcc-like packing (Figure 16b,c). The
rest of the atoms were observed to deviate from the fcc-
framework due to the small cluster size (Figure 16d).236
3.4.2. Atom Electron Tomography. In 2012, AET was

first demonstrated, which reached a 2.4 Å resolution without
assuming crystallinity.237 With the Au NP as a model system,
individual atoms were observed in some regions, and several
grains were identified inside the NP. Since then, the 3D atomic
structures of a variety of nanomaterials have been studied by
AET, either crystalline or amorphous, unveiling the 3D
structures of grain boundaries, stacking faults, screw dis-
locations, and point defects that are hidden in conventional 2D
projections.144,238−240 With the coordinates of individual
atoms determined, strain inside the NP could also be derived.
The structural information can be further correlated to
material properties, such as conductivity, mechanical property,
and catalytic activity, enhancing our understanding of materials
at the single atom level and guiding the engineering of
materials to achieve better performance.
A notable example is the measurement of the atomic

structure of an FePt NP, where the 3D coordinates (±22 pm
precision) and chemical species (99% accuracy) were precisely
determined by AET.241 A rich variety of structures inside the
NP with 3D details were identified, including atomic
composition, grain boundaries, antiphase boundaries, antisite
point defects, and swap defects (Figure 17a,b). The atomic
coordinates and chemical species experimentally measured
were further input to density functional theory (DFT)
calculations, from which the atomic spin, orbital magnetic
moments, and local magneto-crystalline anisotropy energy
were obtained and their direct correlation with local chemical
ordering were identified. Similar work was presented using
AET to visualize atom positions in a multiply twinned Pt NP,
where dislocations and atomic steps at twin boundaries were
resolved.242 From the relative distance between atoms, the
strain inside NPs can be measured. For example, a novel
model-based method of measuring lattice coordinates was
presented to investigate the lattice strain in Au decahedra,

revealing a systematic outward expansion of the lattice in both
the x and z directions.243 Aside from internal defects and strain
distributions in crystalline structures, atom arrangements in
amorphous NPs can also be captured by AET.244,245 In a
recent report, pentagonal bipyramids were identified as the
most abundant atomic motifs in amorphous Pd NPs, which
were found to arrange into pentagonal bipyramid networks
with medium-range order.245 Such discoveries expand our
understanding of nanomaterials to a wider range of structures
at the 3D level.
Besides 3D imaging, AET can be further applied to capture

atom motion in 4D (one dimension for reaction time),
revealing the structural change and dynamics of atoms in
nanomaterials during reactions (Figure 17c). The 3D atomic
structure of FePt NPs with an accumulated annealing time of
9, 16, and 26 min were imaged and reconstructed.246 It was
found that the Pt-rich core stayed nearly the same, while the
atoms on and near the surface rearranged to form the L10
phase. The early stage nuclei were also tracked, each
containing a core of one to a few atoms, and their behaviors
of growth, fluctuation, dissolution, merging, and division were
captured, which showed great dependence on the order
parameter gradient and its distribution, as well as thermody-
namics and kinetics.
With such an advanced technique of AET, deep exploration

into the structure−property relationship and 3D atomic
dynamics of nanomaterials is allowed and more fundamental
research in materials science, nanoscience, and condensed
matter physics are expected. So far the limitation of this
method is that it works well for thin and small samples (usually
NPs < 10 nm in size); otherwise, the electron beam cannot
penetrate to obtain an atomic resolution. Besides, to our
knowledge, the characterization of biological or organic
materials using AET is still in absence, potentially due to
their beam sensitivity and low contrast of light elements. With
developments in low-dose imaging and contrast enhancement
methods, atomic resolution tomography on these materials can
be expected. Data acquisition speed can also be improved,
enabling the tracking of dynamics of individual atoms and
defects.

3.4.3. Brownian One Particle Reconstruction. As
briefly mentioned in Section 3.1.3, from the Brownian
rotational motion of NPs in liquid-phase TEM, their 3D
structures down to the atomic resolution can be reconstructed,
which is named Brownian one particle reconstruction (Figure
18a). Consider other 3D structure analysis methods: conven-
tional electron tomography has a missing wedge problem
where the tilting angle is usually limited to ±70°, while single
particle analysis (Section 3.4.1) requires a large quantity of
particles identical in structure. Neither is needed for Brownian
one particle reconstruction. In liquid-phase TEM, theoretically
one can observe the full range of orientations of an individual
particle during its random rotation, avoiding the missing wedge
problem. Such orientations are obtained from one particle
without the need for obtaining many identical copies of the
same particle. Typically, a NP suspension is sandwiched
between two sheets of graphene, forming a liquid cell with a
thin liquid thickness. A fast detector is required, such as direct
electron detector, to reduce rotation averaged blurring of
rotating NPs and improve the spatial resolution.158 The
successful atomic-resolution 3D reconstruction also relies on
the correct 2D/3D alignment and averaging distinct from

Figure 16. (a) TEM images (right) of the Au68 NPs, back projection
reconstructions (middle) and class average images (left). (b) Electron
density map (blue mesh), (c) atomic coordinates (red stars) of Au
atoms with Au−Au distances, and (d) arrangement of atoms in the
Au68 NP as determined by single particle analysis. Reprinted with
permission from ref 236. Copyright 2014 AAAS.
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those used in biological cryo-EM, where more information can
be found in a recent paper by Reboul et al.247
The first report on Brownian one particle reconstruction is

based on Pt nanocrystals with sizes smaller than 2 nm.144 The
as-obtained near-atomic structure indicates the presence of
multiple domains in a single particle, with twisted grain
boundaries existing at their interface (Figure 18b−e). These
domains merge along the low-index crystal planes, such as

(100) and (110), which can be attributed to the coalescence
between small particles during particle growth as a route to
minimize excess surface energy. This finding also provides
important evidence supporting the nucleation and growth
model of nanocrystals that proceeds via merging of smaller
NPs. Further analysis on the Pt nanocrystals synthesized from
one batch manifests the structural heterogeneity of the
products owing to the complexity of their growth trajecto-

Figure 17. (a) Complex grain structure of an FePt NP experimentally determined by AET. The NP consists of two large L12 grains, three small L12
grains, three small L10 grains, and a Pt-rich A1 grain. (b) 3D atomic positions overlaid on the 3D reconstructed intensity illustrating antisite point
defects (highlighted by white arrows): an Fe atom site occupied by a Pt atom (top left), a Pt atom site occupied by an Fe atom (top right),
swapping between a pair of nearest-neighbor Fe and Pt atoms (swap defect) (bottom left), and an ideal L12 FePt3 phase for reference (bottom
right). (c) Experimental observation of nuclei undergoing growth, fluctuation, dissolution, merging and/or division at 4D atomic resolution: (a’−c’)
a representative growing nucleus at an annealing time of 9, 16, and 26 min, respectively; (d’−l’) three representative fluctuating nuclei at three
annealing times, showing merging and division of nuclei; (m’−o’) a representative dissolving nucleus at three annealing times, which dissolved at 26
min (o’). The atomic models show Fe (red) and Pt (blue) atoms with an order parameter ≥0.3, and the 3D contour maps show the distribution of
an order parameter of 0.7 (red), 0.5 (purple) and 0.3 (light blue). (a, b) Reprinted with permission from ref 241. Copyright 2017 Springer Nature.
(c) Reprinted with permission from ref 246. Copyright 2019 Springer Nature.
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ries.248,249 Shear distortions and dislocations were analyzed in
the reconstructed 3D density maps, as shown in Figure 18f,g.
Surprisingly, an overall expansion of the fcc lattice, varying
from 0.95 to 2.56%, is observed in the poly(vinylpyrrolidone)
(PVP)-protected Pt nanocrystals in solution, with the domain
boundaries, dislocation edges, and surfaces experiencing an
even larger strain. This finding contrasts with the expectation
for vacuum-exposed NPs, where the lattice parameters are
generally compressed due to effect of surface stress and low

coordination numbers. Further DFT calculations reveal the
bonding between Pt atoms near the surface can be weakened
from the binding of PVP ligands, resulting in the lattice
expansion in the colloidal Pt nanocrystals.160

From reconstructed 3D density and atomic position maps,
the coordination number and generalized coordination number
of surface atoms in individual Pt nanocrystals can also be
measured.250 The high ratio of low-coordination surface atoms,
small domain size of low-index facets, and rich types of high-

Figure 18. (a) Schematic illustration of in situ TEM imaging of Pt nanocrystals freely rotating in a graphene liquid cell. (b) EM density map
obtained from the 3D reconstruction of two particles. (c) Cross-sectional view of the EM density map of particle 1 and 2 along the vertical plane.
(d) 3D density map of particle 1 with color coding to highlight the three sections. Cross sections 1 and 2 are in arbitrary positions near crystal
domain interfaces. (e) Slab through the 3D reconstruction of particle 1 along the vertical plane, with tentative atomic positions indicated. ABC
repeats of {111} planes are visible. (f) Sliced maps of the six components of the strain tensors for a single-crystalline particle. (g) Corresponding
histograms of the strain tensors of all atoms (top), core atoms (middle), and surface atoms (bottom). Scale bars in panels b and d: 0.5 nm. (a−e)
Reprinted with permission from ref 144. Copyright 2015 AAAS. (f, g) Reprinted with permission from ref 160. Copyright 2020 AAAS.
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index facets are all important features explaining the out-
standing activities of Pt nanocrystals in a variety of catalytic
reactions. Aside from colloidal metallic NPs, a similar
technique is also recently reported on ferritin.251 When
imaging proteins in Brownian motion using liquid-phase
TEM, the acquisition time can be reduced from hours required
for sample preparation for cryo-EM to seconds. The dynamics
of the protein, such as conformational changes, hydration layer
dynamics, and thermal fluctuations, can be potentially tracked,
so-called the 4D (three dimensions plus time) characterization
of biological nanomaterials.
Though powerful in high-resolution 3D reconstruction of

single particles, the technique is limited by the potential shape
degradation and structural transformation of NPs under an
electron beam, which can be potentially solved by carefully
selecting the solvent and analyzing the effect of dose rate.
Besides, the fast movement of NPs also poses restrictions on its
potential integration with other techniques such as EDX and
EELS which require a relatively long time for signal collection.
Currently, the NPs analyzed by Brownian one particle
reconstruction are all smaller than 5 nm, and further research
on larger particles are expected, while the restricted rotation in
the confined space of a graphene liquid pocket might be an
obstacle.158

4. LOCAL STRUCTURAL ORDER AND DEFECTS
CHARACTERIZED BY ELECTRON DIFFRACTION

As discussed in Sections 2 and 3, shape, size, morphology, and
elemental composition can be measured from the real-space
direct imaging at nanometer or even subnanometer resolution.
Yet details such as the local structural order or defects,
including the distortions of colloidal NPs due to their multiple
components,252 chemical reactions (e.g., during synthesis or
catalysis),253 or phase transformations (e.g., stimulated by
temperature or electrochemical biasing),254,255 are hard to see
from direct imaging of EM. X-ray-based diffraction techni-
ques256,257 have been the major methods for such structural
characterization, but they are generally ensemble methods and
cannot distinguish the local structural variations. Electron
diffraction, on the other hand, is a powerful and versatile
technique capable of identifying the structure of nanomaterials
in a spatially resolved manner. Traditionally, this method is
mostly applied to metals and ceramics, namely “hard
materials”, and has been the foundation of the theme of
“microstructural engineering” that has led to recent advances in
high-entropy alloys (HEAs),258 ultrastrong ceramics under
extreme conditions,259 magnetic compounds,260 plasmonic
materials and fibers,261 and various solid electrolytes.262 The
extension of the electron diffraction-based method to soft
materials has been limited due to highly focused beam during
diffraction and the lack of universally robust crystalline order
(i.e., nanocrystalline or even amorphous properties). Yet with
recent development of new detector technology and data

Figure 19. An overview of electron diffraction techniques. (a) SAED can select the sample area contributing to the electron diffraction via the
aperture in the image plane of the objective lens. (b) NBD using parallel electron beam in a TEM. It achieves a small electron probe via imaging the
condenser aperture on the sample with a third condenser lens. The convergence angle remains small for the parallel electron beam. (c) CBED in a
TEM. A focused probe with large convergence angle is used. (d) Schematic showing electron diffraction patterns obtained by scanning electron
nanobeam across the sample. Based on the electron diffraction patterns, the strain, phase, and phase orientation can be deduced. (a−c) Reprinted
with permission from ref 264. Copyright 2005 Springer-Verlag. (d) Reprinted with permission from ref 265. Copyright 2021 American Chemical
Society.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00461
Chem. Rev. 2023, 123, 4051−4145

4075



processing algorithms, electron diffraction has been adapted
increasingly to probe the structure (the arrangement of atoms
and molecules) of soft materials with high spatial resolution
(down to atomic scale) and with a large field of view (up to
micrometers).
In this section, we will start with an introduction to the

development and concepts of different electron diffraction
techniques (Section 4.1). Their applications in various
nanomaterials will be discussed next, from colloidal NPs,
polymers, carbonaceous materials to metal−organic frame-
works (MOFs), to unveil their structural details such as
crystallinity, grain orientation, and atomic arrangement, among
others.
4.1. Introduction to Electron Diffraction Techniques

Traditionally, transmission electron diffraction is conducted on
a selected area of the sample using a broad beam illumination
in TEM, known as SAED. SAED is conducted by inserting an
aperture in the imaging plane of the objective lens (Figure
19a), and only the electron beam passing through the aperture
contributes to the diffraction pattern in the far field. A region-
of-interest (ROI) on the sample (typically from hundreds of
nanometers to micrometers) is therefore selected by this
aperture. To increase the spatial resolution of electron
diffraction microscopy, the electron beam can be focused
into a nanometer-sized probe in electron nanodiffraction
modes. The application, named nanobeam electron diffraction
(NBD), can be dated back to the 1980s.263 As shown in Figure
19b, the electron beam is focused to the focal plane of the
upper objective and then forms a parallel beam incident on the
sample. The beam size can vary from a few to tens of
nanometers, which is smaller than that of SAED to detect local
structural variations. In contrast to the parallel beam in NBD,
convergent beam electron diffraction (CBED) focuses the
beam at a large convergence angle at the sample (Figure 19c)
down to a size of sub-Å. One unique feature of CBED is that
the recorded diffraction intensities are composed of diffraction
disks. Each pixel in each disk approximately corresponds to
one incident beam direction. The information contained in the
diffraction disks is particularly helpful for quantitative analysis
of the local structure of materials. In these methods, the spatial
resolution is approximately determined by the size of the
primary peak (r0) of the electron probe:

=r 0.61 /0 c (2)

where θc is the beam semiconvergence angle and λ is the
electron wavelength. As r0 increases (or θc decreases), the
electron diffraction patterns change from Ronchigram to
CBED patterns and then NBD patterns. These three
diffraction patterns provide local structural information on
complementary length scales, varying from the atomic scale to
the nanoscale, and are important as the foundation for electron
diffraction imaging. More information can be found in the
book chapter written by Zuo.264
Based on the nanodiffraction modes, the electron probe can

be further controlled to scan across the sample automatedly
with the diffraction patterns (kx and ky) recorded at various
sample locations (x and y). This technique is known as
scanning electron nanodiffraction (SEND) or four-dimensional
STEM (4D-STEM), where the 4D space consists of the 2D
real-space electron probe positions and 2D diffraction space
electron wave intensity (Figure 19d). 4D-STEM is a high
throughput method to determine and map the local structural

properties of the samples, such as phase, orientation, strain,
and short- to medium-range ordering. The development of 4D-
STEM draws on the advancement of electron detector in
TEM/STEM. The electron detector would ideally have
readout speeds comparable to the scan rate of the electron
probe (10−3 s to 10−6 s time scales), a large dynamic range to
measure both high intensity in the bright field disk and low
intensity from the high-angle scattered electrons, and high
electron sensitivity.
Dynamical diffraction occurs if the electrons are scattered

multiple times before they exit the sample, mostly found in
thick samples. It can result in loss of the structure factor details
in the diffraction patterns, generation of fine structures in each
Bragg disk, and false reflections. All these effects will increase
the difficulties in indexing, fitting, and other quantitative
measurements of the Bragg spots. One method to reduce
dynamic diffraction is to use the illumination mode of
precession electron diffraction (PED), to collect multiple
diffraction patterns from various incident beam tilt angles and
then average them,266 which has been integrated with NBD
and 4D-STEM.267 An alternative approach of multibeam
electron diffraction (MBED) was proposed and tested.268
Multibeam experiments were conducted previously in
SEM269,270 and electron beam lithography271,272 as it increases
the throughput of the experiments. In TEM, an amplitude
grating was placed in the TEM condenser optics to allow one
on-axis beam and several tilted beams to pass through and
illuminate on the sample simultaneously. Since multiple
electron beams were employed, it covered a larger reciprocal
space compared to a typical NBD pattern and therefore could
provide more precision to determine the crystal orientations.
When it comes to weakly scattering samples of low-Z

elements, dose-efficient techniques based on phase contrast
imaging, including differential phase contrast (DPC) imaging
and electron ptychography, have been used.273,274 DPC
imaging is a STEM technique to reveal the electromagnetic
field in a sample by measuring the deflection of the electron
probe due to the field at each probe position in the sample.
The method simplifies the diffraction pattern collected at each
probe position to a two-element vector that describes the mean
shift of the electron beam influenced by the electromagnetic
field from the electron cloud and nucleus in the weakly
scattering samples including various soft materials. Electron
ptychography, on the other hand, is a phase retrieval method
related to the coherent diffraction imaging. By performing
overlapping measurements of the 4D-STEM and recording the
full coherent diffraction pattern at each probe position,
computational methods can be used to reconstruct the
complex sample potential with superior spatial resolution.
Recently, atomic resolution imaging of bilayer graphene was
demonstrated based on electron ptychography.275 The highest
spatial resolution has been reported on bilayer MoS2, which
estimates a spatial resolution of 0.39 Å at an acceleration
voltage of 80 keV in comparison to the conventional ADF-
STEM imaging resolution of 0.98 Å.276
The capability of 4D-STEM can be extended to image the

sample in real space in the confocal configuration of STEM,
which is known as scanning confocal electron microscopy
(SCEM). The confocal imaging mode has been used for long
in optical microscopy,277 and later introduced to EM in
2002.278 One of the potentials of SCEM is to reveal the 3D
information on the sample without the need for sample tilting,
as SCEM improves the depth resolution. The depth-sectioning
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measurements can be performed by placing a pinhole aperture
at a conjugate plane that can block electrons outside the focal
plane, akin to the working mechanism of confocal optical
microscopy.279 Comparing to electron tomography, SCEM
also faces challenges such as achieving a high spatial resolution,
penetration depth, and a large field of view.
Note that all these electron diffraction techniques can

further be integrated with the atomic pair distribution function
(PDF) analysis to quantify structurally disordered materials in
terms of short- and medium-range ordering. For example, the
local atomic environment and degree of the internal disorder in

a nanomaterial can be unveiled by PDF method, such as strain
in semiconductor alloys.280 PDF analysis is traditionally
performed for XRD data obtained from synchrotron beamline.
When combining PDF analysis with electron diffraction
(ePDF), it enables the analysis on the single NP level.
4.2. Applications of Electron Diffraction Methods in
Inorganic Colloidal NPs

Inorganic NPs and their assemblies in both the liquid state and
dry state exhibit novel physical and chemical properties,
playing a pivotal role in the emerging technologies such as
catalysis, plasmonics, and semiconductors.281−283 The crystal

Figure 20. Electron nanodiffraction studies to determine crystal structure and facets of NPs. (a, c) SAED patterns collected from Pt THH NPs with
the NPs tilted along the [001] and [011] zone axes, respectively. Inset: A dark-field TEM image of the THH NP. (b, d) Zoom-in experimental
diffraction spots (left) and the simulated results (right). (e) NBD pattern of a 101 nm Au TOH NP oriented on the [110] zone axis. (f) Magnified
view of (220) reflection spot showing streaks from this and other reflections, indicating additional facets growth. (g) A TEM image of the TOH NP
in NBD mode. (h) Schematic of a TOH NP generated by computer. (i, j) Comparison between (i) experimental and (j) theoretical NBD patterns
of Au144(SCH3)60 cluster. A projection with 16 reflections is observed, which are indexed in the patterns. Inset: Au144(SCH3)60 structure viewed
along a 3-fold symmetry axis optimized by first-principles DFT calculations. (k) The SAED pattern of an individual grain in the YAG:Er
polycrystalline sample oriented along the ⟨113⟩ zone axis. (l) SAED/PED pattern collected at 1° in the same zone axis as that in panel d. (m) PDF
fit analysis of cryo-electron diffraction results obtained from ∼4.5 nm Au NPs with precession, in comparison with structure model of decahedron
(Dh) (Rw = 22%). (a−d) Adapted with permission from ref 289. Copyright 2007 American Institute of Physics. (e−h) Reprinted with permission
from ref 290. Copyright 2013 American Chemical Society. (i−j) Reprinted with permission from ref 295. Copyright 2013 American Chemical
Society. (k, l) Reprinted with permission ref 296. Copyright 2021 The Royal Society of Chemistry. (m) Reprinted with permission from ref 297.
Copyright 2019 American Chemical Society.
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structures of NPs, depending on factors such as the chemical
composition, number of atoms, and the interatom interactions,
can significantly influence the material behaviors, thus
emphasizing the importance of identifying the microscopic
structures of NPs. In this Section, we are going to introduce
recent high-resolution electron diffraction methods employed
to determine the atomic structures, crystallographic orienta-
tions, and even 3D structures of inorganic NPs.
4.2.1. Surface Facets and Crystallinity of NPs.

Traditionally, the crystalline structure of NPs can be identified
by SAED, including plasmonic metallic NPs such as Au and
Ag,284 catalytic NPs such as Pt,285 Pd,286 Fe and Fe oxides,287
and more.288
Recently, the capability of SAED was extended to determine

the high-index facets of NPs that could not be easily attained
previously, with Pt tetrahexahedral (THH) NPs serving as a
typical example.289Figure 20a shows the SAED pattern from a
THH NP tilting along the [001] zone axis of the fcc structure.
Fine features such as streaks can be identified around each
diffraction spots, especially for those with high indices (e.g.,
(400) in Figure 20b). By comparing the experimental results
with simulations, the fine features around the diffraction spots
can be used to refine the shape of the NP. To this end, the
researchers calculated the diffraction patterns of THH NPs

tilted along the [001] and [011] zone axes with surface facets
of {110}, {210}, {310}, {520}, and {730}. The results showed
that the best matched result for the fine features was achieved
when the NP shape was enclosed by {730} facets (Figure 20a−
d), revealing the capability of electron diffraction in
determining the complex structures that are hard to distinguish
in conventional TEM.289
The 3D structural change of NPs can also be revealed by a

similar NBD method, such as the change of surface facets on
Au TOH NPs as their size increases.290 Nanorods, small (44
nm) and large (101 nm) TOH NPs were studied (Figure 20e−
h). The direction and angles of the diffraction streaks were first
measured for the 44 nm TOH NP. The streaks observed in the
diffraction pattern were found to be normal to a series of high-
index facets that were identified in the TEM image, confirming
that the fine features could convey the facet information on the
NP. As the NP size grew from 44 to 101 nm, more streaks
were found around the diffraction spots, suggesting that more
facets were formed during the growth of the TOH NP. Such
NBD analysis of NP facets has also been applied to Au
decahedral NPs to understand their surface structures.291
Compared to NPs, metallic clusters consisted of a dozen or

more atoms coordinated by ligand molecules have a much
smaller size (usually <1 nm). They are scientifically interesting

Figure 21. Crystallographic orientation of NPs revealed by scanning electron nanodiffraction. (a) The model of the decahedral NP and the
reference frame for the crystal orientation mapping. Inset: TEM image of the decahedral NP close to the 5-fold ⟨110⟩ zone axis. (b) The color code
figure from the inverse pole diagram along the [001] direction. (c) Crystal orientation maps of the decahedral NP corresponding to x, y, and z
directions. The x, y, and z directions are also noted in (c). Scale bar: 50 nm. (d) Schematic of 4D-STEM mapping of the local lattice structure in
cathode NPs that undergo the cubic spinel to tetragonal spinel phase transformation. (e) Virtual ADF image of a spinel cathode NP at the end of
the first galvanostatic discharge. Scale bar: 20 nm. (f−h) Mn oxidation state map (f), crystallographic orientation map (g), and strain maps (h) for
the same spinel cathode NP shown in panel i. (i, j) Left panels: The cubic spinel structure viewed at [110]c can transform to either tetragonal spinel
structure of [100]t orientation when c axis is strained (i) or of [111]t orientation when a or b axis is strained (f). Right panels: experimental
HAADF images show the atomic structures of tetragonal spinel [100]t and [111]t orientation in the cathode NPs at the end of discharge. Scale
bars: 0.5 nm. (a−c) Reprinted with permission ref 291. Copyright 2016 Elsevier. (d−j) Reprinted with permission ref 306. Copyright 2022
Springer Nature.
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as they no longer follow classical physical laws, but could be
interpreted by quantum mechanics.292 The structure of the
metallic cluster remains challenging to explore, except for a few
cases studied by single-crystal XRD.293,294 Recently, the
structure of the individual metallic cluster was studied by
SAED by comparing electron diffraction with simulated
ones.295 SAED was performed at a low acceleration voltage
(80 keV) and fast dwell times to avoid beam damage. Figure
20i−j shows a set of NBD patterns used to illustrate the
structure of Au144(SCH3)60 clusters. The electron diffraction
patterns collected in NBD-STEM mode showed well-defined
diffraction spots, suggesting that the Au144(SCH3)60 cluster
likely retained its structural integrity during the collection of
the diffraction pattern. The experimental diffraction pattern
was further compared with the simulated ones calculated using
a theoretical model. While most parameters matched with each
other, the distances between Bragg spots in the experiments
were slightly smaller than those of the first reflections in
refined simulations. The mismatch was attributed to the
diffraction from Au atoms attached to S atoms, which likely
exhibits stretched bond lengths.
In addition, the precision in determining NP facets depends

on the quality of electron diffraction patterns, which can be
further improved by the integration of PED. Figure 20k shows
the electron diffraction patterns taken from a single grain area
on the YAG:Er sample.296 Diffuse scattering is clearly observed
between the Bragg spots likely due to the sample thickness and
multiple scattering of electrons in the sample. This dynamical
diffraction effect (see Section 4.1) can result in false reflections
and nonproportional intensities in the diffraction patterns,
making the analysis under the kinematical framework difficult.
In this case, PED can be used to reduce the dynamic effects by
rotating the incident electron beam and averaging the
diffraction patterns. With precession activated, the quality of
electron diffraction patterns is clearly enhanced by reducing
diffuse scattering (Figure 20l).
By integrating SAED with PDF, ePDF analysis has been

conducted for colloidal NPs of different sizes to study their
crystalline structures.297−299Figure 20m shows the ePDF
analysis performed for aqueous-phase Au NPs covered by
lipoic acid ligands (∼4.5 nm) using PED at cryo-temperature.
By fitting and comparing the results to different Au structural
models (icosahedron, octahedron, and decahedron), the
authors indicated that the PED-ePDF data was sensitive to
different crystalline structures such as monocrystalline
(octahedron) and multiply twinned (decahedron, icosahe-
dron) structures.300,301 Compared to local atomic resolution
imaging of HAADF-STEM, PDF can probe a larger sample
area, obtaining lattice information statistically and enabling the
detection of a large number of samples.
4.2.2. Inner Microstructure of NPs: Domains, Their

Orientations, and Grain Boundaries. While Section 4.2.1
discusses the overall crystallinity and surface facets of single-
crystalline NPs and disordered materials, this section discusses
the complicated cases of crystals consisting of multiple
domains of different orientations, such as twinned crystals
and polycrystals. In those systems, the local variations of
crystallographic orientations in the NP structures may pose
great influence on the optical and catalytic properties of the
NPs, such as the damping of light302,303 and enhancement of
catalytic activity.304 One of the well-known twinned NPs with
heterogeneity in crystallographic orientation is the decahedral
NP of 5-fold symmetry. By applying 4D-STEM to the Au

decahedral NPs at 1 nm resolution,305 inner structural features
of each domain and the grain boundaries in the NPs were
clearly resolved through a correlation analysis of the spatially
resolved diffraction patterns. Alternative to the correlation
analysis of the experimental data alone, theoretical calculation
can be integrated to elucidate more complicated structures.274
One example is the multiply twinned, decahedral Au NPs with
a barrel-like shape studied by scanning PED with the same step
size and probe size of 1.5 nm (Figure 21a−c).291 The electron
beam was parallel to the 5-fold symmetry of the ⟨110⟩ zone
axis of the barrel-like NP (Figure 21a). When viewing from
different directions, the five crystal domains in a Au
decahedron can be clearly recognized, confirming the twinned
structure and equivalent pentagonal symmetry of Au
decahedron similar to known decahedral NPs. Although
NBD and 4D-STEM are widely used in the determination of
the crystal structure and orientation, the recorded diffraction
patterns could be impacted by the dynamic diffraction effects
and the mistilt of sample from the zone axis. To this end,
MBED can be used to improve the accuracy of crystal
orientation determination. Similarly, MBED was conducted on
the polycrystalline Au NPs as a proof-of-concept.268 The
authors compared the MBED and single beam diffraction for
orientation mapping of the polycrystalline Au NPs. The MBED
method gave more contrast in the virtual dark-field (VDF)
image, and it clearly revealed that the overall trend of the NP
orientation was biased toward an ⟨011⟩ orientation. MBED
could also reveal the height information of the Au NPs, despite
that the tilt angles of the electron beam were relatively small
(60 mrad ≈ 3.5°).
Microstructural domains are present not only in as-prepared

NPs, but can be formed in otherwise single-crystalline NPs
during ion insertion in energy storage and separation
technologies. Electrochemical phase transformation induced
by ion insertion is usually accompanied by both compositional
and structural changes, including the microstructural develop-
ment of domains. In the studies of insertion compounds,
extensive efforts have been devoted to identifying the chemical
composition heterogeneities associated with the diffusion- and
reaction-limited mechanisms during charge and discharge. In
contrast, the transformation-induced microstructure resulted
from the loss of symmetry elements remain underexplored,
despite the general importance of domains and microstructures
in alloys and ceramics. Recently, the formation of oriented
phase domains in the cathode NPs during the electrochemical
phase transformation was mapped and elucidated quantita-
tively for the first time.306 A collocated 4D-STEM and EELS
imaging approach was employed for the study (Figure 21d).
The model cathode materials of λ-MnO2 NPs transformed
from the high-symmetry cubic spinel structure (space group:
Fd3m) to the low-symmetry tetragonal spinel structure (space
group: I41/amd) during Mg2+ insertion, with one of the
principal axes strained up to 15%. The monochromated EELS
mapping showed that the NPs underwent a solid-solution type
transition during ion insertion, maintaining a relatively uniform
intraparticle distribution of electronic structures (Figure 21e,f).
On the other hand, the collocated 4D-STEM mapping showed
that the newly formed tetragonal spinel phase in the cathode
NPs exhibited different crystallographic orientations at the
nanometric length scale (Figure 21g). Nonuniform strain
distribution was present in the cathode NPs and correlated
with the distribution of domains in space (Figure 21h). The
results clearly showed the spatial decoupling between chemical
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phases and crystallographic orientation in the electrochemical
phase transformation. The principal axes (a, b, and c) of cubic
spinel structure are equally likely to be stretched in the phase
transformation due to the fcc symmetry. Therefore, the cubic
spinel structure at the [110]c zone axis can transform into
either [100]t or [111]t as the c axis or a/b axis is stretched
(Figure 21i,j). The large strain gradients built up from the
development of oriented phase domains were also found to
have a large impact on the chemical diffusion coefficient by a
factor of more than 10. In another study, electrochemical ion
intercalation was used to extract lithium from diluted water

sources.307 During extraction and separation, lithium and
sodium ions could potentially cointercalate into the cathode
particles, such as olivine iron phosphaste (FePO4), which is
not favorable for lithium extraction. The cointercalation
behavior could be manipulated through intercalation kinetics.
4D-STEM was applied to map the local lattice parameters of
the ion-inserted FePO4. By comparing the local lattice
parameters with the theoretical ones, the study identified the
lithium and sodium phases within the cathode particles at
specific kinetic conditions.

Figure 22. (a−c) Wide-field ptychographic reconstruction of Au NPs and graphitized carbon on a holey carbon support film. (a) Modulus and (b)
phase of the ptychographic reconstruction are compared with the conventional (c) TEM image of the same area. The strong contrast in (a) and (b)
corresponds to thick areas on the sample where the phase passes from π to −π. (d) Ptychographic reconstruction of Au NPs showing the atomic
fringes at 0.236 nm. Inset: the full field-of-view is shown in the inset image. The modulus and phase of the reconstructions are shown together in
the figure. The phase is represented by color and modulus by brightness as indicated by the color wheel scale. (e) Transverse profile of the modulus
of the ptychographic reconstruction along the optic axis of the microscope. Insets: The x−y profiles of the probe at two different z positions
indicated by the arrows. The left-hand inset plots the probe at the sample plane and the right-hand inset is at the focus of the beam. (f) HAADF
image of the cerium dioxide NP used in the ptychographic experiment. The green box indicates the region where the ptychographic reconstruction
process was applied and the transmission function was obtained. (g) Reconstructed real-space illumination intensity. (h) The phase of transmission
function of the reconstructed sample using the reconstructed illumination. Scale bars: (a−c) 50 nm, (d) 5 nm (inset: 15 nm), and (g, h) 1 nm. (a−
e) Reprinted with permission from ref 314. Copyright 2016 Springer Nature. (f−h) Reprinted with permission from ref 316. Copyright 2014
American Physical Society.
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Powder electron diffraction patterns, which were reported
recently, are also shown to be helpful in analyzing the NP
crystal structure in selected, nanoscale regions. During this
process, a stack of diffraction patterns recorded in an SEM
equipped with the pixelated detector (4D-STEM performed in
the SEM) are combined into one composite diffraction
pattern, showing diffraction rings that resemble the powder
electron diffraction pattern. In a recent study, powder electron
diffraction was performed on a Au nanoisland (∼20 nm), small
TbF3 NPs (<5 nm), and large NaYF4 NPs (>100 nm).308 The
scanning area was chosen to be about a few hundreds of
nanometers. The composite diffraction patterns and the
radially averaged intensity profiles revealed the diffraction
peaks characteristic to the samples, and the diffraction results
in SEM were found to be comparable to the SAED patterns
collected in TEM.
4.2.3. Atomic Structures Resolved by Electron

Ptychography. The direct imaging of atomic structures of
NPs holds significance in understanding the material structure,
phase, and defects. Electron ptychography can overcome the
aberration limitations in electron imaging since it records
diffraction patterns without the objective lens. If the correct
phase structure can be assigned to the diffraction data, the
diffraction patterns could be used to calculate an aberration-
free image. The theoretical concept of the ptychography was
first suggested decades ago.309,310 More recently, practical
iterative solution methods were developed for ptychogra-
phy.311,312 The wave function can be calculated at the object
plane via back-propagation to construct an image with a
resolution mostly determined by the effective numerical
aperture of the detector.
Small NPs with negligible dynamic effects provide out-

standing model systems for electron ptychography. Since 2010,
research efforts have emerged for using electron ptychography
to solve the phase problem at the nanoscale. For example, the
ptychographical iterative engine (PIE) was used to retrieve the
phase change at the object plane in TEM.312 Based on it, an
extended-PIE (e-PIE) was developed and showed improve-
ment over PIE for its ability to reconstruct both the object and
illumination functions simultaneously, with Fe0.3Ni0.7 NPs as
an example.313 It also provides robustness to noise and fast
speed of convergence. More recently, the electron ptychog-
raphy was demonstrated in the TEM mode within an SEM,
achieving a spatial resolution of 0.24 nm that surpassed the
intrinsic resolution of SEM of 1.2 nm.314 The experiment was
performed by recording the diffraction patterns of a mixture of
Au NPs and graphitized carbon. The images of sample
(modulus and phase of ptychographic reconstruction) were
obtained, together with the conventional TEM image (Figure
22a−c). The ptychographic reconstruction was found to be
more sensitive to the thickness of the graphitized carbon layer
at the top of the Au NPs than the conventional TEM image. It
also indicates that the thickness of the sample was approaching
the limit of validity of the projection approximation that the
reconstruction algorithm relies on. In the sample area where
Au NPs were not covered by thick graphitized carbon, the
⟨111⟩ atomic planes of Au NPs could be observed (Figure
22d). The lattice spacing measured from the image was close
to 0.236 nm, largely improved over the conventional spatial
resolution of SEM at 1.2 nm. By propagating the wavefront,
the profile of the illumination along the optical axis (z) of the
SEM was also reconstructed (Figure 22e). The results indicate
that the NP thickness and inelastic scattering do not

significantly affect the ptychographic reconstruction, even
though a low acceleration voltage of 30 keV was used where
multiple scattering could occur.
More approaches for the ptychographic reconstructions have

been developed at the nanoscale for robustness and being
computationally efficient, including methods of iterative linear
retrieval using Fourier transforms (ILRUFT) and global
ptychographic ILRUFT (GPILRUFT).315,316 For example,
the fast deterministic approach of GPILRUFT was demon-
strated on a CeO2 NP characterized in an aberration-corrected
STEM, as indicated in Figure 22f.316 The reconstructed real-
space illumination (Figure 22g) and the reconstructed
specimen transmission function phase (Figure 22h) revealed
the atomic structure of the CeO2 NP which was comparable to
the results obtained from the established ePIE method.
4.3. Structural Ordering and Molecular Packing in
Polymers and Biomaterials

A significant task in polymer science is to design nano-
architectures of polymer assemblies with precisely controlled
structures and properties. The chain conformation and
structure are therefore needed to be characterized from the
atomic to mesoscale. Electron diffraction provides the needed
high spatial resolution as the wavelength of electron beams
(typically <0.004 nm for 100 keV or higher) is much shorter
than that of X-rays (typically 0.15 nm), although X-rays usually
have a much larger interaction volume. In 1938, Storks applied
electron diffraction to characterize some linear high polymers
of polyethylenes (PEs).317 Later, Keller and coauthors applied
both EM and electron diffraction to study the submicroscopic
morphology and related crystal orientations in crystalline high
polymers such as PA.318 Since then, electron diffraction
techniques, such as SAED, have been applied in comple-
mentary to X-ray methods to study the structures of a variety
of polymers such as poly(ethylene oxide), polypropylene, block
copolymers like poly(ethylene oxide)-b-polystyrene, and semi-
conducting polymers like poly(3-hexyl-thiophene-2,5-diyl)
(P3HT).319−323 The radiation damage of the electron beam
is an important factor to consider in the characterization of
polymers, which usually requires a case-by-case study
considering the temperature, sample thickness, and the
different types of polymers.324,50

4.3.1. Local Crystallinity and Orientation in Synthetic
Nanocrystalline Polymers or Stacking of Conjugated
Polymers. Nanocrystalline polymers can form various types of
complicated hierarchical structures, varying from the angstrom
to micrometer length scales, such as row structure, spherulites,
and shish kebab formed during crystallization.265,325 For
example, planar-zigzag or helical chains can be repeatedly
packed to form unit cells of the polymer. Flexible polymeric
chains can fold and form thin lamellar crystal of 10−20 nm
thickness.326 Due to the chain folding mechanism, crystalline
domains in a polymer are usually bounded by amorphous
regions. These complex structures of the polymeric chains and
their assembly are, on the other hand, closely linked with the
mechanical, electronic, and optical properties of synthetic
polymers.327 For example, the nanoscale orientation of stacked
crystalline domains in semiconductive polymers328 is an
important factor influencing their electronic properties, such
as the ability to generate excitons.329 The preferential
crystallization of P3HT along the π−π bond facilitates the
movement of electrons and holes within the bulk crystal.330

Therefore, a fundamental understanding of polymeric
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structures is important for designing high-order hierarchical
structures of nanocrystalline polymers for devices. While
electron backscattered scanning diffraction (EBSD) can
effectively map the local grains in metals and ceramics at the
nanoscale,331 the sensitivity of polymers to EBSD is low, which
would require an extended exposure time. Furthermore,
polymers are usually composed of light elements such as C,
O, N, and H, which lead to weak contrast between different
nanostructures.
4D-STEM provides an outstanding platform for mapping

the local crystallinity and lattice orientation from the atomic to
the nanometer length scales. Figure 23a−d shows a 4D-STEM
study of the nanoscale spatial distribution and orientation of
lamellar crystals of PE.265 PE is a representative example of a
beam-sensitive semicrystalline polymer. Two PE samples with
significantly different crystalline properties were prepared: one
was fabricated using thermal annealing (nonoriented) while
the other was fabricated using stretching followed by thermal
annealing (oriented). In the nonoriented sample, the
orientation of the lamellae was observed to vary significantly
(Figure 23c), forming orientation domains of ∼100 nm in the
sample. No clear correlation between lamellae orientations was
found between the adjacent domains. In contrast to the
lamellar crystals in the nonoriented sample, those in the
oriented sample were uniformly aligned in the stretching
direction forming the row structure (Figure 23d). The lamellae
orientation was highly aligned in a homogeneous manner. The
results demonstrated that hierarchical structures in PE can be
captured by 4D-STEM, which did not require pretreatment of
staining to enhance the image contrast. It is worth noting that
electron irradiation damage was observed in the repeated
scanning of the same sample area, although the samples were
carbon-coated for reducing irradiation damage. As the scans
were repeated, the diffraction intensity decreased, and the
peaks became broadened and shifted.
Studies have been conducted to map the local lattice

orientations of semiconductive polymers using 4D-STEM.
Figure 23e shows an example of a P3HT/PS sample.332 It is

worth noting that the electron diffraction patterns in soft
materials usually have weak Bragg reflection intensities due to
the low electron dose and light elements. In addition, there
could be a decaying background (amorphous halo), resulting
from the amorphous regions of the polymers, overlapping with
the Bragg reflections, which could increase the difficulty in
determining the Bragg reflections. In this work,332 the authors
took advantage of the amorphous halo to first align the
diffraction patterns and then subtract the amorphous halo from
each diffraction pattern based on a virtual annular aperture and
developed algorithm to facilitate the identification of Bragg
reflections. The crystallites tended to be distributed within the
oval clusters of the polymer in a relatively uniform way (Figure
23e), and the crystallite orientations were likely to be randomly
distributed with respect to one another. The measured
periodicity at ∼3.8 Å could match the 3.9 Å stacking period
of successive polythiophene backbones along the b-axis of the
monoclinic structure,333 which is the π−π bond spacing,
suggesting that the crystallite is oriented edge-on. Alternatively,
the measured periodicity could also match the (002) reflection
characteristic to the monomer spacing (3.88 Å) along the
backbone, which could be resulted from face-on oriented
crystals. It was difficult to distinguish these two configurations
due to the fewer Bragg reflections for soft materials.
In addition to P3HT, the structures of a variety of

semiconductive polymers, including p-DTS(FBTTh2)2 (de-
noted as T1 in the article), poly[2,5-bis(3-tetradecylthiophen-
2-yl)thieno[3,2-b]thiophene], and poly(ethylene oxide), have
been studied and revealed by 4D-STEM.334,335Figure 23f−i
shows two samples of the T1 molecule: one with cosolvent of
1,8-diiodooctane (DIO) and the other one without DIO.335

To control the electron beam damage, the samples were cooled
with liquid nitrogen. In the collected diffraction patterns, the
brightest π−π diffraction spot pair was used to determine the
crystal orientation for each probe location. The T1 molecules
without DIO exhibited ordered domains smoothly twisting
over 180° range, reminiscent of the structure of liquid crystals
(Figure 23f). In contrast, the T1 molecules with DIO showed a

Figure 23. (a, b) ADF-STEM images and (c, d) orientation maps of (a, c) nonoriented and (b, d) orientated polyethylene obtained from 4D-
STEM. The arrow in (b) indicates the stretching direction. The azimuth difference between the stretching and chain directions is denoted by colors
in the color wheel with a range of ±90°. (e) 4D-STEM mapping of P3HT/PS sample. The Bragg diffraction angle map of the scanned region with
the angle map overlaid onto the ADF image of P3HT/PS sample. The legend is shown above as a colorwheel with the beamstop. (f−i) 4D-STEM
mapping of the sample of p-DTS(FBTTh2)2 (T1) dropcast (f, h) without the cosolvent of 1,8-diiodooctane (DIO) and (g, i) with DIO. (f, g) The
orientation maps show the direction of the brightest reflection spot in the diffraction pattern collected at the probe location. (h, i) The flow line
maps show the molecular backbone structure: the T1 sample shows gradual lattice rotations while the T1/DIO sample shows rigid crystalline
domains with overlap. (a−d) Reprinted with permission from ref 265. Copyright 2021 American Chemical Society. (e) Reprinted with permission
from ref 332. Copyright 2016 Elsevier. (f−i) Reprinted with permission from ref 335. Copyright 2019 Springer Nature.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00461
Chem. Rev. 2023, 123, 4051−4145

4082



very different structure with segmented grains and domain
boundaries (Figure 23g). The lattice orientation at each probe
position is further represented by a colored and oriented line
(Figure 23h,i). It is obvious that the nanostructure of the
polymers, by adding DIO, transited from a liquid-crystal-like,
continuous film to a partially segmented grain structure. Such
high-resolution mapping of the polymer structures at different
conditions can uncover important information about the
crystallization pathways of polymer materials.
4.3.2. Local Crystallinity, Orientation, and Phase

Information in Natural Polymers and Proteins. The
understanding of the local structures in the natural polymers,
for example, cellulose nanofibers, peptides, and proteins, is
fundamentally important to explain their physical properties
and biological functions. For example, cellulose is ubiquitous in
our daily life and has a range of applications from paperboards

to biological and optical materials.336−339 Nanocrystalline
cellulose can consist of various nanostructures, including
nanofibers and nanocrystals. The mechanical properties of
cellulose nanofibers are dependent on the formation of helical
superstructures and the ordering of polysaccharide chains,
which is conventionally characterized by ensemble methods
such as X-ray and neutron diffraction.340 Recently, 4D-STEM
was used to characterize the local ordering of polysaccharide
chains in cellulose nanofibers (Figure 24a).341 The recorded
diffraction patterns (Figure 24b) showed strong Bragg
reflections, which indicated that 4D-STEM can serve as an
appropriate technique for the characterization where the
structure of cellulose nanofiber was not obviously damaged
by the electron beam. The recorded diffraction patterns along a
single cellulose nanofiber were indexed to different crystal
orientations, such as [010], [110], and [110], corresponding to

Figure 24. (a) 4D-STEM mapping data obtained from the sample of a twisting tunicate cellulose nanofiber. The different zone axes of the cellulose
Iβ structure (bottom panel) can be identified from the electron diffraction patterns. (b) The representative diffraction pattern indexed as the [010]
direction of the cellulose Iβ structure. (c) HAADF image of a peptide nanocrystal (QYNNQNNFV). (d) Clustering of the diffraction patterns
recorded by 4D-STEM scanning across the sample in panel c. Inset: the color wheel stands for the relative orientation from the mean in x and y
tilts. The maximum deviation denoted by the color wheel is about 4°. (e) The average diffraction patterns from the clustering in panel c. (f) Low-
dose cryo-ptychographic reconstruction of rotavirus double-layered particles at 22.8 e− Å−2. Scale bar: 100 nm. (g) Scheme showing the
experimental setup for the 3D electron ptychography. (h) The 3D phase reconstruction of a DNA origami framework computed from the
ptychographic data set. (i) Frequency histogram showing the background (green), DNA strands (orange), and Au NPs (light blue) that are
indicated by the colored boxes in panel h. (a, b) Reprinted with permission from ref 341. Copyright 2021 American Chemical Society. (c−e)
Reprinted with permission from ref 346. Copyright 2019 Springer Nature. (f) Reprinted with permission from ref 343. Copyright 2020 Springer
Nature. (g−i) Reprinted with permission from ref 345. Copyright 2022 Springer Nature.
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the monoclinic Iβ cellulose structure. These orientations were
sequentially arranged along the cellulose nanofiber, suggesting
a twist of the nanofiber along the c-axis of the structure.
The local crystallinity in protein crystals can be probed and

revealed by 4D-STEM. Figure 24c−e shows the 4D-STEM
mapping of the lattice structure across micrometer-sized areas
of cryogenically preserved 3D peptide crystal. The number and
intensity of Bragg reflections varied across the different regions
on the peptide crystal, with weaker reflections generally
observed in the thicker regions. Using an unsupervised
classification method, nanodomains within the peptide crystal
were distinguished from the diffraction pattern clusters. The
changes in diffraction patterns across the peptide crystal were
found to be originated from about ±1° tilt of the lattice away
from the mean orientation of the crystal (Figure 24d).
Aside from local crystallinity, the phase image of biological

specimens can also be recovered by electron diffraction
techniques, such as the utilization of cryo-electron ptychog-
raphy in the scanning electron diffraction (SED) mode.342,343
The conventional cryo-EM technique usually takes advantage
of the phase contrast imaging at high defocus to enhance
information transfer at low spatial frequencies, but can suffer
from the loss of information transfer at high spatial
frequencies.344 Electron ptychography can enable continuous
information transfer across a larger bandwidth of the spatial
frequencies. In a recent study, cryo-electron ptychography was
used to retrieve phase images of rotavirus double-layered
particles and HIV-1 virus-like particles.343 An electron probe of
1.03 mrad convergence semiangle, 26.9 nm diameter, and −13
μm defocus was used to scan across the specimens to achieve a
low-dose condition (22.8 to 5.7 e− Å−2). The reconstructed
phase images of the virus particles clearly resolved the capsid
trimmers of viral protein 6 and the channels (Figure 24f). The
power spectra were further calculated to compare information
transfer between the two methods: ptychography and conven-
tional phase contrast imaging at high defocus. The power
spectrum from the ptychographic reconstruction was con-
tinuous over a wide range of spatial frequencies and did not
show thon rings which were obvious in that of TEM images at
high defocus. The results suggested that ptychography could
retrieve phase information over a wider range of spatial
frequencies without contrast reversal. This method can be used
to image the heterogeneous and low-concentration biological
specimens which are traditionally challenging to resolve by
single particle analysis.343
The phase information on biological specimens can also be

resolved in 3D by integrating electron ptychography with
tomography. A recent study demonstrated the 3D phase
reconstruction for the unstained DNA origami with Au NPs.345
A tilt series of ptychography-based tomography was performed
in the tilting range of ±70° with a defocused electron probe of
approximately 120 nm diameter. At each tilt angle, ptycho-
graphic data were acquired in a 10 × 10 scanning area (Figure
24g). The 3D rendering of the phase of the DNA origami
framework computed from the ptychographic data resolved
both the DNA strain and the Au NPs (Figure 24h). This was
supported by the histogram of the intensity, which showed that
the peaks of the DNA strand and Au NPs were separated from
the background (Figure 24i). In contrast, the electron
tomography based on the tilt series of defocused contrast
TEM images found great difficulty in resolving the low-
contrast DNA strand from the Au NPs, where the DNA strand
could be hardly distinguished from the background.

4.3.3. Electron Crystallography on Small-Sized
Protein Crystals and Synthetic Molecules to Resolve
3D Structures. Protein structures have sizes ranging from
tens to several thousands of amino acids. By physical size, the
dimension of proteins varies between 1 and 100 nm.347 To
perform biological functions, proteins fold into one or more
spatial conformations driven by a number of noncovalent
interactions such as hydrogen bonding, van der Waals forces,
ionic interactions, and hydrophobic packing. It is often
necessary to resolve the 3D structure of proteins in order to
understand their functions at the molecular level.
Electron diffraction has been used to study thin protein

crystals for several decades.348−351 Early studies showed that
3D protein crystals could produce well-defined electron
diffraction data.348−350 More recently, with the development
of microcrystal electron diffraction (MicroED) in cryo-EM, the
structures of beam-sensitive protein microcrystals can be
efficiently determined with high precision from the diffraction
patterns based on 3D crystallography.352,353 The MicroED
method was developed for small nanocrystals of proteins (from
a few hundreds of nanometers to a few micrometers) that are
not suitable for X-ray crystallography which would typically
require a crystal size larger than 20 μm.354 The samples are
frozen in a hydrated state, similar to other cryo-EM techniques,
and the diffraction data is taken as a movie when the sample is
continuously rotated in a STEM/TEM.352 For biological
samples, the electron dose rate is controlled to be very low
(usually <0.01 e− Å−2 s−1).355 MicroED was first demonstrated
in 2013 to determine the 3D structure of protein crystals,356

where diffraction data at an atomic resolution (2.9 Å) was
collected from lysozyme crystals that were about 6 orders of
magnitude smaller in volume than those conventionally used
for X-ray crystallography. Since then, several research groups
have been successfully solving the protein structures based on
submicrometer-sized protein crystals via 3D rotation electron
diffraction (RED).357−359 More than 40 different proteins,
oligopeptides, and organic molecules have been studied for
structural determination.356 By increasing the sampling in the
reciprocal space and improving the data processing, the
structure resolution has been steadily improved. For example,
the resolution of the lysosome structure has been improved
from 2.9 Å in 2013356 to 1.8 Å in 2017.360 Several novel
structures that were not solved previously have been studied
and characterized by MicroED, including the structures of
fragments derived from amyloidogenic proteins361 and ligand-
capped Au NPs (Au146(p-MBA)57).

362 Furthermore, auto-
mated procedures are being developed for identifying protein
crystals, acquiring diffraction series while rotating and
positioning the crystal, and characterizing many crystals
sequentially.363,364 A more detailed description of the
MicroED method and the structures determined by MicroED
can be found in the recent review paper from Nannenga and
Gonen.355
It is also worth mentioning that MicroED is different from

other electron diffraction techniques with rotational illumina-
tion, such as automated diffraction tomography (ADT)365 and
RED,366 in the experimental setup. Special software is required
to process ADT and RED data.366 Whether ADT and RED can
be applied to beam-sensitive biological samples also remains
elusive, since both techniques were mostly demonstrated on
inorganic and organic samples (e.g., zeolites)367−370 that are
generally less sensitive to electron beam damage.
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Figure 25. (a) STEM image of randomly distributed granuloviruses on TEM grid. Inset: a zoom-in view of a representative virus. The red circle
corresponds to the electron beam probe of ∼110 nm diameter. Colored lines indicate the lattice directions after indexing the diffraction pattern.
Scale bar: 5 μm. (b) A representative diffraction pattern acquired from panel a. (c) 2Fo−Fc map of the entire structure of granulin and zoom-in
view of a randomly chosen region of the structure. Reprinted with permission from ref 374. Copyright 2020 Springer Nature.

Figure 26. (a) Schematic showing the simultaneous collection of ADF image signals and the coherent diffraction patterns on pixelated detector as
the electron probe was scanned across the carbon nanostructure. (b) The ADF image of carbon nanostructure. (c) The phase image of the same
carbon nanostructure reconstructed from the simultaneously collected coherent diffraction patterns (4D data set) via ptychography. (d, e) An
example of the reconstructed modulus and phase map at a spatial frequency +QP. The two diffracted beams (+QP and −QP) overlap with the
undiffracted beam. By analyzing the phase information in all spatial frequencies in the image, phase image c was reconstructed. (f) An ADF image
of CNT conjugates. The iodine atoms were indicated. (g) The phase image reconstructed from ptychography shows the fullerenes in the CNT.
The gray scale bar is in the unit of radians. (h) The same phase image as that in panel g with annotated fullerenes (dotted circles) and iodine atoms
(cross marks). For comparison, conventional phase-contrast images including (i) BF, (j) annular BF, (k, l) DPC, and (m) DPC using the center of
mass approach were reconstructed from the same 4D data set. Inset: the area of the detector used in each imaging technique. Scale bars: 1 nm.
Reprinted with permission from ref 376. Copyright 2016 Springer Nature.
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Although MicroED has a high dose efficiency of electrons,
the accumulation of electron damage during the rotation of the
crystal potentially remains a limiting factor. Recently, a serial
ED (SerialED) method has been developed and demon-
strated371 by combining MicroED and serial crystallogra-
phy.372,373 In SerialED, snapshots of diffraction patterns were
obtained from a single orientation from each crystal. The
completeness of dataset was achieved by taking thousands of
snapshots of different crystals. The electron beam damage is
therefore intrinsically reduced. More recently, SerialED has
been applied to study protein crystals of granulovirus occlusion
bodies and lysozyme.374 In the experiment, the protein crystals
randomly dispersed on a TEM grid were first mapped by low-
dose STEM (low-magnification mode) over a large area to
identify the crystal features (Figure 25a). Then the electron
beam (∼100 nm in diameter) was sequentially scanned over
each identified crystal position to record the diffraction data
(Figure 25b). The structures of the protein crystals were solved
to resolutions of 1.55 and 1.80 Å (Figure 25c), respectively,
which are comparable to the previous MicroED method of the
same type of lysozyme sample. This work shows that the 3D
structures of proteins can be identified with high resolution,
low beam damage, and automation by using SerialED, during
which process no sample rotation is required.
4.4. Atomic Structures of Carbonaceous Materials

Carbonaceous materials, such as fullerene peapod materials
and CNTs,375,376 have found important applications in
quantum processing,377 magnetic resonance imaging
(MRI),378 and organic photovoltaics.379 However, their
characterization suffers a lot from beam damage, through
either knock-on or ionization mechanism.375 They are also
weakly scattering materials. Therefore, the composition-
sensitive HAADF-STEM technique described in Section 2
that collects electrons at a high scattering angle is less effective.
HRTEM, with its phase contrast imaging capability, has been
frequently used to characterize the shape and size of fullerene
peapods.380−384 EELS spectroscopy, on the other hand, can
show the fine structure of the chemical environment of the
heavy atoms in an endofullerene peapod structure, which
allows the identification of the chemical species and
location.375 The heavy dopant atoms in the carbon
nanostructure can also be revealed via STEM imaging,385,386

where the isolation of single atoms and groups of atoms
attracts lots of research interest.
It remains challenging to resolve the atomic structures of

carbonaceous materials. Recently, considering its capability of
providing phase imaging of weakly scattering samples with high
SNR, electron ptychography was employed to study carbona-
ceous materials,376 combining with the ADF imaging that is
sensitive to the atomic weight (Figure 26a,b). The peptidic
covalently attached “tether” between a single-walled CNT and
a few carbon fullerene molecules was chosen as a model
system. The coherent diffraction patterns contained the phase
information on carbon structures (Figure 26c−e), while the
ADF image was more sensitive to the heavy iodine atoms in
the CNT conjugates (Figure 26f). The reconstructed phase
image from 4D-STEM dataset had a low sensitivity to the Z,
but it clearly revealed the engulfed fullerene molecules in the
CNT (Figure 26g,h). The distance of the fullerene molecules
traveled into the CNT was not consistent with the length of
the peptide tether, suggesting that not all the fullerene and
CNT were successfully attached by the peptide tether. Other
existing phase-sensitive imaging techniques, such as the BF,
annular BF (ABF), DPC, and the DPC using the center of
mass approach, were also reconstructed from the 4D dataset of
CNT conjugates (Figure 26i−m). These images, however,
were not able to resolve the “peapod” structure of the CNT
conjugate as clearly as the electron ptychography, which was
attributed to the worse SNR under the near-zero aberration
conditions. In addition, the contrast of the phase image
obtained from ptychography could be further improved by the
postacquisition correction of lens aberrations.
Carbon-based materials can have complex 3D morphologies,

which can be resolved by SCEM (Figure 27a).387 Carbon
nanocoils were employed as a model system,387 which consists
of carbon fibers with helical structures, inner and outer
diameters of about 500 and 1000 nm, respectively, and the
pitch of 600−1000 nm. Compared with electron tomography
introduced in Section 3, SCEM works efficiently to reveal the
morphology of relatively large samples when the spatial
resolution is not a stringent requirement. Figure 27b,c shows
a series of HAADF-STEM and ADF-SCEM images of carbon
nanocoils at various z positions of the sample. In the HAADF
mode, the images of the carbon nanocoils did not change when

Figure 27. (a) Schematic illustrating the BF-SCEM (left) and ADF-SCEM (right). The setup contains the annular and pinhole apertures and a
stage-scanning system in TEM/STEM. The stage enables the movement of the sample in x, y, and z directions. (b) The HAADF images of carbon
nanocoils that are composed of fibers with helical structures collected at various z positions (−400, 0, and +400 nm). (c) ADF-SCEM images of the
same sample at corresponding z positions. (d) Animated image of the 3D reconstruction of the carbon nanocoil based on collected ADF-SCEM
images at various z positions. Reprinted with permission from ref 387. Copyright 2009 American Institute of Physics.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00461
Chem. Rev. 2023, 123, 4051−4145

4086



the sample was moved along the z direction for a few hundred
nanometers (Figure 27b), since HAADF images collect the
projection of the sample. In the ADF-SCEM mode, different
parts of the nanocoils were resolved when the sample was
moved along the z direction (Figure 27c), demonstrating the
capability of optical depth sectioning. The depth resolution for
ADF-SCEM was about 100 nm. 3D reconstruction of the
carbon nanocoils could be further achieved based on the
optical depth sectioning (Figure 27d). It is worth noting that
the ADF-SCEM images were obtained from the average of
several measurements in order to enhance the detected signals
(60−90 s for one image).
4.5. Crystallinity and Local Distortion in MOF from
Synthesis or upon Guest−Host Interactions
MOFs are hybrid framework materials composed of metal
nodes (ions or clusters) that are connected into an extended
network by organic molecules.388 MOFs are well-known for
their record-breaking surface area and adjustable pore size,389
and have been studied for a variety of applications including
gas storage, separation, catalysis, and sensing.388 The structure
of MOFs, however, can be complicated as they may contain
lattice defects at the nanoscale,390 which can originate from the
generic heterogeneity during synthesis or structural distortion
during usage. Synthetic control of distribution of defects in the
crystalline structures enables the engineering of MOF
functions. For example, the performance of heterogeneous
catalysis is closely associated with the number of active sites
and the diffusion limitation. By incorporation of missing linkers
or nodes in MOFs, the catalytic performance can be
improved.391 Such defects can be introduced to form nanoscale
defect domains in MOFs under appropriate synthesis
conditions.391 Measurements of the bulk defect concentration
has been implemented based on a variety of ensemble

techniques, such as NMR spectroscopy, thermogravimetric
analysis (TGA), Fourier transform infrared spectroscopy
(FTIR), and XRD.390 However, they do not spatially resolve
the defect distribution in individual MOFs. To this end, EM-
based diffraction techniques can be applied to study MOFs and
zeolites at a single-particle level with high resolution.392−394 It
should be noted that MOFs can be significantly damaged by an
accumulated electron fluence of 10−20 e− Å−2, so low-dose
EM is required.395

The distribution of defects in MOF materials can be
resolved via SED, a 4D-STEM technique (Figure 28a), as
demonstrated in a recent study.390 A focused electron probe
was used to scan across the defective UiO-66(Hf) particle at an
estimated electron dose of 5 e− Å−2. UiO-66 has a nominal
formula of [M6O4(OH)4][C6H4(COO)2]6, where M repre-
sents Zr, Hf, or other tetravalent metals. In the defect-free
region, the structure consists of metal oxyhydroxide clusters
coordinated by terephthalate ligands, forming a fcu structure of
cubic-F lattice. In the defective region, the face-center
symmetry was broken, and the structure consisted of cubic-P
phase with reo topology (Figure 28b). A defective UiO-66
particle (Figure 28c) was found to contain both a defect-free
region (fcu structure, Figure 28d) and a defect region (reo
structure, Figure 28e), which was confirmed based on the
identification of the superlattice reflections in diffraction
patterns. The authors performed diffraction contrast imaging
by plotting the summed intensity within the selected disk
integration windows in each diffraction pattern for all the
probe positions to form VDF images (Figure 28f,g). The
parent phase of defect-free region was observed in the whole
particle (Figure 28f), while the superlattice reflections
corresponding to defect region were observed only in certain
regions (Figure 28g), forming a lamellar domain morphology.

Figure 28. (a) Schematic showing SED performed on a defect-engineered UiO-66(Hf) particle. (b) Calculated diffraction patterns for a defective
UiO-66(Hf) particle (blue) along [011] zone axis. (c) An ADF-STEM image of a 6(Hf):5(BDC) UiO-66(Hf) particle with high defect density. (d)
Diffraction pattern collected in the magenta region as indicated in panel c is indexed to fcu phase. (e) Diffraction pattern collected in the green
region as indicated in panel a contains both parent and superlattice reflections of reo phase. (f, g) VDF images reconstructed using integration
windows on the parent reflections marked in panel d, and superlattice reflections marked in panel c, respectively. (h) ADF image of a MOF-CGC
particle from the (MIL-53)0.6(agZIF-62)0.4 sample. (i) Crystallinity map showing the number of Bragg peaks at each electron probe location from
SED data. The color scale shows the number of Bragg peaks. (j) SED mapping of (MIL-53)0.25(agZIF-62)0.75 CGC showing the number of Bragg
peaks found in the diffraction pattern recorded at each probe position and (k) the corresponding STEM-EDX mapping of the sample. (a−g)
Reprinted with permission from ref 390. Copyright 2020 American Chemical Society. (h, i) Reprinted with permission from ref 399. Copyright
2019 American Chemical Society. (j, k) Reprinted with permission from ref 401. Copyright 2019 Springer Nature.
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The reo structure formed rectangular domains and the domain
boundary appeared to be aligned with the particle facets, which
could be associated with the minimization of strain energy
within the lattice structure.396 Such defect domain structures
were consistently observed in UiO-66 particles with varied
defect densities.
Typically, MOFs are synthesized as microcrystalline

powders composed of particles with nanometer to millimeter
sizes. Their physical form is not well suited to industrial
applications without prior processing.397 One potential
solution is to use a secondary material to aggregate the
MOF particles to form composites, for example, MOF-in-
silica,398 MOF crystal-glass composites (MOF-CGCs),399 and
MOF-based mixed-matrix membranes.400 In these composites,
the nanoscale structures of MOFs and their distribution can
impact the functionalities. Recently, SED was employed to
study MOF composites to distinguish the crystalline materials
from the amorphous matrix. The sample was room-temper-
ature stabilized open-pore form of MIL-53(Al) within a ZIF-
62(Zn) MOF glass matrix.399,401 The crystalline and non-
crystalline regions within the MOF-CGC sample were
distinguished based on the Bragg peaks in the recorded
diffraction patterns at various probe positions (Figure 28h−k),
where the crystalline map of the MOF-CGC samples indicated
the number of Bragg peaks in the diffraction pattern (Figure
28i,j). Comparing the crystalline map with the compositional
map obtained from STEM-EDX (Figure 28j,k), the crystalline
regions were found to correspond to the metal centers
(aluminum), which was expected for MIL-53(Al) samples. The
quantitative determination of the distribution of crystalline
components in the composites can be important, for example,
to identify the optimal loading necessary for maximum gas
absorption capacity.
The direct imaging of the atomic structures of beam-

sensitive MOF materials is important to understand the
framework lattice structures and their related functions. STEM
imaging is powerful in resolving atomic structures, but suffers
from a few limitations such as the relatively high energy

electrons and therefore severe electron beam damage.402
Recently, the employment of the direct-detection electron-
counting camera enables the low-dose HRTEM imaging of
MOF subunit lattice structures.403,404 The introduction of the
cryogenic condition can further reduce the electron beam
damage to the lattice structure.405 In addition to HRTEM,
another solution to image beam-sensitive materials is the
utilization of the integrated DPC (iDPC) technique based on
electron diffraction. The iDPC technique is available in the
new generation of Cs-STEM (corrections of spherical
aberration) with a DPC detector, and has been applied to
image zeolite frameworks406,407 and the MOF MIL-101
framework408 with a low dose (∼40 e− Å−2) at the atomic
scale. In the iDPC-STEM setup, four images were collected
from the four segments of the DPC detector in the diffraction
mode (Figure 29a,b). The DPC images were calculated as
DPCx = A − C and DPCy = B − D, respectively (an example of
DPCx of MIL-101 nanocrystal is shown in Figure 29c). In this
way, the iDPC technique enables linear imaging of the
projected electrostatic potential in the lattice structure,
different from the HAADF imaging which collects electrons
at a high scattering angle. The resulting contrast in the iDPC
image was proportional to Z and was expected to distinguish
the light elements. The obtained iDPC images showed the
atomic structures of MIL-101 nanocrystals (Figure 29d,e). The
corresponding FFT pattern of the iDPC image suggested an
information transfer of ∼1.8 Å, which was higher than that of
2.5 Å in HRTEM (equipped with the direct-detection electron-
counting camera) in a previous study.404 The averaged iDPC
image of 29 Å cage in the MOF MIL-101 (Figure 29f) was
consistent with the modeled structure. The atomic-scale
imaging with iDPC-STEM is expected to be applicable to
various beam-sensitive soft nanomaterials.409
The 3D structure determination of MOFs and covalent

organic frameworks (COFs) is an important characterization
step to understand their functional properties. In recent years,
3D electron diffraction (3DED) methods emerge and are
increasingly being used for the structure determination of

Figure 29. (a) Schematic showing the configuration of iDPC technique. (b) Two representative images of MOF MIL-101 nanocrystal sample
detected by the A and C segments of DPC detector, respectively. (c) DPC image from the two images in panel b. (d) iDPC-STEM image obtained
from a 2D integration of the DPC image in panel c. (e) Magnified iDPC-STEM image showing the MOF structure. (f) iDPC image (left) of the
lattice structure of 29 Å cage in the MOF MIL-101. Schematic of the corresponding MOF MIL-101 structure is on the right. Scale bar: (b) 20 nm,
(d) 10 nm, (e) 5 nm, and (f) 1 nm. Reprinted with permission from ref 408. Copyright 2020 Springer Nature.
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nanosized and submicrometer-sized crystals. 3DED data
collection techniques advance from stepwise rotation to
continuous rotation of the MOF crystals, which enables fast
data collection for beam-sensitive materials. For detailed
information, we recommend a recent review paper from
Huang et al.410

5. IN SITU CHARACTERIZATION OF SOFT
NANOMATERIALS’ FULL LIFE CYCLE: SYNTHESIS,
RECONFIGURATION, AND FUNCTIONING

Soft nanomaterials, ranging from colloidal NPs to biomole-
cules, are mostly grown from, react, and function in a dynamic
process, which can entail a solvent to maintain diffussion and
thermal fluctuation, can be heated to overcome a reaction
barrier, and can be pressurized with a feed gas to catalyze
reactions. Such dynamic processes necessitate in situ
observations where the sample environment can be modulated
during imaging with the help of specialized holders (liquid
flow, gas flow, heating, biasing, etc.). Compared to X-ray or
light-based spectroscopy, such as XRD, X-ray photoelectron
spectroscopy (XPS), X-ray absorption spectroscopy (XAS),
FTIR, and surface enhanced Raman spectroscopy (SERS),
which deliver ensemble information on the samples, EM
provides nanometer or even atomic resolutions and real-space
imaging. In this section, in situ characterizations of various soft
nanomaterials based on EM will be discussed, ranging from

shape and structural transformations during chemical reactions
to self-assembly in liquid environments. Liquid-phase EM will
be highlighted, detailing different types of liquid cells for
specific applications in inorganic, organic, and biological
samples, followed by a brief introduction of other in situ
techniques applied at elevated temperatures and varied gas
environments. Both real-space direct imaging and diffraction-
based methods will be covered.
5.1. Introduction to EM-Based In Situ Characterization
Techniques

5.1.1. Liquid-Phase EM. Conventional practices of SEM,
TEM, and STEM require samples to be casted and dried on a
thin substrate, during which its native structures might be
altered such as solvated polymers and proteins or the real
dynamics since solution-based thermal motions is lost.
Although strategies such as sequential drying or vitrification
of materials at different stages may be separated and imaged
(Section 2.2.1), the gaps between these discrete images are
unresolved, let alone tracking the real-time continuous
dynamics.411 To this end, liquid-phase EM, including TEM,
STEM, and SEM, serves a powerful platform enabling time-
resolved nanoscale imaging of solvated samples or samples
immersed in liquids.
The concept of liquid-phase TEM and a vacuum-sealed

liquid chamber design can be traced back to 1944, and the first
experiment on in situ liquid EM was conducted in 1973.412

Figure 30. Schematic illustrations of (a) standard graphene liquid cell made by sandwiching the solution between two graphene-coated grids; (b)
graphene liquid cell consisting of a thin lithographically patterned hBN crystal encapsulated by two graphene windows; (c) MoS2 liquid cell with
one grid coated with MoS2 and another with graphene; (d) SiNx cell with two silicon chips placed together and separated by a spacer (yellow); (e)
side view of a SiNx cell with patterned nanochannels and hydrophobic Au nanoparticles encapsulated; (f) side view of a microwell made of SiNx;
(g) side view of a bypass flow cell consisting of two SiNx chips with liquid flow between them (left) and top view showing liquid flowing around the
microchips (right); (h) side view of a direct flow cell containing a flow path through the microchips and avoiding liquid flow around the windows;
(i) the unassembled nanochannel chip and top plate (left) and cross-sectional view (right) of a graphene flow cell. (a−f) Circled by the blue dashed
line are representative examples of closed cells, and (g−i) in the orange dashed line are flow cells. (a) Reprinted with permission from ref 439.
Copyright 2012 AAAS. (b) Reprinted with permission from ref 419. Copyright 2018 American Chemical Society. (c) Reprinted with permission
from ref 426. Copyright 2019 American Chemical Society. (e) Reprinted with permission from ref 429. Copyright 2017 Wiley-VCH. (f) Reprinted
with permission from ref 440. Copyright 2014 Microscopy Society of America. (g) Reprinted with permission from ref 433. Copyright 2010
Microscopy Society of America. (h) Reprinted with permission from ref 434. Copyright 2013 American Chemical Society. (i) Reprinted with
permission from ref 435. Copyright 2020 American Chemical Society.
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However, the early studies suffered from poor spatial
resolution and challenges to seal the liquid sufficiently in the
chamber under high vacuum.413 Owing to the advances in EM
resolution and liquid cell fabrication, a wide range of materials
can be resolved nowadays, with their size ranging from a few
nm to several μm, composition from metallic NPs to
carbonaceous polymers and biomaterials, and properties from
structures to tracking of shape evolution and assembly
processes.414 Recently, the integration of liquid-phase EM
with advanced, analytical techniques, including EELS,48,415
EDX,416 tomography,144 and SAED417 allows more informative
detection of morphological and compositional changes of
materials and inspires deeper exploration into related material
properties and reaction mechanisms.
Design of Liquid Cells to Account for Different Dynamics

Studies. The achievement in liquid-phase (S)TEM is closely
associated with different generations of designs of liquid cells.
Liquid cells currently used can be divided into two categories:
closed cells and flow cells.
The graphene liquid cell is one of the commonly used closed

cells, prepared usually by encapsulating pockets of solutions
between two graphene-coated TEM grids (Figure 30a). The
thin (tens to 500 nm) liquid pocket and thinnest possible
window material enable atomic-resolution imaging of NPs and
compatibility with other techniques such as diffraction,418
EDX,419,420 and EELS48 due to reduced scattering and thus
small background noise.414 Besides, the high thermal and
electric conductivities of graphene and its capability of
scavenging radicals contribute to fast transfer of accumulated
charges and heat, as well as minimization of radical damage,
making graphene liquid cells exceptionally suitable for beam-
sensitive materials such as polymers, biomolecules, and hybrid
materials.421 When the size of the samples demands for larger
pockets (e.g., some organic compounds, DNA-Au super-
lattices422), the cell fabrication protocol can be modified by
sealing the solution between a graphene-coated TEM grid and
free-standing graphene, named graphene channel cell, to allow
more flexible coverage to wrap up the samples. In these cases,
the thickness of the liquid pockets could exceed micro-
meters.423 In more recent efforts where delicate control of
liquid pocket thickness is desired, liquid samples can be
trapped in nano- or micrometer cavities made of Si,424 SiNx,

424

aluminum oxide,425 or hexagonal boron nitride (hBN)419 and
sealed with graphene layers. When hBN is used as the spacer,
its height can be reduced to 30 nm, where the minimized
background absorption allows elemental mapping of NPs with
nanometer resolution (Figure 30b).419 Aside from graphene,
other 2D materials like MoS2 can also be coated onto grids and
serve as a functional and sealing substrate (Figure 30c).426
Moreover, it has been recently reported that commercial Cu
grids covered by thin amorphous carbon can be directly used
to sandwich liquid samples. Studies are still ongoing to
understand the pocket stability in these Cu carbon liquid cells,
and demonstration on high resolution imaging to atomic scale
has been achieved.413,427,428
Owing to the mature silicon microfabrication industry, SiNx

cells, where a SiNx membrane serves as the window, can be
reliably mass-produced and are the most commercialized type
of liquid cells, both as closed and open cells. The thickness of
the SiNx membrane can be reduced to 10−50 nm, greatly
limiting the background scattering, while its mechanical
robustness can still be maintained, allowing the integration
with multiline-flow, heating, and electrochemical biasing. A

liquid sample can be sandwiched between a pair of SiNx chips,
and the liquid thickness can be controlled by adjusting the
height of the spacer (Figure 30d) (plus bulging effect of the
membrane under high vacuum). Different patterns such as
nanochannels can be fabricated on the bottom SiNx membrane
(Figure 30e), enabling the investigation of dynamics of
chemical or physical processes under confinement.429 Such a
design is quite similar to microwells, where an array of wells are
etched into the surface of the SiNx window and function like
individual compartments that greatly suppress the long-
distance motion of samples (Figure 30f). The separation
between individual microwells also allows mitigation of beam
damage if the samples within microwells are imaged
sequentially.430,431
For all different types of closed cells, however, once they are

sealed, no liquid exchange is allowed, let alone the observation
of materials’ response to external stimuli, such as pH and
concentration change of solvents. The limited volume of liquid
is also hard to be compatible with electrochemistry owing to
the lack of enough reactant and imposed restriction on mass
transfer. To address these issues, flow cells and the associated
liquid flow holder are designed to enable replenishing or
changing solvents during imaging. SiNx cells with better
robustness than graphene cells are mostly employed, with
defined flow paths guiding the liquid flow fabricated with the
spacer.432,433 Flow cells can be further divided into two types:
bypass flow cell and direct flow cell, with the former more
commonly used. In the bypass flow cell, the injected liquid
flows around the chips as well as between them, enabling a
rapid liquid exchange in the whole flow system (Figure 30g).
However, clogging and uneven diffusion speed may occur
when the spacer gets smaller. In contrast, the liquid exchange
can be forced even in a direct flow cell due to the high pressure
in the flow channels between windows, but the flushing of the
flow system takes a longer time (Figure 30h).432,434 Graphene
can also be incorporated into a flow cell to reduce charging
effect and radiation damage. Figure 30i shows a typical
example of graphene flow cell with a series of circular viewing
apertures covered by graphene, while the bottom is windowed
with ultrathin SiNx.

435 The compatibility of the flow cell with
electrochemistry, heating, and light illumination also signifi-
cantly broadens its applications, enabling the imaging of
materials’ temporal change upon elevating the temperature,436
cycling between a certain potential range,437 or exposing to
light of a certain wavelength.438 Such capabilities are realized
by patterning the electrodes or heaters onto SiNx chips or
introducing a light/optical fiber inside the (S)TEM.

Beam Effects and Liquid-Phase SEM. Electron beam
induced artifacts and damage are one of the key aspects of
concern in liquid-phase TEM, including but not limited to
alteration of the electrostatic and redox environment in
samples, etching and regrowth of NPs, breakage of chemical
bonds and structural disintegration of polymers and bio-
materials, charging of the membranes, and generation of
bubbles. Beam effects can be complex, with various ions, gases,
and radicals generated in different solvents. To minimize the
beam effect, low dose imaging can be the simplest and most
effective way, which is easier to be realized nowadays while
maintaining the high resolution due to the development of
sensitive detectors. Besides, coating with graphene or
introducing radical scavengers such as alcohols may also
help. Note that beam effect can also be beneficial depending on
one’s purpose, such as initiating polymerization441 and
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enabling the investigation into the reactions at the liquid−gas
interface.442 More details can be found in the review articles by
Woehl et al.443,444
Aside from TEM, liquid-phase SEM is another powerful tool

to image soft materials in the liquid state at a high temporal
resolution, with a slightly compromised spatial resolution (10
nm for high-Z materials and several tens of nanometers for
low-Z materials) but the capability to image extended-sized
samples.432,445 By integrating with STEM detector, the
resolution can be further improved to 2−4 nm.446 The large
sample chamber of SEM provides significant design freedom,
such as the incorporation of high numerical aperture epi-
fluorescence microscopy.447 More examples with liquid-phase
SEM will be discussed in Section 5.4.
5.1.2. Other In Situ Studies of Dry Samples (Heating,

Gas Environment, Diffraction). Most industrial reactions
are conducted at high temperatures and under various gas
environments, such as the Fischer−Tropsch process (150−300
°C, H2 and CO) and ammonia synthesis (400−600 °C, H2 and
N2), which deviates from conventional EM imaging conditions
(room temperature, vacuum). To investigate the nanomaterials
under such harsh environments, different functional modules
have been integrated with EM. With the development of
microelectromechanical system (MEMS), microheaters, such
as those with spiral heating unit surrounding the SiNx
observation window, can now achieve fast heating rate,
accurate and stable temperature control, tiny sample drift, as
well as compatibility with spectroscopic techniques, enabling
in-depth research of shape and structural transformation of
nanomaterials at elevated temperatures.448,449 Compared to
heating in a vacuum, the introduction of gas into EM is more
challenging due to the potential interaction between the gas
molecules and the electron beam. Two techniques are
commonly used: ETEM that allows the existence of gases
with a low pressure around the sample area, and micro-
fabricated gas cells with samples sealed between two MEMS
chips and gases flowing between the chips.448 The pressure
inside the gas cell can even reach ambient pressure, which is
much higher than that in ETEM, and thus the reaction
condition in the gas cell can be closer to that in practical
applications. Both techniques can be combined with heating
functions, and even connected to a mass spectrometer450 to
enable the simultaneous detection of gas products during
chemical reactions, correlating nanomaterials’ structures with
their catalytic performance. Aside from real-space imaging,
electron diffraction patterns can also be recorded in situ to
track the fast-speed structural and compositional change of
NPs during reactions. More detailed examples of in situ
heating experiments and gas−solid reactions can be found in
Section 5.5.
5.2. Liquid-Phase (S)TEM Studies of the Shape and
Composition Evolution of Colloidal NPs during Chemical
Reactions

One of the hallmark applications of liquid-phase (S)TEM is to
characterize the shape evolution and compositional change of
nanomaterials during chemical reactions, such as nucleation,
growth, oxidative etching, and catalysis. This section will focus
on inorganic colloidal NPs, while organic and biological
materials are discussed in Section 5.3. We will also focus on
NPs during reactions, which has not been reviewed so far.
Note that a big area of application of liquid-phase (S)TEM is
to understand the motion and assembly of NPs in a liquid

environment, which is of great significance in biomedicine,
catalysis, and chemical or biosensors. Combined with
simulations, statistical analysis of NPs’ motion and interactions
with environment can be realized. Such studies start from
fundamental research on the particle−substrate interactions,451
electron beam effects,452 and confinement in a liquid cell
environment,424,453,454 which enhance our understanding and
allow better control of the technique, and then extend to
particle−particle interactions,455−457 where van der Waals
interactions, electrostatic repulsion, hydration effects, and
steric repulsion were analyzed and parameters such as ion
concentration, pH, surface ligand, temperature, and electric
field were investigated.458 Aside from random movements, by
carefully tuning the aforementioned parameters, NPs can be
guided to assemble into a library of superlattices. The
investigation into driving force for crystallization,429,459−462

transformation from random distributions to ordered struc-
tures,462 effects of anisotropic shapes,463 from 1D, 2D to 3D
superlattice464 are all trending in the liquid-phase TEM
community. A deeper investigation into the assembly processes
and mechanisms can be found in a recent review paper by
Chen et al.465

5.2.1. Growth Kinetics. Most liquid-phase (S)TEM
studies on NP growth mechanisms have been focused on
metallic NPs. It is generally considered that the reduction of
precursors in a solution will reach a saturation of atoms and
their self-nucleation into nuclei, which further grow larger from
continuous deposition of atoms, named classical nucleation.466
Such a monomer addition process has been captured by liquid-
phase TEM in Ag and Pt NPs.425,467−469 By using electron
beam as a reducing agent, the nucleation process of Ag
nanocrystals was recorded, and the nuclei were observed to
form directly from the solution after an initial induction.467
Aside from classical nucleation, direct imaging also uncovered
other mechanisms, such as amorphous-phase-mediated crys-
tallization,470 oriented attachment,428,469,471−473 and multistep
pathways where the precursor solution separates into solute-
rich and solute-poor phases, followed by the nucleation of
amorphous nanoclusters from the metal-rich phase and their
further crystallization into a nanocrystal.470 Classical and
nonclassical nucleation pathways may also coexist, as shown in
a recent study tracking the mineralization of hydroxyapatite in
an artificial saliva solution. Ion-rich and ion-poor solutions
were formed at the beginning, followed by coexistence of an
amorphous calcium phosphate-mediated nonclassical nuclea-
tion path and a classical, direct nucleation path.474
In addition to self-nucleation, seed- and template-mediated

growth can also be characterized by liquid-phase TEM,
unveiling the different growth pathways (monomer addition
or coalescence),475 mechanisms of epitaxial growth and site-
selective growth,426,431,476 influence of temperature,476 and
existence of phase transition in seeds.477 Aside from the
nucleation stage, liquid-phase TEM also provides direct
visualization of postnucleation growth of NPs, such as the
transformation of 3D NPs to 2D nanosheets478 and oscillatory
growth of Bi NPs where pairwise Ostwald and anti-Ostwald
ripening were observed.479 A more thorough discussion on the
application of liquid-phase TEM to uncover the growth
mechanism of nanomaterials can be found in recent review
papers and book chapters.465,480

5.2.2. Oxidative Etching, Galvanic Corrosion, and
Galvanic Replacement. Studies of etching kinetics of NPs
on one hand provide mechanistic understanding of the
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Figure 31. (a) Boundaries of Au nanorods colored to their local surface curvatures during etching. Scale bar: 50 nm. (b) Three stages of etching
based on the distinctive relationships between the etching rate and curvature at a local site. (c−h) Transition of (c−e) a cube and (f−h) a RDD to
tetrahexahedron during nonequilibrium etching: (c, f) Model of (c) a cube and (f) a RDD (gray) with intermediate THH NPs shown internally
(blue). (d, g) THH intermediates for (d) cube and (g) RDD with labeled zone axis and calculated {hk0} facet angles. (e, h) Time-lapse TEM
images and corresponding snapshots from Monte Carlo simulations showing the etching process of (e) a cube and (h) a RDD. (a, b) Reprinted
with permission from ref 485. Copyright 2020 American Chemical Society. (c−h) Reprinted with permission from ref 484. Copyright 2016 AAAS.

Figure 32. (a, b) Time-lapse TEM images and corresponding schematics showing the shape evolution of Pd nanocubes during the etching process
by (a) 0.1 mM and (b) 1.0 mM Fe(acac)3. (c) TEM image showing the Fe(acac)3 molecular layers grown on the Pd (100) facet in the liquid cell at
1.0 mM Fe(acac)3. (d−i) Etching trajectory and corresponding projected area as a function of reaction time for Au NPs in an aqueous
encapsulating solution of (d, e) 40 mM Fe(III) and 190 mM Cl−; (f, g) 40 mM Fe(III), 190 mM Cl−, and 0.38 mM Br−; (h, (i) 40 mM Fe(III),
190 mM Cl−, and 0.38 mM I−. (j) Standard reduction potentials of Au(I) complexes with different halides. (a−c) Reprinted with permission from
ref 488. Copyright 2021 American Chemical Society. (d−i) Reprinted with permission from ref 490. Copyright 2021 American Chemical Society.
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reactivity of different facets of NPs which can be relevant to
understanding of corrosion and catalytic stability of NPs, and
on the other hand can serve as a means of harvesting
nonequilibrium shapes of NPs (e.g., concave, cages, and
branched) with desired properties. Different etching mecha-
nisms have been reported so far, including the conventional
oxidative etching where metal atoms are oxidized back to ions
by oxidative species,481 the galvanic corrosion where two
metals are in contact and one is preferentially etched due to its
higher oxidation potential to protect another,482 and the
galvanic replacement where one metal is replaced by another
with a higher reduction potential.483 Different from the role of
a reducing agent when imaging the growth of NPs, an electron
beam can also generate oxidative species from radiolysis of
solvents, which either are involved in redox reaction networks
of the system or serve as the real etchant.

Etching of Single Component NPs: Effects of Surface
Facets, Ligands, and Temperature. For monometallic NPs,
the etching rates are dependent on surface curvature and
facets. Localized etching preferentially initiates at the sites of
high surface energy, such as corners and defects, where low-
coordinated atoms accumulate and are easier to be oxidized. A
model system is Au nanocrystals with well-defined shapes, the
etching of which in FeCl3 solution has been monitored in
several systematic studies in graphene liquid cells. Faster
etching was observed at the tips of Au NRs (Figure 31a),
owing to a higher curvature and lower areal ligand density at
tips.484,485 The quantitative analysis of etching rates shows
three stages involved in this process (Figure 31b): (i) isotropic
etching dominates in the first stage when an excess of oxidative
species overwhelms the curvature dependence, (ii) directional
etching in the intermediate stage with the higher-curvature
sites etched faster, and (iii) a sudden drop of etching rate at the

Figure 33. (a) Time-lapse TEM images showing the etching process of a Pd@Pt octahedron with a terrace defect. Scale bar: 20 nm. (b) Illustration
of atomic structures demonstrating the etching process with measured distance at three stages. TS, CS, and HC represent tensile strain,
compressive strain, and high curvature, respectively. (c) Strain map of the octahedron before corrosion. The color-coded bar represents a range
from −3% CS to +3% TS. (d) Time-lapse TEM images and corresponding simulation snapshots showing a faster etching of Pd core than the Au
shell, and the as-generated hexapod-like Pd core capped with Au pyramids. (e) Time-lapse TEM images and corresponding cut-section snapshots
showing rapid dissolution of the Cu core upon exposure to the oxidative environment while the dissolution of the Au shell was negligible. (a−c)
Reprinted with permission from ref 495. Copyright 2020 Elsevier. (d, e) Reprinted with permission from ref 496. Copyright 2020 Springer Nature.
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end of the etching process due to local accumulation of gold
ions or depletion of oxidative species in a sealed environ-
ment.485 Interestingly, when a cube or a rhombic dodecahedral
(RDD) Au NP was studied, a THH nanocrystal was
consistently observed as an intermediate, owing to a step-
recession mechanism where peripheral edge atoms with
coordination numbers smaller than 6 were preferentially
etched (Figure 31c−h).484 By tuning the concentration of
FeCl3 and thus the chemical potential of the oxidative
environment, cubes enclosed by {100} facets were found to
adopt an {hk0}-faceted THH intermediate with h/k dependent
on chemical potential, while {110}-faceted RDD adopted a
{210}-faceted THH intermediate regardless of the driving
force. Monte Carlo simulations indicate that 6- and 7-
coordinate atoms coexist on cubes during etching and their
sensitivity to the chemical potential leads to different THH
facets. In contrast, only 6-coordinate atoms exist on RDD,
either at the edge or in the interior after removal of edge
atoms, resulting in negligible effect of chemical potential on the
intermediate shape.486 The facet dependency in etching was
also observed in ceria nanocrystals, where specific facets
({100} for reduction and {111} for oxidation) were identified
as governing the overall etching under different chemical
conditions.487
In addition to the intrinsic NP surface, the local environ-

ment also plays an important role in the etching of
nanocrystals, which includes but is not limited to the type
and concentration of surface ligands, halides, and temperatures.
Through selective adsorption onto certain NP sites, ligands

can effectively suppress the etching on these sites. Using Pd
nanocrystals as an example, in the presence of iron
acetylacetonate (Fe(acac)3, 0.1 mM), etching originated from
{100} facets due to the protection of {110} facets by acac
molecules generated from Fe(acac)3 dissociation (Figure
32a).488 In contrast, when increasing the concentration of
Fe(acac)3 to 1.0 mM, the protection of the Fe(acac)3 film on
the Pd {100} facets greatly mitigated the etching on them,
leading to preferential initiation of etching occurring on the Pd
{110} facets (Figure 32b,c).
As another commonly used ligand, halide ions also impose

influence on the etching of metallic NPs, usually leading to
accelerated etching. For Pd nanocubes, no noticeable
dissolution was observed in the absence of Br− ions even
after increasing the electron dose rate (1140 e− Å−2 s−1 in SiNx
cell) or replacing the Br− with Cl− ions.489 This can be
attributed to the impressive stability of [PdBr4]2−, 103 times
higher than that of [PdCl4]2−, which greatly promotes the
oxidative etching of Pd nanocrystals. A similar phenomenon
was also observed in Au nanocrystals, where the etching rate
increased when the halide ions were changed from Cl− to Br−
and then to I−, consistent with the mechanism that halides
serve as complexation agents for oxidized Au species (Figure
32d−j).490
Temperature is another factor that affects the rate of

chemical reactions. A recent work introduced the design of
“stream liquid heating holder”, which consists of an on-chip
flow channel combined with a microheater and allows the
imaging of samples at elevated temperatures with the solution
rapidly replenished.491 An acceleration in the etching of silica
NPs was observed when the temperature increased from 20 to
60 °C, consistent with in-flask experiments. Interestingly, the
structural change of nanocrystals can, in return, enhance our
understanding on the electron beam-induced heating effect.

Through parallel-beam electron diffraction (PBED), the lattice
expansion of Au nanocrystals and the change in scattering
angles can be tracked and correlated to the exact temperatures,
suggesting the leverage of metal nanocrystals as a reference for
calibrating the beam-induced heating.492,493

Etching and Galvanic Exchange of Bicomponent or
Multicomponent NPs. With the introduction of a second
component, bimetallic nanomaterials also attract lots of
interest considering their wide applications and, in most
cases, improved performance relative to their monometallic
counterparts. Considering NP structures, in addition to surface
curvature and facet effect in monometallic nanocrystals, defects
and strains, especially those at the interfaces of components,
play an important role in the etching kinetics. One
representative example is the etching of Pd@Pt core−shell
nanocubes into Pt nanocages, wherein both components serve
as effective catalysts for electrochemical reactions such as ORR
and water splitting.494 Through liquid-phase TEM, two types
of etching pathways were identified: the indirect-contacting
galvanic etching on nondefected site with slow kinetics, and
the direct-contacting halogen-induced etching at defected site
with faster rates. Corners were preferred by both pathways as
the initial and faster etching site, indicating the importance of
protecting corners and engineering surface defects to improve
the stability of electrocatalysts. Combining ex situ strain
mapping with in situ liquid-phase TEM, a faster etching was
observed in a Pd@Pt octahedron at locations with tensile
strain and high local curvature (Figure 33a−c), which was
supported by DFT calculations that a lower reduction potential
of Pd associated with increased strain and tensile strain tends
to facilitate corrosion more effectively than compressive
strain.495
Etching rates can also diverge for different components of bi-

or multimetallic nanocrystals due to the variation in oxidation
potentials, and those with a higher oxidation potential are
more vulnerable to etchants. For example, for Pd@Au core−
shell nanocubes imaged in graphene liquid cells, when the
cubic Au shell was etched to a THH shape, the corners of the
Pd core would be exposed.496 The higher oxidation potential
of Pd/Pd2+ than Au/Au3+ (−0.92 and −1.52 V vs standard
hydrogen electrode, SHE, respectively) contributed to a faster
etching of Pd core than the Au shell, leading to a hexapod-like
Pd core capped with Au pyramids (Figure 33d). By plotting
the particle volume V with reaction time t, the etching process
can be monitored using the Lifshitz, Slyozov, and Wagner
(LSW) theory. The plot of V2/3 vs t gave a more satisfactory fit
to the data points prior to exposure of the Pd core, whereas
V1/3 vs t fitted better to the data when Au and Pd were
simultaneously exposed to the etching solution. Such results
indicate a transition of etching mechanism from edge-selective
to layer-by-layer removal of atoms after the exposure of Pd.
Besides, it was also observed that etching of the Au shell
slowed down once the Pd core contacted the etchant, which
can be attributed to the galvanic corrosion where the more
active metal (i.e., the anode) is preferentially etched and the
less active metal (i.e., the cathode) is protected. Further
increasing the difference in reduction potentials by replacing
Pd with Cu (−0.34 V vs SHE for Cu/Cu2+ pair) led to the
formation of Au nanobox as an intermediate due to the rapid
dissolution of Cu once it was exposed to the etching solution
(Figure 33e).
Compared with core−shell structures, galvanic corrosion can

be more obvious in Janus NPs, where both components are
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exposed to the etchant. In a recent paper, a set of Janus NPs
were synthesized and their etching under the electron beam
was observed.482 For a Ag−Cu nanocrystal, due to the higher
oxidation potential of Cu, the breakdown of Cu occurred first,
followed by the dissolution of Ag (Figure 34a). Instead of
dissolving gradually, the Cu portion was broken into pieces
and flowed away from the particle, which could be attributed
to the presence of CuO that has a crystal symmetry distinct
from Cu and forms a nonconformal protective layer on metal
surface. Besides, no groove was observed along the Ag−Cu
interface at the initial stage, indicating that etching was not
preferred at the interface while the electrochemical potential
gradient across the interface drove the corrosion process. With
a mild Ar plasma treatment, the amorphous oxide on the Cu
surface can be converted into a dense, crystalline CuO shell,
effectively suppressing the current flow required for galvanic
corrosion and preventing the dissolving of Cu. Surprisingly,
when the vapor-phase corrosion was examined by in situ
STEM, a faster corrosion of Ag was observed albeit its
significantly lower oxidation potential (Figure 34b), strongly
suggesting the formation of a dense oxide shell as a powerful
approach to enhance the stability of NPs. The influence of
surface oxides is also reflected in PtNi NPs with a segregated
bimetallic structure.497 Localized pits were observed in the
initial stage of chemical etching (mixed with 5% (v/v) aqueous
acetic acid solution at 90 °C), while a uniform dissolution of
Ni was observed in electrochemical etching (applied with a
positive potential of +0.5 V, vs Pt reference electrode, with 0.1

M H2SO4 serving as the electrolyte) due to the destabilization
of the surface oxide layer.
While etching of compartmentalized bimetallic NPs usually

results in the complete removal of one component while
leaving another almost intact, etching of alloy NPs can be more
complex and voids are commonly generated inside the
particles. With AuAg alloy NPs as an example, encapsulated
in a SiNx cell with 25 nm-thick windows, their shape evolution
during corrosion was tracked.498 In the initial stage of etching,
the removal of Ag led to the formation of a Au-rich passivation
layer on the NP surface, helping retain the particle’s shape
when the underneath Ag was further etched away. By using 0.3
M HNO3 (chemical etching) as the etchant, a great variation
in the pore size was observed, while etching through applying
positive potentials (electrochemical etching, with 0.1% v/v
acetic acid as the electrolyte) can better control the pore size,
with larger pores preferred at lower potentials.
As a unique form of oxidative etching, galvanic replacement

is widely used to generate alloy NPs, where a metal with a
higher oxidation potential serves as a sacrificial template and is
replaced by another metal. By leveraging liquid-phase TEM,
such complex reaction process can be tracked, and one
example is the galvanic replacement on Ag nanocubes with
Au(III) ions where nucleation, growth, and coalescence of
voids inside the nanocube were observed (Figure 34c).436 The
higher surface energy at corners led to the favored nucleation
of voids at these sites. The Kirkendall effect combined with
galvanic replacement facilitated the expanding of voids and

Figure 34. (a, b) HAADF frames showing the corrosion of Ag−Cu Janus NPs (a) without and (b) with Ar plasma treatment. (c) Time-lapse TEM
images and corresponding schematics showing the morphological evolution of a Ag nanocube during galvanic replacement reaction with HAuCl4 at
23 °C. Green arrows indicate pores that form in the deposited Au shell, and a cyan arrow points to a second galvanic replacement reaction on the
residual Ag core after it is again exposed to HAuCl4 through pores on the outer shell. (a, b) Reprinted with permission from ref 482. Copyright
2021 Wiley-VCH. (c) Reprinted with permission from ref 436. Copyright 2017 Springer Nature.
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finally the production of hollow cubes mainly composed of Au.
Similar products with a hollow structure but different surface
roughnesses were observed at varied reaction conditions (e.g.,
elevated temperatures approaching 90 °C or replacing Au(III)
with Au(I)), indicating the prevailing of the two mechanisms.
5.2.3. Shape Degradation of NPs and Their Relevance

to Cycling Performance in Electrochemical and Photo-
catalytic Reactions. Characterizing the shape deformation of
nanomaterials in battery cycling, electro- and photocatalytic
reactions is of great significance in understanding their active
sites and degradation mechanisms, providing insightful
guidance in improving their activity and stability. For example,
the investigation into the volume expansion of Si during
lithiation is essential for designing robust electrodes. By
encapsulating Si NPs in the liquid electrolyte (LiPF6 in a
solvent mixture of ethylene carbonate, dimethyl carbonates,
and diethyl carbonates) and initiating lithiation by electron-

beam irradiation, it was found that facet-dependency existed at
the beginning of the lithiation.420 An anisotropic volume
expansion was observed with the ⟨110⟩ direction preferred due
to the smaller Li diffusion energy barrier at the Si-electrolyte
interface along this direction. Once passing the initial barrier,
Li diffusion progressed isotropically. Such an observation
indicates that the rate-limiting diffusion barrier is at the Si-
electrolyte interface and is different based on the lattice
orientations.
Liquid-phase TEM is also a powerful tool to study NP

degradation, namely the shape deformation and aggregation
commonly seen as issues of NP in catalysis applications. By
patterning electrodes onto SiNx chips and integrating optical
fibers in TEM, both electro- and photocatalytic reactions can
be characterized. A notable example is resolving the
degradation mechanisms of metal nanocrystals during electro-
chemical reactions such as ORR and CO2 reduction reaction

Figure 35. (a) Schematic of polymer solution sandwiched between graphene sheets. (b) Low-mag TEM image showing a representative liquid
channel. (c) Representative images for PEO (top) and PSS (bottom, Mw = 2200 kDa) in deionized water. (d) Probability distributions compared
for PSS (Mw = 2200 kDa) in 0.2 M NaCl (top), deionized water (middle), and PSS (Mw = 1030 kDa) in deionized water (bottom). The dotted
vertical line shows that relative to the peak of the distribution in the middle panel, the peak is smaller in salt solution and also for a sample with
lower molecular weight. (e−g) Direct observation of micelles within the liquid cell. The micelle solution was continuously irradiated at 0.25 e−/Å2 s
for 2 min. Insets are zoomed-in images of the particles boxed with the corresponding color. Scale bars: 20 nm. (a−d) Reprinted with permission
from ref 422. Copyright 2017 Wiley-VCH. (e−g) Reprinted with permission from ref 441. Copyright 2018 American Chemical Society.
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(CO2RR). A series of behaviors were observed, including the
dissolution, aggregation, and Ostwald ripening, among others,
which can benefit the fundamental understanding and rational
design of more stable catalysts.437,499,500 Such observations can
be expanded to surface amorphization of Co3O4 NPs in oxygen
evolution reaction (OER),501 reduction of Cu2O to metallic
Cu in CO2RR,

417 formation of self-hydrogenated shell on TiO2
surface in photocatalytic hydrogen evolution reaction
(HER),438 determination of active facets on TiO2 from bubble
generation in photocatalytic water splitting,502 and so on.
5.3. Liquid-Phase TEM Characterization of the
Morphology, Transformation, and Self-Assembly of
Organic and Biological Nanomaterials

Regarding organic compounds made of small molecules and
polymers, and biological materials such as hybrids, proteins,
vesicles, and even living cells,432 these materials have complex
solvent-mediated intra- and intermolecular interactions, where
the interplay of enthalpic and entropic effects causes many
interesting phenomena such as assembly, structural reorganiza-
tion upon stimulus, and so on. To understand and maneuver
the interactions, in situ imaging of the structures and behaviors
plays a pivotal role. Currently, the majority of experiments
involve the use of bulk-averaging techniques including light,
neutron, and X-ray scattering, as well as the static imaging with
cryo-EM. Considering the fact that most of these soft materials
are synthesized or functioning in liquid environment, the direct
imaging enabled by liquid-phase TEM and integration with
molecular simulations are expected to provide more significant
insights into the dynamic nature of soft materials.
Generally, there are two main impediments for imaging

organic and biomaterials: the sample damage from incident
electrons, mostly from heating, charging, and ionization, and
weak electron scattering due to atoms with low Z values.
Different techniques have been applied to retard the damage
and enhance the contrast, such as incorporation of
graphene,421 staining or labeling with heavy metal ions,188

and leverage of radiolysis-resistant solvents, as discussed in
Section 5.1.1.503 In this section, we will focus on how these
challenges are met for liquid-phase TEM imaging, starting
from organic compounds, mostly on polymers and organic
reticular crystals, including MOF and COF. These will be
followed by discussions on biomaterials, an important category
of soft materials. A review paper from Smith et al. has
summarized studies on biomaterials prior to 2020,504 and we
will focus on more recent publications in this section, from
fibers, proteins, to hybrid structures.
5.3.1. Morphology and Transformation of Polymeric

Nanomaterials and Their Assemblies. With the develop-
ment of liquid cells and detectors, polymers can now be
imaged at molecular level. By trapping the polymer solution in
a graphene channel cell (Figure 35a,b), single polymers
including polystyrenesulfonate (PSS) and poly(ethylene
oxide) (PEO) were resolved (Figure 35c).422 In addition to
the size distribution of polymers measured from liquid-phase
TEM images, other features of the polymers were also
confirmed, such as conformational fluctuations, adsorption
and desorption on substrates, and radiation damage involving
chain scission and recombination after long exposure to
electrons. It should be noted that subdiffusive motion is mostly
observed for particulate samples in liquid-phase TEM, no
matter inorganic or organic.460 While efforts are ongoing to
understand how to alleviate such effects to observe the generic

motions of NPs, which have been shown successful in the
studies of NP superlattices,461,462,505 the slowed motion of
polymers could suppress motion blurring to allow recognition
of a molecular structure.
Beyond the single molecule configuration where intermo-

lecular forces are negligible, self-assembly of amphiphilic
molecules and polymers is a typical approach to forming
macromolecular compartments and bilayers. Their formation,
phase change, and stimuli-response behaviors play a pivotal
role in the basic functions of life and have inspired a vast
diversity of industrial products, from biomedicines to
detergents, lubricants, and coatings.506 Controlling the path-
way can offer modulation of the morphology of polymer
assemblies, such as packing, crystallinity, domain size,
orientation, and connectivity, enabling property control.507
The polymerization of an amphiphilic diblock copolymer

was first observed by Touve et al., who used beam-induced
radiolysis of the aqueous solution to create a chemical
environment that mimics the condition of bulk polymer-
ization.441 The radicals generated from electron beam drove
the monomer polymerization in solution via reversible
addition−fragmentation chain transfer (RAFT). The polymer-
ization then triggered the formation of micelles through the
growth of a hydrophobic block on a hydrophilic polymer,
named polymerization-induced self-assembly (PISA). To avoid
uncontrolled chain growth and morphology evolution induced
by high concentrations of radicals, a low electron flux, pulsed
imaging, and a sufficiently high macrochain transfer agent
(macroCTA) concentration were used, promoting the
initiation of polymerization from carbon-centered radicals
and the degenerative chain transfer over uncontrolled conven-
tional radical polymerization. The growth of micelles and their
equilibration into similar sizes were observed under liquid-
phase TEM (Figure 35e−g). Recently, with the help of
variable-temperature liquid-phase TEM (VT-LPTEM), a
thermally initiated RAFT polymerization process was
observed, leading to the formation of an amphiphilic block
copolymer that assemble upon dispersion PISA.508 Due to the
thermoresponsive property of the polymers, a substantial
reduction in particle dimensions was observed at elevated
temperatures, followed by a hydrophobic-to-hydrophilic phase
transition upon cooling. With the capability of temperature
control, we expect more exploration into the thermal phase-
transition behavior of polymers.
Micelles and vesicles are among the most commonly formed

assembly structures from amphiphilic molecules such as block
copolymers studied in liquid-phase TEM. The first paper
reporting the imaging of individual micellar NPs made of
amphiphilic block copolymers is by Proetto et al.509 Pt was
coordinated to monomers to enhance the contrast of the
micelles, and their motions in an aqueous solution was
recorded and analyzed. Interestingly, when three particles
adjacent to each other were tracked, a concerted motion was
observed, which could be due to the beam induced charging
effects between particles, charging effects induced from
solution, or from SiNx substrate. Later studies investigated
the self-assembly of amphiphiles via liquid−liquid phase
separation. Unimers of diblock copolymer, poly(ethylene
oxide)-block-poly(caprolactone) (PEO-b-PCL), was dispersed
in acetone, followed by solvent exchange with water to prompt
the formation of polymer-rich liquid droplets.510 The
assemblies were observed to form at the interface between
the droplet and the bulk solution with the size of the liquid
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droplet determining the final size of the vesicles (Figure 36a).
The onset of kinetic traps was found to play a determinant role
in the membrane thickness and affected the organization or
composition of the assemblies. During the growth process, the
assemblies were initially spherical, then transferred to cylinders
or lamella before forming the vesicle membrane, confirming
the existence of different vesicle formation pathways.
Aside from the growth of micelles, their fusion, fragmenta-

tion, and morphology switching also attract lots of interest. In
an early study, the growth and fusion of block copolymer
micelles made of (phenyl-b-peptide-co-hydroxyl) were tracked,
where both unimer addition and particle−particle fusion were
observed (Figure 36b,c). Combining with in silico modeling,
fusion was found to be associated with external solvent
entrapment, and a variety of complex vesicles and biocontin-
uous micelles were generated from initially spherical
micelles.506 In another work, fragmentation of 1,2-polybuta-
diene-block-poly(ethylene oxide) (PB-b-PEO) micelles in ionic
liquid was observed.511 Upon heating to 170 °C, a series of
transition of micelle shapes were resolved, from a spherical
shape, a prolate ellipsoid, further elongating to a peanut shape,
followed by necking, neck thinning, and ultimate separation
into two micelles. Aside from shape transition in aqueous
solutions, the solvents can also be expanded to organics, such
as dimethylformamide (DMF) and methanol. For example, a

worm-to-micelle transformation in poly(styrene)-b-poly(4-
vinylpyridine) (PS-b-P4VP) was observed, which was triggered
by a solvent switch from methanol to DMF.512 Interestingly, it
was suggested that water is more radiolytically sensitive than
organic solvents, indicating the great potential of organic
solvents to be utilized for the characterization of polymers.
Micelles formed by amphiphilic block copolymers can also

be used to encapsulate metal NPs and drugs to enhance their
solubility, stability, and reduce toxicity, as a useful strategy in
biomedicine and bioimaging. The encapsulation process can be
analyzed by liquid-phase TEM, which was found to be a self-
limiting process.513 The block copolymers, (ethylene oxide)100-
block-(propylene oxide)65-block-(ethylene oxide)100, (EO100-
PO65-EO100), gradually adsorbed onto the hydrophobic, PS-
coated Au NP, grew around the particle to form a shell, and
ceased when particle was fully covered by the polymers (Figure
36d,e). The strong hydrophobic interaction between PS and
EO65-block was regarded as the main contributor to the
adsorption of copolymers to Au NPs. When switching PS to
hydrophilic citrate, as a comparison, no encapsulation was
observed in either in situ or ex situ experiments. The
incorporation of heavy metals can also label the polymer
assemblies and make their positions easier to be recognized, a
strategy widely used in the characterization of proteins and

Figure 36. (a) Time-lapse TEM images showing the formation of PEO-b-PCL block copolymer vesicles. Scale bars: 400 nm. (b) Micelle−micelle
fusion process captured by liquid-phase TEM. The video frame where collision between the red and blue micelles first occurred is referred to as t =
0 s. Frames labeled as t = 55 and 110 s show a single assembly (micelle labeled by a black arrow) after morphological relaxation. (c) Magnified
time-lapse images of the fusion-relaxation process between the red and blue micelles. (d) Schematic showing the encapsulation of a Au NP with the
triblock copolymers. (e) Time-lapse TEM images showing the encapsulation process. In addition to the NP encapsulation, other micelles also form
in the solution and cluster around the NP. (a) Reprinted with permission from ref 510. Copyright 2019 Springer Nature. (b, c) Reprinted with
permission from ref 506. Copyright 2017 American Chemical Society. (d, e) Reprinted with permission from ref 513. Copyright 2019 Royal
Society of Chemistry.
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cells and tracking their motions in SEM (more examples can
be found in Section 5.4).
5.3.2. Nucleation, Growth, and Transformation

Mechanisms of Organic Reticular Crystals (MOF and
COF). Organic reticular crystals, including MOFs and COFs,
are highly porous and tunable materials, which have attracted
great attention due to their impressive performance in a vast
variety of applications, ranging from gas storage, separation, to
catalysis, drug delivery.514 A deep mechanistic understanding
of the growth, phase transition, assembly, and other dynamic
processes of these organic reticular materials would benefit the
rational design and precise control of their morphologies. In
applying liquid-phase TEM to observe such processes, one
needs to be aware of the beam sensitivity of MOFs and
COFs.11 Low dose and careful selection of solvents are
necessary. Post-mortem analysis using ex situ techniques, such
as dry TEM and XRD, can help evaluate the composition of
the in situ products and potential beam artifacts.514,515

In one example, methanol was found to generate fewer
reactive radiolysis products than water, enabling the observa-

tion of the growth process of the zeolitic imidazolate
framework-8 (ZIF-8).516 Small MOF seeds were observed at
the initial stage, which grew larger without coalescence,
indicating a monomer addition mechanism. The nucleation
of ZIF-8 was also found to be limited under local depletion of
monomers in solution, with particle diameter ∝ t1/2 to t2/3

based on the LSW model,517,518 suggesting that the growth is a
surface reaction-limited monomer addition process. However,
the process examined above is more of postnucleation. A
recent paper looked deeper into the challenging nucleation
process of ZIF-8.519 With ultralow-electron-flux (≤0.05 e− Å−2

s−1) liquid-phase and cryo-TEM, three steps were observed
throughout the nucleation: liquid−liquid phase separation into
solute-rich and solute-poor regions, condensation of the solute-
rich region into an amorphous aggregate, and finally the
crystallization of the aggregate into a MOF (Figure 37a,b).
Though the generality of the nonclassical nucleation pathway
still needs further proving on other MOF particles, the
integration of different characterization techniques and the

Figure 37. (a) Time-lapse TEM images showing the formation of ZIF-8 nanocubes. The solution (t = 1 s) phase separates into solute-rich (dark
gray contrast) and solute-poor (lighter gray contrast) regions (t = 15 s). Next, these solute-rich regions condense into aggregates (t = 31 s), which
then crystallize into ZIF-8 nanocubes (t = 62 s). (b) Schematic illustration of the nucleation process. (c) (top) Time-lapse liquid-phase TEM
images showing the room-temperature conversion of ZIF-8 nanocubes into LDH nanocages. t0 represents the time point corresponding to the
onset of the etching. (bottom) Schematic illustration depicting the conversion process of a ZIF-8 nanocube into an LDH nanocage. (a, b)
Reprinted with permission from ref 519. Copyright 2021 National Academy of Science. (c) Reprinted with permission from ref 523. Copyright
2021 American Chemical Society.
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improved resolution even under low dose set the foundation
for more studies of synthetic mechanisms.
In another report, the growth of Cu2Br2-based metal−

organic nanotubes (MONTs) at room temperature and 85 °C
was captured.520 It was found that tubular crystal growth was
reaction limited at both temperatures, with particle size ∝ t1/2,
suggesting the thermodynamically driven surface-specific
monomer attachment mechanism. Besides, instead of reacting
instantly, precursor ions would instead seek the lowest energy
face of the growing crystal, inducing the anisotropic growth
and the formation of tubular shape. In a more recent paper, the
formation of Ag-based MONTs was characterized using liquid-
phase TEM, and multiple pathways were observed by tuning
the metal to ligand ratios (AgNO3:L1).

521 At low concen-
trations of AgNO3, aggregation and short-range clustering of
precursor ions occurred to form primary particles. As the
supersaturation increased, MONT bundles were formed by
heterogeneous nucleation from the primary particles. In
contrast, when an excess amount of AgNO3 was used,
coalescence and oriented attachment of ensemble particles
were observed, generating anisotropic MONT crystals.
Aside from nucleation and growth, the postnucleation

morphology transformation of MOF NPs has also been
investigated, upon external stimulus such as heating and
etching. Phase transition from a microporous MOF, NU-906,
to a mesoporous MOF, NU-1008, was discovered and
monitored with VT-LPTEM.522 By heating for around 2 h in
formic acid at 80 °C, spherical NU-906 particles were
transformed into NU-1008 flakes and rods. Liquid-phase
TEM clearly captured the transformation process, where the
NU-906 particles first broke into units whose sizes were too

small and contrast were too low to be resolved. These small
units then reassembled into new seeds, which further grew into
NU-1008 flakes and then rods. The shape transformation can
also be induced by etching. It is recently reported that hollow
layered double hydroxide (LDH) nanocages could be
converted from ZIF-8 NPs with their shapes of a cube or a
RDD largely retained (Figure 37c).523 With liquid-phase TEM,
the nucleation and growth of LDH nanosheets on the surface
of ZIF-8 particles were observed as the MOF particles
gradually got etched. The in situ observations highlighted the
importance of maintaining comparable etching and growth
rates if one wants to obtain hollow LDH cages with well-
defined, consistent shapes with the MOF template.
Similar to MOFs, COFs are crystalline organic polymers

with high porosity and tunable molecular structures. One of
the key challenges in the synthesis of COFs is to understand
their nucleation and growth processes.524 With VT-LPTEM,
direct imaging of hundreds of individual COF-5 (a prototypical
2D boronate-ester linked COF) NPs was realized. The
uniform, radial growth of seed particles at 80 °C and the
absence of particle coalescence and ripening indicated the
monomer or oligomer addition mechanism involved in the
growth of COF-5 particles. It is noted that both the COF
crystals and monomer solutions are highly susceptible to beam-
induced artifacts at 80 °C, thus snapshots were acquired
periodically with beam off during intervals, instead of
continuous videotaping, providing an alternative and effective
method for imaging beam-sensitive materials.

5.3.3. Structure and Dynamics of Biomaterials and

Their Assemblies. Biomaterials, including cells, fibers, lipids,
proteins, and nucleic acids, are another type of soft materials

Figure 38. (a) Liquid-phase TEM snapshots of radial growth of FF nanotube with integrated line profiles illustrating the increase in diameter and
hollowness of the nanotube. (b) Outer diameter plotted as a function of time shows the linear trend in increasing diameter. (c) Schematic of FF
nanotube cross section illustrating the increase in tube diameter with time owing to the association and dissociation of monomers. (d, e) Liquid-
phase TEM frames of POPC-sLPS vesicles in the (d) absence and (e) presence of 1 mM NiCl2. (f) Snapshots of POPC-sLPS vesicles in 1 mM
NiCl2 as a function of time and cumulative dose. Red strip represents a time period of 120 s when the electron beam is turned off. (g) A snapshot
showing the decrease in contrast after a 2 min beam blank. (h) Schematic illustration of partial reversible interaction of Ni2+ ions with vesicles. (a−
c) Reprinted with permission from ref 503. Copyright 2021 American Chemical Society. (d−h) Reprinted with permission from ref 188. Copyright
2020 American Chemical Society.
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that are largely investigated by liquid-phase EM. Life processes
are tightly connected with water, either occurring within or
reacting with this liquid solvent, such as the folding of proteins,
ion transition through membranes, and catalysis with
enzymes.504 For real-time imaging of biomaterials, optical
microscopy is mostly used, such as phase contrast microscopy
and confocal fluorescence microscopy. Though dynamics can
be directly imaged, the limited spatial resolution (usually 200
nm, can also be improved to approximately 10 nm in super-
resolution optical microscopy) restricted the characterization
of biomaterials at the nanometer or atomic resolution of EM.
Liquid-phase TEM applied to solvated biological nanostruc-
tures was first demonstrated by Mirsaidov et al. in 2012.525 By
using a low electron flux, around 100 nm wide crystalline
acrosomal bundles were imaged at a sub-3 nm resolution,
giving similar results to those imaged in vitrified ice. The
capability of imaging unstained and unlabeled macromolecular
assemblies in an aqueous solution encouraged more studies
using liquid-phase TEM. Besides publications introduced in
our previous review paper in 2020,504 in this section, we will
give an updated review of recent studies from single molecules
and proteins to peptide assemblies and protein crystallites.
Fibers. Cytoskeletal fibers including the acrosomal actin

bundles and microtubules were among the first protein
structures to be imaged in liquid-phase TEM, with their
periodic features and sensitivity to electron beam deeply
investigated.525,526 In a recent work, diphenylalanine (FF)
nanotubes, a key motif forming amyloid fibers that are
associated with Alzheimer’s disease and type II diabetes,
were analyzed.503 By sealing the FF monomers inside SiNx
chips, the growth of FF nanotubes was recorded, with a pulsed
imaging protocol leveraged to reduce the beam damage. The
initial nucleation stage of the nanotubes was observed, where
the oligomers formed immediately upon cooling from 80 °C
and aggregated into ring-like motifs. These motifs could
further elongate into nanotubes, proceeding through a
monomer addition mechanism. Aside from the elongation,
for the first time, the radial growth of nanotubes was resolved,
which was attributed to the association and dissociation of FF
monomers that occurred radially (Figure 38a−c). The
investigation into the influence of electron beam was also
covered, where the nanotube assemblies remained intact under
a low electron flux (∼0.5 e− Å−2 s−1) and aggregated to form
anisotropic chains under a high electron flux (∼100 e− Å−2

s−1). Post-mortem analysis via time-of-flight secondary ion
mass spectroscopy (ToF-SIMS) showed the unavoidable
fragmentation of FF over time even under low electron flux,
which can be effectively reduced when compared to high flux.
Such molecular level damage still existed when switching the
solvents from water to alcohols, which are regarded as ·OH
radical scavengers, indicating that the damage was directly
posed on FF nanostructures instead of through indirect solvent
radiolysis. Interestingly, the edge sharpness of FF nanotubes
was improved in alcohols when compared to water, owing to
the lessening of scattering effects and beam broadening as the
mean free path of electrons decreased from isopropyl alcohol
to ethanol and then to water. Such a phenomenon points out
the possibility of using alcoholic solvents to improve the
resolution of low contrast materials.
Lipid Assemblies. The structure and dynamics of lipid

assemblies can also be resolved in liquid-phase TEM. To
enhance the contrast of carbonaceous species with low-Z
elements, similar to ex situ TEM, staining with metal ions is

proposed.527 In a recent work, reversible staining of Ni2+ ions
on vesicles formed from 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) and smooth lipopolysaccharides
(sLPS) was introduced.188 The idea was inspired by a recent
finding that Ni2+ ions bind reversibly to the O-antigen of sLPS.
While no species were visible in the absence of Ni salt until
∼20 min, the vesicles were immediately observed at the same
dose rate when 1 mM NiCl2 was present, with size comparable
to that in cryo-TEM (Figure 38d,e). Flowing with buffer
solutions or blank the beam can both lead to the partial
desorption of Ni2+ ions (Figure 38f−h). Considering that
prolonged staining may perturb the dynamics of the system,
partial reversible staining may allow the observation of
dynamic processes in a more natural way along with a decent
contrast.

Viruses, Ferritins, and Other Large Protein Structures.
Large protein structures such as viruses and ferritins (and
many other metalloproteins) are widely explored by liquid-
phase TEM as they exhibit higher contrast against the liquid
background, especially for those containing high Z elements.
Previous studies include resolving the structure of H3N2
influenza viruses,528 movement of rotavirus double-layered
particles due to Brownian motion or biological activity,430,440
atomic and electronic structure of hydrated ferritin,48 rota-
tional and translational diffusion of Au-labeled DNA
strands,529 and diffusion, interaction, and assembly of
unhybridized DNA oligomers.530 In a recent report, a liquid-
flowing graphene chip (LFGC) was introduced, allowing
imaging of beam-sensitive materials with high resolution and
rapid liquid circulation.531 The chip was fabricated by
transferring few-layered graphene onto the holey-patterned
SiNx membrane, followed by assembly of top and bottom chips
on a liquid-flowing holder equipped with a liquid injection
system. The thin liquid layer (with a 50 nm spacer for
monodisperse NPs and 200 nm spacer for aggregates),
capability of flushing radicals, and graphene combined are
capable of tolerating high dose and thus achieving high-
resolution imaging. Typical wet samples, including PS beads,
liposomes, E. coli, and colloidal Au NPs were characterized.
The spherical shape of PS beads, 5 nm size of liposome lipid
bilayer, and the rod-shaped morphology of E. coli and their pili
with a width of 5 nm were clearly resolved in the LFGC. By
sealing particles in 150 nm thick microwells, the structural
details of adeno-associated virus (AAV) dispersed in liquid can
be visualized with the help of a high-frame-rate direct detector
and parallel computing processes.532 A spatial resolution
comparable to cryo-EM was achieved, as well as the tracking
of dynamic conformational change of viruses, suggesting the
major benefit and great potential of the liquid imaging method.
Combining with tomography, the 3D structure of bio-

materials can be reconstructed, allowing the recognition of
material morphology and properties in a higher dimension
than simple 2D projection. To achieve different viewing angles,
a hybrid chamber was introduced by sealing the aqueous
samples between a SiNx microchip and a collodion/carbon-
coated TEM grid.8 A flagellotropic phage was imaged at tilting
angles (±35°), and the capsid head and tail can be clearly
resolved (Figure 39a,b). The interactions between the phage
and its bacterium host, Agrobacterium sp. H13-3, were also
analyzed, with the phage attachment to the host observed in
the liquid cell and their contact further confirmed by tilt
images. The tomographic images also showed the direct
contact between the bacterial surface and the heads of phage
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particles instead of their tail fibers during infection. As
previously mentioned in Section 3.4.3, besides tilting
deliberately, by imaging NPs rotating with Brownian motion,
one could also obtain images of NPs from different
orientations and reconstruct their 3D structures.251
Peptide/Protein Assembly and Aggregation, Hybrids. The

assembly of peptides and proteins creates important structural
motifs, such as fibrils, matrices, and gels, with functions and
applications ranging from scaffolding to biocatalysis and
biomedicine. Real-time imaging of the self-assembly process
can aid our understanding of the underlying science and enable
rational manipulation of this process. Aside from ordered
assembly structures, the aggregation of proteins into
disordered structures is of direct relevance to the stability of
pharmaceuticals, partitioning of biomolecules into cellular
droplets, and pathogenic protein aggregation.504 Lysozyme was
mostly used as a model system for fundamental studies using
liquid-phase TEM due to their different polymorphic
structures from different crystallization pathways, including
the formation of ordered crystals and amorphous clusters533
and the high mobility of defects and defect annealing due to
rapid rearrangement of crystal bonds.534 Other than lysozyme,
a variety of peptides and proteins and their behaviors were also
investigated, such as formation of peptide assemblies in
response to chemical reduction and enzymatic cleavage,535
the aggregation of PEGylated Interferon α2a (Pegasys) under
different temperatures and pH,536 and the phase separation of

histidine-rich beak protein 2 (HBP-2) in solutions with varied
ionic strengths and initial protein concentrations.537
Coating graphene onto SiNx membrane is a strategy to

image beam-sensitive biomaterials like DNA-Au NP super-
lattice while still allowing for liquid flow and other functional
modules of a flow holder. Graphene can effectively scavenge
reactive radical species, hydroxyl radicals in particular, which
mainly contribute to breaking of DNA strands. With the
protection of graphene, the long-range periodic ordering of Au
NPs in the superlattice was resolved with clearly visible lattice
spacings (Figure 39c,d).421 The FFT image measured a body-
centered cubic (bcc) structure of the superlattice with a (002)
plane lattice spacing of 16.3 nm, consistent with SAXS results
(16.6 nm). No significant rearrangement was visible, while at
the same imaging conditions, dissociation and aggregation of
Au NPs were immediately observed upon electron beam
illumination in bare SiNx cells without graphene coating.
Raman spectroscopy suggested that graphene served as a
radical scavenger, with radicals reacting with graphene-based
nanomaterials via electrophilic addition to conjugated C=C π-
bonds or further oxidation of existing oxygen-containing
functionalities. Switching graphene to graphene oxide or
graphene quantum dots also enabled the stabilization of
DNA-Au NP assemblies.
5.4. Liquid-Phase SEM (and STEM-in-SEM)
Characterization of the Motion and Configuration of Soft
Nanomaterials

Liquid-phase SEM is a more recently emerged tool compared
with liquid-phase TEM, with lower spatial resolution but
compatibility with large samples. The shape evolution and
motion of NPs can be observed by liquid-phase SEM. In one
example, growth of Au NPs in an ionic liquid droplet was
recorded, where the reduction of Au(III) precursor was
realized by hydrated electrons. Small particles appeared in the
first 30 s after exposure to the electron beam, followed by their
formation into heterogeneous aggregates on the surface of the
ionic liquid.538 Taking advantage of the nonvolatility of ionic
liquid, its droplet was placed on a glass slide and was not
required to be fully sealed. Similarly, one can also create a free-
standing film by placing a drop of ionic liquid dispersion on a
lacey carbon-coated grid and blotting with filter paper to
remove excess liquid. To this end, NPs can be trapped inside
the ionic liquid film and their motions can be tracked. Using
silica spheres and rods as model systems, their motions in the
ionic liquid films with different thickness were analyzed.539
While the diffusion coefficients of dilute nanospheres agree
well with theoretic predictions in thick films, a tendency
toward pairing was observed when changing to thin films,
unveiling a balance of capillary and hydrodynamic interactions.
Au-coated silica NPs also work for this system and in fact
appeared brighter, enabling their motions amidst neighboring
NPs clearly resolved (Figure 40a). With a high concentration,
these nanospheres displayed a subdiffusive caged motion and
irreversible adherence to each other. In contrast, concentrated
NRs preferred assembling into finite stacks. The use of an ionic
liquid as a solvent and a large field of view in SEM benefit the
in situ characterization of particles with fast diffusion and
interaction with macroscopic interfaces. However, the use of
ionic liquids to avoid evaporation was a limitation.
To extend to other solvents, liquid-phase SEM utilizes SiNx

microchips to achieve sealing against a high vacuum and
benefits from a configuration of STEM-in-SEM or low-voltage

Figure 39. (a) Density map (magenta) of a reconstructed
bacteriophage displayed at different angles. (b) An image stack
showing differences in phage dimensions and features from ±35° in
the tilt series. Scale bar: 50 nm. (c) TEM image of DNA-Au NP
superlattices taken using graphene liquid cell TEM. Scale bar: 200 nm.
The inset shows the corresponding FFT pattern which matches the
diffraction pattern of a bcc crystal along the [320] zone axis. Scale bar:
0.1 nm−1. (d) High-magnification TEM image showing the ordered
arrangement of Au NPs. The lattice spacing corresponds to (002)
planes in a bcc crystal structure. Scale bar: 50 nm. (a, b) Reprinted
with permission from ref 8. Copyright 2019 American Chemical
Society. (c, d) Reprinted with permission from ref 421. Copyright
2017 American Chemical Society.
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STEM. By sandwiching Au-labeled epidermal growth factor
receptors (EGFRs) (on triple-negative breast cancer (TNBC)
cells) between two SiNx microchips, the localization,
distribution, and configuration of labeled membrane proteins
can be precisely recognized.540 One can also directly grow live
cells on Si microchips.541 Maintained in a saturated water
vapor atmosphere, the hydrated cell is covered with a thin layer
of water, mimicking the liquid environment. In combination
with specific labeling with Au NPs, the activated EGFRs in the
plasma membranes of COS7 and A549 cells can be localized,
and their further dimerization and clustering can be
determined and quantified (Figure 40b−h). In both studies,
an integration of STEM with SEM, so-called STEM-in-SEM,
was used, which can improve the resolution of SEM to
subnanometer in a dry cell and 2−4 nm in a liquid cell. The
high contrast and low sample damage from low accelerating
voltage provide more opportunities for the characterization of
beam-sensitive materials.446,542−545 By coating graphene, the
beam damage in liquid-phase SEM can be further reduced. In a
recent report, a single-layer graphene veil casted on a silicon
substrate with bacteria and buffer solution confined within was

introduced.546 The shape, size, and morphology of cells can be
discriminated with their functions well maintained after
imaging, attributing to the effective dissipation of charged
electrons via conductive graphene. The graphene veil provides
a new possibility of close-to-non-invasive imaging of live cells
and functional biomolecules.
5.5. In Situ Characterization of Nanomaterials at Dry State

5.5.1. Shape Evolution and Compositional Change of

Nanomaterials at Elevated Temperatures. The properties
of colloidal NPs can be easily tuned by maneuvering their size,
shape, structure, and composition. Meanwhile, the shape
deformation, structural, and compositional changes of NPs in
harsh environments, such as elevated temperatures and various
gas environments, can also lead to degradation in their
performance. In this case, direct observation of NPs’ behaviors
under external stimuli is essential to the fundamental
understanding of their stability and provides guidance for the
design of nanomaterials. In situ TEM/STEM has been a
powerful tool to provide imaging and quantification of the
morphological and structural changes of nanomaterials in

Figure 40. (a) (Left) Bare (dark) and Au-coated (bright) silica NPs mixed at the periphery of an ionic liquid film. (Right) Image sequences
showing the diffusion of single (top row) and dimer (bottom row) Au-coated silica NPs at ∼57% areal coverage of bare NPs. Scale bar: 2 μm. (b)
Overview dark-field environmental STEM-in-SEM image showing the flat regions of the cells (gray) and the thicker cellular areas (white). (c)
Image recorded at the location of rectangle in panel b. (d) Image showing individual Au NPs as white spots in the region marked by a rectangle in
panel c. (e−h) Magnified regions from panel d showing individual Au NPs, dimers, and larger clusters indicated with numbers 1−4, respectively, in
panel d. (a) Reprinted with permission from ref 539. Copyright 2016 American Chemical Society. (b−h) Reprinted with permission from ref 541.
Copyright 2013 Springer Nature.
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harsh environments.547−550 For example, using in situ
HRTEM, the stability of decahedral Au NPs was investigated
at elevating temperatures from 300 to 1000 K (Figure 41a).

The onset of surface melting was observed at about 800 K,
suggesting the threshold temperature below which the shape of
decahedra is maintained.547 In another example, Pd NPs with a
concave, icosahedral shape were heated to 600 °C.551 A
dramatic change occurred with the multitwinned structure
transformed to single crystal due to the elimination of twin
defects and thus the alleviation of strain energy.
Compared to monocomponent NPs, investigating the

stability of bicomponent NPs could be more complicated
considering possible simultaneous occurrence of shape
deformation and element mixing or segregation. For example,
the response of Pd@Pt4L core−shell (4L means four layers of
Pt) cubes and octahedra to high temperatures was resolved by
in situ STEM.552 After heating to 600 °C, alloying between Pd
and Pt was observed in the octahedron, revealed by the loss of
Z-contrast between shell and core in the HAADF-STEM image
(Figure 41b), while the two elements were clearly
distinguished until 800 °C in the cube (Figure 41c). Converse
to the structural stability, cubic shape started to deform and
became spherical at 500 °C, which was about 400 °C lower

than that of the octahedral shape. Such comparison shows the
role of facets in maintaining the shape and structure of NPs.
High-entropy alloys are emerging alloy compounds

composed of five or more principal elements existing as
disordered solid solutions. HEAs are well-known for their high
mechanical strength, thermal stability, and corrosion resist-
ance.258 Similar to conventional alloy NPs, HEAs are also
studied under elevated temperatures and various gas environ-
ment to understand their physical properties. In situ TEM
combined with the gas-cell holder was used for such studies, as
shown in Figure 42a, where the oxidation of the HEA NPs
(Fe0.28Co0.21Ni0.20Cu0.08Pt0.23) was performed in atmospheric
air.554 The in situ heating and imaging of the NPs showed that
the oxidation layer gradually grew and covered the NP surface,
which was indicated by the lighter contrast of the oxides
(Figure 42b). The oxidation process was found to be guided by
Kirkendall effects, where the different diffusion rates of metals
led to a composition variation in the oxide layer and HEA core.
In comparison to the oxidation of monometallic and bimetallic
alloy NPs (e.g., Co, NiFe, NiCr) with similar sizes,555,556 HEA
NPs in this experiment were more stable and showed slower
overall oxidation kinetics. The thickness of the oxide layer on
HEA NPs was found to follow logarithmic law other than a
parabolic one predicted by Wagner’s theory,557 which was
attributed to the spherical shape of the NPs and the resulting
stronger polarization across the oxide layer. In a following
study by the same group, the HEA NPs were first oxidized (red
box) and then reduced in H2 gas environment by in situ
heating (Figure 42c).558 In the reduction, the external surface
of the oxide layer transformed from dense to porous structures
with cracks, and the Cu atoms reduced from oxides segregated
into Cu NPs, while Fe, Co, and Ni remained in the oxide phase
(Figure 42d,e). It is worth noting that the in situ TEM imaging
can be combined with chemical analysis, such as EDX, to
analyze the variations of the principal elements in the NPs at
elevated temperatures, further enhancing our understanding of
the reaction process.554,558

5.5.2. Tracking Motions and Reactions of Atoms and
Single Molecules. The use of HRTEM or aberration-
corrected (S)TEM can further push in situ imaging to the
atomic resolution. A notable example is the individual Fe
atoms residing at graphene edges examined by low-voltage
aberration-corrected TEM.559 The individual Fe atom diffused
along an edge of the graphene with the neighboring carbon
atoms removed or added. The serial TEM images further
showed the pentagon-to-hexagon transition during this
catalytic process: the Fe atom was initially connected to four
carbon atoms in a pentagonal shape, followed by absorbing
nearby carbon atoms into a distorted hexagonal structure,
moving to the right, and finally stopping in a pentagonal
structure again (Figure 43a−d). Recently, the formation of 5-
fold twins through repeated oriented attachment of 3 nm Au,
Pt, and Pd NPs was observed, in which HRTEM played an
indispensable role.560 The time-lapse atomic resolution images,
combining with molecular dynamics (MD) simulations, clearly
suggested two formation mechanisms: forming and decom-
posing of high-energy grain boundaries, and partial dislocation
slipping. Such findings provide essential insights into the
interpretation and controlling of twinned crystal structures,
guiding the design and synthesis of nanomaterials with diverse
morphologies and applications.
Compared to metallic NPs, resolving the conformation and

motion of organic molecules is much more challenging due to

Figure 41. (a) Representative HRTEM images taken from a
decahedral Au NP at different temperatures. The average NP
diameter is about 10.3 nm. The initial Au NP close to a ⟨110⟩
projection at (A) 300 K (room temperature), (B) 600 K, (C) 750,
(D) 800 K, (E, F) 900 K (the structure was distorted with significant
surface roughening), (G) 950, (H) 1000 K (the surface became
almost fluid while the crystalline areas are still present). (b, c) In situ
HAADF-STEM images recorded from Pd@Pt4L (b) octahedron and
(c) cube under different heating conditions. (a) Adapted with
permission from ref 553. Copyright 2009 American Chemical Society.
(b, c) Adapted with permission from ref 552. Copyright 2017
American Chemical Society.
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their low contrast and high sensitivity to beam damage. In
2007, Koshino et al. proposed a single-molecule atomic-
resolution real-time TEM (SMART-TEM) method, where the
organic molecule was captured on a single-walled CNT,
resembling a fish captured by a fishing rod. In this way, the
stepped conformation change and translational motion of
hydrocarbon molecules confined in CNTs were clearly
tracked.561 The molecule changed from one conformation to
another twice in the first 20 s and varied to more afterwards
(33.6 s) (Figure 43e−f). The same technique was applied to
study the structure of a hydrocarbon chain as it passed through
the nanoscale pore in the wall of a single-wall CNT. Figure 43g
shows the time-lapse TEM images of this process. The
hydrocarbon chain underwent rotation in the tube and then
the chain terminus entered into the nanopore with a diameter
of about 0.5 nm located at the top of the CNT. The chain was
retarded by the nanopore for a few seconds, potentially due to
the pore/chain interactions, and later drawn back into the
CNT. The SMART-TEM technique elucidated the motions
and interactions of organic molecules on a single-molecule
basis, providing opportunities for more fundamental research

and engineering applications such as gas adsorption and
storage in carbonaceous materials.

5.5.3. In Situ Electron Diffraction Study of Phase

Transformation of NPs. Nanoparticles can undergo fast and
subtle microstructural changes, such as domain formation,
phase transition, and coalescence, at the atomic scale during
reactions, which is hard to probe using methods such as TGA,
XRD, and even real-space imaging of EM due to the limited
size or morphology change involved. In situ electron diffraction
techniques provide an alternative method.563−565 In one study,
time-resolved SAED patterns were collected from Ni/NiO
NPs during the oxidation reaction. The experiment combines
the atmospheric gas cell system and fast in situ electron
diffraction camera with millisecond time resolution, which are
essential for capturing the fast oxidation process of Ni NPs. As
the NPs are small (<10 nm), the intensities of the diffraction
peaks of Ni and NiO can be regarded to be proportional to
their volumes,566 and therefore can be used to determine the
ratio of Ni and NiO phases. It is worth noting that this
proportional relationship cannot be applied to thick samples
where dynamic scattering occurs. The whole reaction process
occurred within a few seconds and could be divided into two

Figure 42. (a) Schematic showing the in situ TEM imaging of HEA NPs in a gas cell. (b) In situ TEM image sequences of HEA NPs during
annealing in air to show the growth of oxide layer. (c) Time-dependent TEM images of a HEA NP oxidized in air (red box) and then reduced in H2
(gray box). (d) STEM (HAADF and low-angle ADF) images of HEA NP shown in panel c, as well as the corresponding EDX mapping. (e) Atomic
percentage distribution of metal elements and O. The red arrow points to the directions in the same manner as marked in the HAADF image in
panel d. (a, b) Reprinted with permission from ref 554. Copyright 2020 American Chemical Society. (c−e) Reprinted with permission from ref
558. Copyright 2021 American Chemical Society.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00461
Chem. Rev. 2023, 123, 4051−4145

4105



stages: nucleation and growth.567 The oxidation rate of Ni NPs
remained constant at the initial stage (<0.5 s), while later
accelerated oxidation and growth of oxide layer fit better to the
Avrami−Erofeev solid-state reaction model, instead of the
Wagner and Mott−Cabrera models where ion diffusion was
regarded as the control step. Figure 43h,i shows another
example of in situ SAED performed throughout the lithiation
process of Co3O4, which confirmed the phase transformation

of Co3O4 (spinel) to a composite of metallic Co (hexagonal

close-packed, hcp, phase) and Li2O (cubic phase).563 The

example highlights the capability of in situ diffraction in

collecting millisecond kinetics information on NP variations,

both compositionally and structurally.

Figure 43. (a−d) In situ HRTEM imaging of one cycle of catalytic growth of graphene edge that lasted for 4 s. The Fe atom and C atoms are
marked as red and black dots, respectively. Bottom panel: the corresponding atomic structures showing the track of the Fe atom during the
translocation. (e) In situ TEM images resolving intertwined hydrocarbon chains confined in a CNT. Scale bar: 1 nm. (f) Models of the structure of
hydrocarbon chains confined in CNT at 4.2 and 6.3 s, respectively. (g) Time-lapse TEM images of alkenyl fullerene for consecutive seconds at
room temperature. Bottom panel: the corresponding molecular models. The red arrow indicates the hole on the CNT side wall. Scale bar: 1 nm.
(h) SAED intensity profile as a function of reaction time during the lithiation of Co3O4 NPs. (i) Integrated intensity profiles at 0, 200, 760, and
2000 s, together with references of Co3O4, LiCo3O4, Co, and Li2O. (a−d) Reprinted with permission from ref 559. Copyright 2014 National
Academy of Sciences. (e−f) Reprinted with permission from ref 561. Copyright 2007 AAAS. (g) Reprinted with permission from ref 562.
Copyright 2008 Nature Springer. (h, i) Adapted with permission from ref 563. Copyright 2016 American Chemical Society.
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6. APPLICATION OF ML IN EM DATA ANALYSIS

Unlike most conventional spectroscopy methods where the
collected dataset is one-dimensional (1D), the real-space
imaging advantage of EM characterization by default leads to
2D data. With additional data collection from sample tilting
(tomography), reciprocal space (electron diffraction), and
temporal series (video), the dimensionality of EM data can
increase to 3D and 4D. Consequently, analysis of EM data can
be benefited from a sophisticated and high-throughput
algorithm. The analysis starts from detecting the contours of
features (i.e., segmentation) to obtaining the features’ size,
shape, and position. Manual annotation assisted by software
(e.g., ImageJ/FIJI) can sometimes locate the desired feature,
but is inefficient for large-volume data processing and can be
biased in detecting blurry features against noisy background.
Automated, non-ML-based EM image processing algorithms
are limited to frequency filtering and thresholding.
Machine learning-based EM data analysis thus has emerged

for different tasks. As an elementary and traditional image-
related ML task, supervised image classification classifies
experimental EM images into categories representing different
materials, compositions, or structuresmuch like labeling dog
and cat photosand thus enables qualitative descriptions of
mixture or heterogeneous samples. The classification task is
usually achieved by CNNs, which can take thousands of images
as input and output predefined categorical labels for each of
them. Meanwhile, image classification treats and labels images
as whole without extracting the spatial information from them.
As a result, complicated tasks including image segmentation
and object detection have been identified and achieved by
advanced CNN and other ML algorithms. Image segmentation
dedicates to labeling every pixel in an image to identify the
shape, location, and species of features in EM images. The
pixelwise classification nature of image segmentation makes it
necessary to be combined with other algorithms to single out
the feature of interest (e.g., NPs or atoms) for statistical
analysis. Different from image segmentation, the object
detection focuses on recognizing and locating every individual
object in an image, but without giving the pixelwise
information. Both image segmentation and object detection
are useful in measuring the species abundance (e.g., yield of
valuable products or fractions of different components in a
mixture), spatial arrangement, and self-assembly structures,
while image segmentation is also proficient on morphology
characterization.
The ML techniques mentioned above belong to supervised

learning, where training process and definition of the tasks are
required. For example, the labels one wishes to predict in
image classification have to be predefined. For underexplored
material systems with less prior knowledge, where the
predefined labels are not available, unsupervised learning
such as dimension reduction and clustering algorithms have
been used. The relevant task of EM analysis is to group
samples, such as differentiating desirable products from
impurities as well as recognizing and qualifying spatial
heterogeneity in samples. Such heterogeneity can include
polydisperse morphologies, multiple structural domains, and
grain boundaries.
Other than the supervised and unsupervised learning for

prediction-driven tasks, ML can also be used for data
generation and decision making, which are known as
generative learning and reinforcement learning, respectively.

Generative learning models such as the variational autoencoder
(VAE)568 and the generative adversarial network (GAN)569
capture the important features of existing dataset to synthesize
nonexisting data. This learning method proves advantageous in
the design of novel material structures to achieve desired
functions,570,571 prediction of material morphologies to
facilitate investigation into their physical properties,572

fabrication of training datasets for supervised learning,573 and
refinement of tomography reconstruction for improved
quality.574 Lastly, reinforcement learning has seen applications
in guiding microscopy-based experiments by real-time decision
making, which can be a promising future direction in EM and
will be covered in the outlook.
In the following sections, we will review the challenges and

application examples of ML. First, we will start from the
analysis of real-space 2D EM images, highlighting the
morphology and structural characterizations enabled by
image segmentation and object detection. We will next push
to real-space 3D tomography, focusing on ML-assisted high
quality and artifact-free tomography reconstruction. Lastly, we
will cover material morphology grouping via unsupervised
learning techniques based on real-space EM images and
diffraction patterns.
6.1. Introduction and General Challenges of ML for EM
Data Analysis

6.1.1. Overview of ML Methods Used in EM Data
Analysis. ML has been increasingly applied to accelerated
discovery and synthesis optimization of nanomaterials.575−580

In those applications, ML model predicts or regresses material
property from a relatively small and fixed material descriptor
space. In comparison, the inputs of EM data are huge image
matrices which contain thousands to millions of pixel values
with strong spatial correlation. This poses a challenge also
recognized for ML-based analysis of optical microscopy
images. The solution is to use CNNs that are designed for
image matrices. In CNNs, small matrices, usually 3 × 3 or 5 ×
5 (also known as kernels), replace the densely connected
neurons in the conventional deep neural network, which
greatly decreases the model size and makes the computation
feasible. As an example, 1284 weights are needed to connect
two hidden layers with sizes as small as 128 × 128 pixels in the
densely connected neural networks. With convolution, the
information can be passed through hidden layers simply by
sliding a few tens of kernels containing only a few hundred
weights across the input image matrix to improve efficiency.
Additionally, the convolution operation introduces transla-
tional equivariance, which enables CNN to capture objects
regardless of their position in one image. Lastly, in most
CNNs, pooling layers are employed to down sample the input
images, enabling feature detection at multiple length scales at
fixed kernel sizes. All those advantages resulting from the
architectures of CNNs make them the first choice in initial
processing of EM images.
Most CNNs models belong to supervised learning. In

supervised learning, the model optimizes its weights by
learning from the exampled input and output pairs (i.e.,
training dataset), which can be divided to the forward
propagation and the back-propagation steps. In the forward
propagation, the input image goes through a series of
convolution, pooling, and densely connected layers to compute
the output, which can be a scalar, a vector, or even another
image matrix. During the back-propagation, the output is

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00461
Chem. Rev. 2023, 123, 4051−4145

4107



compared with the exampled output (i.e., ground truth), and a
“loss” representing the difference between the current output
and the ground truth is calculated. Then the weights in the
supervised learning model will be updated to decrease the loss
value through gradient descend. In the training process, the
training dataset will be iterated through several times until the
loss converges to an acceptable value. By tailoring the output
and the architectures, CNNs can be applied to image analysis
tasks as diverse as image denoising, classification, segmenta-
tion, object detection, and even helping tomography
reconstruction.
Meanwhile, the real-space imaging advantage of EM allows

for comprehensive description of the heterogeneity by
collecting a statistically large number of morphologies in
samples. Several ML-based unsupervised algorithms, including
k-means, Gaussian mixture model (GMM), and density-based
spatial clustering of applications with noise (DBSCAN), have
been used to cluster samples into groups. Those algorithms
recognize and group morphologies with high similarity while
maintaining heterogeneity across the whole sample.581−583

Among them, k-means and GMM assign each data point (i.e.,
each sample) to a cluster center in the feature space, where
each center corresponds to one group and the number of
cluster centers, namely the number of feature groups, is
predetermined by users. The k-means minimizes the squared
Euclidean distances between all samples and its cluster center
in the feature space, while GMM maximizes the likelihood of
the samples belonging to its cluster center by assuming the
data point distribution is a mixture of several multivariant
Gaussian distributions. k-means tends to find clusters of
comparable spatial extent with a shorter computation time,
while GMM allows clusters to have different shapes but has a
slow speed. DBSCAN is a data point distribution density-based
clustering algorithm, where the closely packed data points are
grouped together, and the outliers in low-density regions are
assigned as noises. Compared with k-means and GMM,
DBSCAN does not require the specification of the number of
clusters and is more applicable to samples with arbitrarily
shaped distributions in the feature space (e.g., do not need to
follow Gaussian distributions). For these morphology cluster-
ing strategies based on unsupervised learning, they do not
require training, and can directly use certain feature descriptors
(e.g., NP size and shape) that can be generated from the
segmentation of EM images as the inputs.
Unsupervised learning algorithms can also be applied to

classify features using complicated input datatypes, such as
XRD584 and electron diffraction pattern, and shape contours of
features as a whole. One prominent example is to associate
different diffraction patterns with lattice structures and
orientations in 4D-STEM. In these applications, one needs
to consider that different from the simple feature vectors made
up of a few scalar shape descriptors, those complicated
datatypes have high dimensionality (>10) and are hard to be
classified due to the well-known “curse of dimensional-
ity”.585,586 To address this issue, dimension reduction
techniques (which are also considered as unsupervised learning
methods) are applied prior to classification. Commonly, the
top two or three dimensions after reduction are either directly
visualized to show the variations and similarities among
different samples or serving as the input of unsupervised
classifications. Such dimension reduction algorithms include
principal component analysis (PCA),587 independent compo-
nent analysis (ICA), t-distributed stochastic neighbor embed-

ding (t-SNE),588 and uniform manifold approximation and
projection (UMAP).589

6.1.2. Challenges and Solutions in ML Model Train-
ing: Generation of Training Dataset, the Issue of
Unbalanced Data, and Model Validation. Among the
ML-based EM data analysis methods, supervised learning
requires training of the model before usage, the common
challenges and solutions of which we detail below.

Generation of Training Dataset. Similar to humans, most
CNNs require a training process to learn how to use and
analyze the input images to predict the output. The common
and open-source ML platforms (e.g., TensorFlow and
PyTorch) provide user-friendly libraries for model construct-
ing, training, and predicting. However, users still have to
provide the training dataset for their own customized
prediction tasks. For example, to predict NP shape (e.g., rod
vs sphere) from an EM image, the training dataset should
contain pairs of exampled input images (experimental EM
images of rod or sphere) and output classes (e.g., categorical
variables such as 0 for rod and 1 for sphere). The training
dataset also needs to be large enough (at least hundreds of
input and output pairs) to cover the sample variations and to
optimize the kernel and neuron weights in the model.
Two methods are commonly used in EM image training

dataset construction: manual annotation and image synthesis.
Manual annotation means that researchers manually determine
and label the outputs as ground truth on their EM data, which
can be difficult and time-consuming, compromising the
efficiency of CNN-based image analysis. Image augmentation
can be used to expand these manually annotated ground
truthusually a small portion of the full experimental data
to a sufficient training dataset through random combinations of
image transformations, such as translation, rotation, shearing,
zooming, flipping, and brightness change. Augmentation
captures random sample shape and orientation, image
magnification, and brightness/contrast fluctuations that can
occur during EM imaging, thereby making the trained ML
model robust against them.
On the other hand, regarding image synthesis as a means to

generate synthetic experimental data as the training dataset, the
advantage is that the ground truth is well-defined and no
experimental data is needed. It has been successfully applied to
train neural networks that identify atoms and NPs from various
microscopies including STEM, TEM, and helium ion
microscopy (HIM). Taking the example of TEM images of
NPs, one can build a NP geometric model (with composition,
size, spatial shape profile defined), which is also the ground
truth, and “synthesize” the corresponding TEM image, i.e., the
input image for training following the contrast formation
mechanism of TEM and computer graphics. This method can
in principle provide training datasets with unlimited sizes. It
also bypasses the uncertainty and inconsistency of manual
annotation of images of relatively low imaging resolution and
SNR.
Note that the key to generate a good synthetic training

dataset is to resemble and cover the features of the
experimental dataset as much as possible, such as pixel size,
background noise, and graininess for TEM images.485,590
Otherwise, the trained model can perform poorly because of
the difference between the synthesized datasets used in
training and the real experimental data. Such a difference can
be qualitatively spotted by human observers. It also can be
quantitatively evaluated. For example, Mill et al.590 applied t-
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SNE dimension reduction on the patches cropped from their
synthetic and experimental HIM images of metal oxide NPs. In
the reduced dimension, a high similarity is revealed by good
mixing of data points from the synthetic and experimental
image patches, while data point separation suggested the
opposite. Similarly, Ma et al.573 applied the sliced Wasserstein
distance (SWD) to measure the similarity at various length
scales between their artificial SEM images of uranium−
molybdenum alloy microstructures synthesized by GAN
models and experimental images. In the same work, features
describing the area, spatial distribution, and texture were
extracted from the synthetic and experimental images, serving
as the input of Gaussian process classifiers (GPCs) to learn the
difference between two types of images. The successful image
synthesis was then validated by the low cross-validation
accuracy of GPC models. Meanwhile, there are also studies
suggesting that some details of the experimental data can be
discarded in training dataset synthesis. For example, it was
reported that by using the synthetic STEM images of graphene
with vacancies and Si dopants simply generated by removing
and replacing the atoms without any structural relaxation as the
training dataset, the resulted CNN models can be powerful
enough to identify more complex defects in the experimental
data that were not explicitly included in the training dataset.15
This robustness of trained CNNs suggests that ML models are
able to learn and extrapolate beyond the training dataset
provided to more complicated samples.
Unbalanced Data. For the task of image classification, most

naturally sampled datasets are unbalanced, which means the
number of observations (or samples) from each class are not
the same. As a result, a highly unbalanced training dataset
might result in low prediction accuracy on the minority classes.
As an example, for a binary classification task with a training
dataset containing 99% positive samples and 1% negative
samples, a “naive” model that outputs 100% “positive” can
reach an accuracy of 99% on the training dataset while missing
all the negative samples. Resampling the training dataset and
collecting more negative samples may help solve this issue.
However, oversampling (replicating the minority classes) and
undersampling (skipping the data from the majority groups)
may also become an issue consequently. The former could
cause overfitting because of duplicating the same data points,
while the latter is based on arbitrary decisions and does not
fully make use of the training data.591 One solution is to use
data augmentation. For example, Luo et al.592 created
augmented artificial images to supplement the minority
image classes during their classification of CNT images.
Their prediction accuracies in all classes were improved and
the accuracy variations among different classes were also
reduced. Tuning the class weights during the training process
is another way to avoid the waste of training data while solving
the data unbalance. Decreasing the class weights of the
majority groups asks the model to “learn less” from the
majorities and consequently rebalances the training dataset,
improving the overall prediction accuracies. Data balancing is
also a task sensitive practice. If the unbalanced training datasets
truly resemble the feature of experimental data, directly using
the unbalanced datasets could give the highest overall accuracy
and should be accepted as what it is. It also depends on the
specific metric that one cares about: overall accuracy (defined
as the percentage of predictions that match with the ground
truth), precision (defined as the percentage of positive
predictions that match with the ground truth), or recall

(defined as the percentage of positive samples that are
correctly predicted)to achieve a higher percentage of correct
predictions, to only give the absolutely positive data, or to
collect all the possibly positive data with tolerance on the
negative data that are mixed in.

Model Validation. The trained model needs evaluation. The
loss and evaluation metrics (e.g., accuracy) are embedded in
the ML algorithms and can be monitored throughout the
training process. Depending on the tasks of ML-based EM
analysis, different evaluation metrics are used. For the
numerical regression tasks (e.g., EM image denoising593,594

and tomography reconstruction149,595,596 where the numerical
output is required instead of classes), the mean absolute error
(MAE), mean squared error (MSE), and root mean squared
error (RMSE) are usually used. For classification tasks, in
addition to the accuracy, precision, and recall mentioned
above, the F1-score and the area under the receiver operating
characteristic curve (AUROC) are also common choices.
Specifically, for image segmentation, the object of interest (e.g.,
NPs) can only account for a small area in the whole TEM
image. As a result, a high accuracy cannot represent a good
prediction performance.597 Instead, the intersection-overunion
(IoU, or Jaccard Index) can be used to calculate the
overlapped area of the predicted object segmentation and
the ground truth object segmentation, divided by the area of
their union to reflect the performance of feature segmentation
itself. Segmentation performance can also be evaluated by an
even more rigorous metric such as boundary F1 that only
considers the segmentation border difference between the
prediction and the ground truth.598

These metrices alone, however, do not reflect the general-
izability of the model to real experimental data after training.
Overfitting describes this situation where a trained ML model
has high accuracy on the training dataset but has poor
performance on the new experimental data. The overfitting
problem can be solved by decreasing the model complexity,
adding regularization and dropout layers, stopping the training
early, or expanding the training dataset. In order to identify
overfitting, in a practical training process, the generated
training data can be split into two portions: one for model
training, other for model validationit does not participate in
the back-propagation and is only used to calculate the loss and
evaluation metrics. This hold-out validation split enables the
model to be tested on the untrained data. During the training,
if the accuracy on the validation data starts to drop after certain
training epochs, overfitting might start. Note that although
convenient, in this data validation process, the randomness of
splitting of the training datasets into two pools can lead to
deceiving validation. For example, most samples in the
validation pool can happen to be easy to predict. In this
case, the k-fold cross-validation can be used instead. The k-fold
cross-validation is an ensemble approach to evaluate the
performance on multiple models trained with different
validation splits, during which the total training data will be
split into k batches and k different models will be trained on
k−1 batches while using the rest one for validation. While the
k-fold cross-validation demands more computation capability,
it can provide the averaged model performance and variance
without wasting any experimental data. After an acceptable
cross-validation, all k batches are jointed to train the final
model.591
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6.2. Applications of ML in Analysis of 2D EM Image for
Feature Recognition

6.2.1. Supervised EM Image Classification of Nano-
materials. CNN-based models such as LeNet,599 AlexNet,600

VGGNet,601 and ResNet602 are designed for the supervised
image classification task, namely outputting one (multiclass
classification) or multiple (multilabel classification) categorical
labels representing the predefined classes given an image input.
They have shown excellent performance on classifying daily life
photographs and hand-written numbers. For EM images,
supervised CNNs were reported to classify the TEM images of
CNTs and carbon nanofibers (CNFs).592 The authors
innovatively extracted outputs from intermediate layers in
the VGG-16 model representing the information at various
length scales, and clustered them via k-means and vector of
locally aggregated descriptors to serve as the input of a softmax
classifier (Figure 44a). The trained model is able to classify
thousands of CNT/CNF TEM images into several classes
including clusters formed by loosely packed fibers, single fibers,
condensed matrix structures with embedded CNT/CNFs,
oversized mixed structures with CNT/CNFs on surfaces, and
non-CNT structures, with an accuracy over 90%. Given the
potential health risks associated with occupational exposure to
these CNT/CNFs, such automated structural classification
from TEM images can efficiently recognize their different
structures and thus accelerate their exposure assessments for
health risk-related studies.
6.2.2. Segmentation of EM Images with CNN. Image

segmentation, also referred to as semantic segmentation in ML,
serves as a basic step in quantitative analysis of nanomaterial
features, such as yields in NP synthesis, NP size histogram,

atomic lattice structure, and NP self-assembly structure. Image
segmentation algorithms separate the input image of grayscale
pixel values into several domains assigned with different
physical meanings (e.g., NPs, atoms, lattice structural domains,
background). Mathematically, this is done by translating the
EM image matrix into another image matrix with the
corresponding pixels assigned with predicted categorical values
of the domains. These segmented domains can be then
processed by other algorithms to identify properties such as
their size, shape, and position.
CNNs with image-sized outputs, such as the fully

convolution network (FCN)604 and U-Net,605 have been
used for image segmentation. Those CNN models can make
pixelwise predictions on the probability of each pixel in the
original image belonging to different species (e.g., NPs,
background), by using their special encoder−decoder
architectures. The encoder part is connected to the input
layer, and the pooling layers inside can allow the detection of
features on multiple length scales. The decoder part is
responsible for reconstructing the output image back in the
original spatial domain with full spatial resolution through its
up-pooling layers. Unlike conventional non-ML threshold-
based segmentation algorithms, where only the absolute pixel
intensity value is used as the criteria to assign pixels, FCN and
U-Net can judge the semantic meaning by considering the
neighboring pixels’ intensities through the kernel convolution
with prelearned weights. This way of making the prediction
mimics the decision-making process by human experts and
thus provides the “smartness” to ML models to give precise
and robust prediction results.

Figure 44. Studies of using CNNs for image classification and segmentation. (a) A schematic showing the carbon nanostructures image
classification workflow. (b) Experimental STEM image of graphene doped with silicon, overlaid with the FCN output of atoms, dopants, and
vacancies classes. (c, d) Schematics showing the U-Net-based segmentation of HIM images of TiO2 NPs. (c) The U-Net model trained on
synthetic data used to segment the experimental images. (d) The analysis of TiO2 NP images. The U-Net prediction is further processed to give
individual particles labeled by different colors, which provides particle size distribution and other information. (e) TEM image of tip-coated patchy
Au nanoprisms and the corresponding U-Net prediction with three output channels: nanoprism core (black), polymer patch (white), and
background (gray). (f) Workflow showing the overlaying tetrahedral Au NP contour reconstruction using a multiple channel U-Net. The
nonoverlaying region of NPs (gray, channel 1) and the overlaying region of NPs (white, channel 2) are combined to reconstruct individual NP
contours. (a) Adapted with permission from ref 592. Copyright 2021 The Royal Society of Chemistry. (b) Adapted with permission from ref 603.
Copyright 2017 American Chemical Society. (c, d) Adapted with permission from ref 590. Copyright 2021 John Wiley & Sons. (e, f) Adapted with
permission from ref 5. Copyright 2022 The Royal Society of Chemistry.
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At the atomic scale, CNNs are used to extract the accurate
atom positions from TEM606 and STEM603,607,608 images to
study the lattice structures in 2D materials, which is otherwise
hard for traditional image analysis due to high noise. In one
example,603 FCN was trained to segment the lattice atoms,
dopants, and vacancies from the STEM images of 2D lattices
of graphene and MoSe2 (Figure 44b). Synthetic STEM images
of 2D lattices with the pixel intensity proportional to Z1.5−1.8

were generated as the training dataset with known ground
truth. The arrangement of atoms in these images were
generated from ab initio or MD simulations. The trained
FCN model was able to extract the atomic coordinates in
experimental STEM images to identify various defect
structures associated with the vacancies and dopants, such as
single or multiple atom vacancies, 5−7 reconstructions
(Stone−Wales defects), Si dopants bonded with different
numbers of carbon atoms in graphene, and dimer or trimer
dopant atoms. Combining such an automated and high
throughput defect extraction workflow with time-series
STEM data could further allow the analysis on defect diffusion
and structural transformation behavior over time.603,607 The
defect structures can also be used to construct libraries of
experimentally stable defect configurations. When serving as
the input to DFT calculations, such defect configurations yield
theorical scanning tunneling microscopy (STM) patterns
which match well the experimental STM images, indicating

such ML-assisted atomic structure characterization is able to
build links between the material structure (STEM) and
functionality (STM).608

For colloidal NPs, CNN segmentation aids the quantifica-
tion of NP shape and size distributions by its precise
binarization of an EM image. One example is training U-Net
to segment SiO2 and TiO2 NPs in HIM images by Mill et al.590

In this study, a rendering software (Blender) was used to
generate synthetic and photorealistic microscopic NP images
comprising NPs of randomized sizes, shapes, and positions.
The trained-Net model can segment isolated NPs as well as the
partially obscured NPs in aggregations (Figure 44c), with
accuracies comparable to human experts. Enabled by the
segmentation of individual NPs, the particle size distribution
was obtained (Figure 44d). Such automated and high-
throughput particle segmentation and characterization can
benefit studies related to nanotoxicology and other fields such
as nano- and biomedicine, consumer product efficacy testing,
and anticounterfeiting. Moreover, the multiple output channels
of CNNs can facilitate the segmentation of different
components in the hybrid nanomaterials. For example, the
U-Net with three output channels is capable of segmenting
both the high-contrast Au NP core and weak-contrast polymer
patches in the patchy Au nanoprism (Figure 44e).5 The careful
design of output channels can also achieve the segmentation of
overlaying NPs. As shown in Figure 44f, when assigned to

Figure 45. Studies of using ML models other than CNN for image segmentation and instance segmentation. (a) Training setup of the genetic
algorithm for Au NR TEM image segmentation. Genes containing the parameters of various image analysis methods are evaluated to select the best
genes by crossing and mutating genes with high scores over generations. Images of nanoparticles obtained from individual high-scoring genes are
combined in the end to collect more individual Au NRs. (b) Schematic of the few-shot learning model. The raw STEM image is broken into
smaller chips and a few user-defined chips are used to represent desired segmentation classes in the support set. Each chip then acts as a query and
is compared against the support set and get categorized, yielding the segmented image. Scale bar: 5 nm. (c) Mask R-CNN-based nanoparticle shape
characterization workflow from TEM images. (d) Comparison of NP TEM image segmentation results obtained by semantic segmentation (U-Net
and SegNet) and instance segmentation (Mask R-CNN and improved Mask R-CNN). The improved mask R-CNN can have better performance
on weak-edge nanoparticles and adhesion NPs. (a) Adapted with permission from ref 581. Copyright 2020 American Chemical Society. (b)
Adapted with permission from ref 612. Copyright 2021 Springer Nature. (c, d) Adapted with permission from ref 628. Copyright 2020 Springer
Nature.
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predict the overlaying region and nonoverlaying region
respectively, the two output channels in U-Net can be
combined to reconstruct the contour of partially overlaying
tetrahedral Au NPs in TEM images.5 The ability to separate
the overlaying NPs benefits ML-based automatic nano-
morphology characterization, making it more robust for
aggregated samples.
CNN also facilitates the analysis of assembled nanostruc-

tures.609,610 For example, FCN has been used to segment the
low-contrast protein nanofibers from Au NR-protein nanofiber
assemblies in SEM images.610 A few initial images were
manually labeled and augmented as the training dataset.
Combined with the conventional thresholding-based image
segmentation of high-contrast Au NRs, the identification of Au
NR and protein fiber orientations showed a preference of Au
NRs to parallelly align to the nanofibers, the extent of which
decreased with increasing salt concentration and was weakly
sensitive to the rod aspect ratio. Another example exists in the
segmentation of liquid-phase TEM movies. Due to the
existence of thick liquid layer and the leverage of low electron
dose rate for minimizing beam damage, the SNR is usually low
and accompanied by blurred features. Training U-Net models
on synthetic TEM images of randomly positioned NPs
superimposed with artificial noises is proven to segment
individual NPs, as well as to separate overlaying NPs, in the
layered self-assembly structures.485,611 Such segmentation can
allow the detection of NP positions, and thus facilitate studies
on NP diffusion and the dynamic self-assembly behavior in
their native, liquid environment. More details will be discussed
in Section 6.3.
6.2.3. Segmentation of Nanomaterial Images with

Models Other Than CNNs. Though CNNs have excellent
performance in image segmentation, their training process
requires a large number of either manually annotated or
simulated image data as the input, which are not always
available. Efforts in other types of ML algorithms have also
been devoted to simplifying training data acquisition for
segmentation of EM images. For example, Lee et al.581 trained
a genetic algorithm to optimize the sequence and parameter
selection in a stepwise TEM image segmentation approach
with pretreatments and filtering. Conventionally, such
parameters (e.g., filter kernel size, edge detection methods,
etc.) are selected by humans empirically. In this study, a
genetic algorithm resembles the natural selection process in
species evolution was trained to find the best combination of
the parameters that gives good segmentation results (Figure
45a). Benefited from the efficient and accurate segmentation,
more than 15,000 Au NRs were extracted from hundreds of
TEM images and their sizes and shapes were used for the
computer simulation of UV−visible extinction spectra via the
boundary element method. By matching the simulated
spectrum with the experimentally obtained spectrum, it was
shown that at least 1,500 individual Au NRs are necessary to
converge to the experimentally measured extinction, which in
return emphasizes the importance of the automated and high
throughput analysis of NP morphology.
To achieve the adaptability to new and underexplored

materials, the few-shot learning model is another ML model
that does not require a thorough training dataset. Akers et
al.612 developed a few-shot learning model to segment and
differentiate the phases, defects, and microstructural features in
the STEM images of SrTiO3 (STO)/Ge heterostructures,
La0.8Sr0.2FeO3 (LSFO) thin films, and MoO3 NPs (Figure

45b). A high-resolution STEM image was first divided into
image “chips” to be classified individually. Then a few chips
from each class representing different phases or micro-
structures were manually picked and annotated as the support
set while the majority of the chips were free of annotation.
Next, all chips were transformed by a prototypical network
(ResNet101 in this work) to give the prototype representations
of the chips. The distances between the unlabeled prototypes
and the center of each support set of labeled prototypes were
calculated and compared to predict the labels for unlabeled
chips. Finally, all classified chips were stitched together to give
the semantic segmentation of the original high-resolution
image. As shown in Figure 45b, the few-shot learning can
deliver satisfying segmentation results, except that the
segmentation resolution is limited by the size of image chips.
The major advantage of few-shot learning over CNN models is
that few-shot learning only requires one to a few images per
class for training and can be applied more rapidly and flexibly
to new materials and new classification tasks.

6.2.4. Object Detection of NPs and Proteins in EM
Images and Its Combination with Image Segmentation.
CNN-based image segmentation relies on pixelwise assign-
ment, which makes it challenging to recognize individual
features when they are partially overlapped. For example, NPs
assembled in a lattice or aggregating randomly can leave a few
or no pixels between the boundaries of the neighboring NPs;
3D stacking can lead to partially obscured NPs in SEM images
or overlaid NPs in projected TEM images. In these scenarios,
mere image segmentation leads to the detection of the
assembled structures or aggregates as a whole, without
recognizing the NP components inside. Postsegmentation
algorithms such as watershed transformation,613 ultimate
erosion for convex sets,614 and bounded erosion-fast radial
symmetry615 have been applied after the segmentation to cut
the aggregated or overlaying particles apart. However, such
algorithms only exploit the information in the segmented
binarized image without referring to the intensity profile in the
original image. They generally work better for features of
simple rounded shapes with minor overlaying.
For some applications such as yield analysis, self-assembly,

and trajectory analysis of NPs, locating and counting the
individual components without knowing the exact shape
contours are sufficient. To this end, several ML models were
developed to perform only the object detection task, to directly
output the identity and position of nanomaterial instances
from EM images without segmentation. In object detection,
bounding boxes are generated by the ML model to locate and
annotate each individual object of interest without specifying
their contour shapes. Region-based CNNs (e.g., R-CNN,616
Fast R-CNN,617 Faster R-CNN,618 YOLO,619 and Retina-
Net620) are the most common models for object detection,
which were originally designed for processing real-life photo-
graphs and later applied to EM images. Using Faster R-CNN
as an example to discuss the architecture of region-based
CNNs: In Faster R-CNN, a region proposal network (RPN)
proposes ROIs representing highly possible regions for finding
the objects and generating proposed bounding boxes around
them. Another half of the model consists of a classifier and a
regressor network, which takes the proposed bounding boxes
as inputs to give the object an identity and regress the location
of the bounding box to inscribe the object, respectively. When
applying the Faster R-CNN to STEM images of FeCrAl
alloys,621 the model simultaneously recognized and located
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dislocation loops with four different types of morphologies in
irradiated steels at a speed of around 0.1 s per image, which is
hundreds of times faster than manual analysis.
CNN-based object detection has also been applied to the

analysis of biological samples such as automated single particle
picking in cryo-EM reconstruction. The particle picking from
2D EM images in cryo-EM remains a challenge due to the low
SNR, particle overlap, ice contamination, and amorphous
carbon. Although several computational methods have been
proposed such as template matching and edge detection, they
can either be sensitive to noise and low contrast or still require
human supervision.622 Several studies employ CNNs to
develop single particle picking platforms including Deep-
Picker,623 DeepEM,624 and DeepCryoPicker.622 Such studies
rely on the image classification CNNs to judge whether a
cropped region from the EM image contains a good protein
particle or background for automated particle picking.
Through demonstrating on published protein particle EM
datasets including Keyhole Limpet Hemocyanin and EMPIAR,
the platforms are proven to be efficient, automatic, and
accurate approaches to pick particles in cryo-EM images. More
recently, Xiao et al.625 implemented Fast R-CNN to pick
protein particles in cryo-EM micrographs. Tested on the recent
published cryo-EM data of three proteins including human
gammas-secretase, yeast spliceosome, and TRPV1, their Fast
R-CNN model can achieve a fast protein particle detection
speed at 2 s per image, which is much faster than the
conventional manual picking process that can take a few days
or weeks. This work also innovatively distinguished between
the ice contamination and protein particles to significantly
reduce the false detection rate.
In more recent studies, the robust capability of object

detection to recognize individual materials instances even in
crowded or aggregated samples and the capability of image
segmentation to elicit the full contour of the instances are
combined for thorough analysis of samples. Such tasks are also
known as instance segmentation. Starting from the region-
based R-CNN, another segmentation network offers the ability
to segment each detected object, giving rise to the mask R-
CNN model (Figure 45c). The mask R-CNN model and its
variant have been used in detecting NP size and orientation
from TEM and SEM images,626−630 showing superior
segmentation results on aggregated NPs (Figure 45d) to
pixelwise classification models. However, the addition of the
segmentation network in mask R-CNN burdens the
computation efficiency, leading to slow model training and
image prediction. Further study also suggests that mask R-
CNN can still suffer from missing detections during its
nonmaximum suppression (NMS) step when the overlaying
area between adjacent bounding-boxes is large.631 To address
these problems, more lightweight and bounding-box-free
algorithms such as StarDist631 and MultiStar632 have been
purposed. Similar to the image-to-image CNN models, the
StarDist directly regresses the pixel-to-boundary distance for
every pixel inside the object at different radial directions, which
is realized through a U-Net architecture with multiple output
channels. Meanwhile, another parallel regression task will be
conducted to find the pixels near individual objects’ center.
Finally, the object contour is reconstructed from the radial
distances measured at pixels near each object’s center.
Although the original designs of such proposal-free instance
segmentation algorithms are demonstrated with optical
microscopy images of aggregated cells as examples,631,632

several recent studies have employed them to analyze SEM and
TEM images. For example, the StarDist has been demon-
strated to give an accurate measurement of the particle size
distribution of the Pt catalysts supported on carbon for
polymer electrolyte fuel cells,633 by training on datasets as
small as 30 images. Such imaging-based characterization of a
catalyst enables the high-throughput screening in the design
and fabrication of novel materials. Similarly, a Bayesian particle
instance segmentation algorithm was employed to measure the
particle-size distributions, radial-distribution functions, average
sizes, and aspect ratios from the TEM and SEM images of
various nanomaterials ranging from ZnO microrods, steel
powders, bacterial cells, Pd NPs, AuNRs, dendritic-like
mesoporous silica, to PS spheres and Pt3Co NPs,634 indicating
the versatility of instance segmentation algorithms in EM
image analysis.
6.3. Machine Learning Applications in Temporal
Microscopy Data Obtained from In Situ EM

Other than conventional imaging of static nanomaterial
samples, EM can also be combined with different in situ
modules (see more details in Section 5) where a videostacks
of time-lapse EM imagesis collected. In addition to the 2D
positional information in a single TEM image, time is now an
additional dimension to consider in analysis. Currently, ML
has been applied to the following in situ EM studies, all of
which are real-space images (no diffraction or tomography
involved).
In Situ Liquid-Phase TEM of NP Dynamics. For liquid-phase

TEM studies, ML methods aid the analysis of NP morphology
change, diffusional dynamics, and self-assembly kinetics.
Owing to the existences of a liquid layer and sealing windows,
as well as low dose rates to have the electron beam
intervention of samples under control, SNR is commonly
lower in liquid-phase EM videos than in the EM images of dry
samples, raising challenges in analyzing individual video
frames. Meanwhile, the high-volume nature of video data
also necessitates automated and high throughput analysis
methods where minimal human involvement is needed.
Recently, Yao et al. used U-Net for accelerated and high-
fidelity segmentation to analyze liquid-phase TEM videos.485

Specifically, these liquid-phase TEM videos have high noise
and blurriness. After trained on synthesized TEM images
containing randomly distributed NPs with different shapes and
sizes, the U-Net model precisely delineated the shape contours
of individual NPs, providing not only their positions but also
their orientations, both as a function of time. The contours
were then used to calculate the etching kinetics, diffusion
coefficient, interaction potential, and self-assembly kinetics of
NPs. Another example of applying the object detection models
is to achieve real-time detection of early nucleation events
during liquid-phase TEM experiments.635 The study focused
on observing the NaCl crystallization in liquid cell starting
from NaClO3 dissolved in acetone. Upon beam illumination,
the Cl− produced by ClO3

− radiolysis crystallizes with Na+.
However, due to the uncertainty of where the nucleation event
happens, early detection of the nucleation events is important
for guiding the high-magnification observation. The YOLOV5
network was trained to detect crystalline objects with a
detection time as short as 15−35 ms, which made real-time
observation possible through integrating the detection program
with the TEM hardware. With the crystal volume estimated by
the bounding box size and recorded as a function of time, a
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higher growth rate was observed on small particles comparing
to large particles, which contradicted with the Gibbs−
Thomson effect in the classical nucleation theory. This
phenomenon was explained by a nonclassical, two-step
nucleation process, where an unknown, amorphous, or
dense-liquid phase of NaCl with smaller interfacial energy
compared to NaCl crystal was formed at the initial stage of
nucleation.
Machine learning can also help sort the trajectory of NPs

recorded by liquid-phase TEM, where the particle−substrate
interaction, heterogeneity of the liquid cell substrate, and the
liquid structure in the liquid cell environment may result in
anomalous diffusion of NPs. For such trajectory data arranged
as a time series with uncertain duration, one type of neural
network models, such as long short-term memory (LSTM),
was designed to exploit the correlation from the whole time
sequence instead of individual time points, which have been
widely demonstrated in the trajectory analysis of col-
loids636−639 and biomedical molecules640−644 imaged by
optical microscopy. Jamali et al.645 used MoNet, a neural
network, to classify the trajectories of Au NRs into different
types of diffusion behaviors. MoNet comprises six parallel 1D
convolutional sublayers with different filter sizes and step sizes
to capture local dynamics of NPs with different spatial
resolutions. It was followed by concatenation and fully
connected layers to give the final classification and regression
outputs. After being trained on the simulated trajectories with
predefined physical models including Brownian motion,
fractional Brownian motion, and continuous-time random
walk (CTRW), MoNet took the trajectory data extracted from
experimental liquid-phase TEM videos as input and revealed a
diffusion transition of NPs from fractional Brownian motion to
CTRW as the electron beam dose rate increases. This
transition was explained by electron-beam-radiolysis induced
passivation of the functional groups on the liquid cell substrate,
which weakened the attraction between NPs and the substrate
and caused detrapping and long-distance jumping of NPs as in
the CTRW model.
In Situ STEM of Atomic Structure Dynamics. Similar to NP

dynamic observations in liquid-phase TEM, analysis of atomic
structural evolutions in in situ STEM has also been challenging
due to the lack of automated analysis methods for extracting
dynamic information from the high dimensional, enormous
amount of data. To address the low efficiency in manual
analysis, low-speed, and frequently needed human supervision
in existing analysis algorithms, Maksov et al.607 trained an FCN
model to segment and identify the atoms in in situ STEM
movies of the defect structure transformation in a 2D Mo-
doped WS2 monolayer. Only trained on one annotated frame
combined with the image augmentation, their FCN model was
able to segment the atomic positions in the rest of 99 frames in
a movie at an accuracy of 99% in model evaluation. Benefited
from the high throughput and automated segmentation, ∼104
defect structures were extracted from the movie and
consequently grouped into five classes by a GMM, which
were associated with Mo dopant atom, vacancy, and carbon
contamination. The trajectories of different types of defects
were tracked and compared. It was found that the vacancy
defects typically generated shorter trajectories compared with
the dopant defects, which might be due to the filling of
vacancies by W and S atoms. The diffusion coefficient of
vacancy defects was estimated to be in between 3 × 10−4 nm2/
s and 6 × 10−4 nm2/s. On the other hand, the dopant defects

were further grouped into four subclasses determined by
different couplings with their neighboring vacancies, and the
transition probability of those individual defects over time was
studied via the Markov process model. The observation that
the Mo dopant defects may couple to a S vacancy in the
dynamic STEM experiment can be explained by the lower
diffusion barrier of a S vacancy, and the higher probability of S
atoms being knocked-out by an electron beam, which led to
the occupation of the as-formed S vacancy by the Mo dopant.
This work highlights the capability of ML to extract point-
defect dynamics and map chemical transformation pathways in
real time at the atomic level.
6.4. Machine Learning Applications in 3D Tomography
Reconstruction

6.4.1. Introduction of the Applications of ML to Solve
Challenges in Electron Tomography of Soft Materials.
As elaborated in Section 3, electron tomography is a powerful
method to image directly the 3D structure, morphology, and
composition of soft nanomaterials. However, complications in
the tilting series acquisition process can result in poor
reconstruction quality. Such complications include the tilting
angle limitations, SNR, and tilting image alignment.

Tilting Angle Challenge. During the tilting image
acquisition, due to the mechanical limitation of the holder
and the fact the holder can block the electron beam, the
accessible tilting angles usually range from ±60°6,95 to ±70°153
which is lower than the ideal tilting range of ±90° to collect all
the information necessary for reconstruction. This missing-
wedge effect reduces the resolution and reliability of the
reconstruction and can potentially lead to serious misinter-
pretation (see Section 3.1.3).646 On the other hand, to avoid
the electron beam damage to beam-sensitive samples such as
polymer membranes95 or to samples under EDX tomography
that requires high electron dose rates, the number of sinograms
in tilting series can be limited, which leads to sparse tilting
angle intervals and limits the spatial resolution in reconstruc-
tion.647

SNR Challenge. Another way of preventing the sample
damage is to lower the dose rate or reduce the exposure time
during the image acquisition,647 but the resulting low dose can
lead to sinograms with a low SNR and consequently noisy
reconstruction. This problem is more severe for EDX
tomography, where the low probability of X-ray generation
and low efficiency of detection595 makes the SNR lower than
other EM tomography techniques.

Alignment Challenge. Moreover, the inevitable projection
translations and rotations can be caused by the specimen
movement, mechanical instabilities, and optical imprecisions of
the imaging system during the tilting series acquisition. Such
issues call for accurate tilting series alignment before the
reconstruction, which is critical for reconstructing high-quality
tomograms.648
While experimental solutions to such complications rely on

the development of advanced cameras, tilting holders, and
imaging protocols, the efforts in designing reconstruction
algorithms also show success in improving reconstruction from
sinograms with limited SNRs and tilting angles. Iterative
reconstruction algorithms without ML such as SIRT,164 MBIR,
and DART649 provide better performance compared with the
simplest analytic algorithms such as WBP, through comparing
the reconstructions with the experimental observations
iteratively until the error vanishes and the solution
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converges.650 However, iterative algorithms may potentially
suffer from over smoothing of feature and high computational
costs.651 In recent years, an increasing number of ML
reconstruction studies demonstrate their application in trans-
mission X-ray microscopy (TXM), HAADF-STEM, and
STEM-EDX tomography of nanomaterials.574,595,596,647 During
the reconstruction of EM tomography, ML models such as
image-to-image CNNs and GAN have been reported to be
helpful in (i) detecting the fiducial markers for sinogram
alignment,648 (ii) preprocessing the sinograms to enhance the
SNR595 or to generate sinograms at unmeasured angles,149,647

and (iii) postprocessing the tomograms reconstructed via
simple algorithms to recover the missing wedge information.574

Moreover, although they have not been applied to EM
tomography, neural networks with fully connected layers are
proven to be capable of the direct end-to-end reconstruction
with reduced noises and artifacts in MRI and positron emission
tomography (PET) imaging.652 In addition to the reconstruc-
tion process, the 3D segmentation of tomograms in the
presence of missing-wedge effect and noises can also be
achieved by image-to-image CNNs.653−655

6.4.2. Machine Learning in Solving the Tilting Angle
Challenge. To recover the lost information and remove
artifacts in the tomograms reconstructed from limited tilting

angles, a series of ML methods have been developed. Wang et
al.574 developed the information recovery and deartifact model
(IRDM), which is a GAN consisting of U-Net++ as the
generator and an image classification CNN as the discriminator
(Figure 46a). During training, the deartifacted tomograms
generated by U-Net++ from the simple reconstruction (e. g.,
WBP) were compared to the ground truth tomograms without
missing-wedge effect by the discriminator network, and the
loss was differentiated and backpropagated through the
discriminator to help the generator better deceive the
discriminator. This adversarial evolution between the generator
and the discriminator finally led to better information
recovered and deartifacted tomograms that resemble the
ground truth tomographs. The trained IRDM was then tested
on tomograms with missing wedge angles from 40° to 80°.
Compared with other reconstruction algorithms including
WBP, SART, and TVM, where either blurriness or elongation
in the vertical direction can occur in the final reconstruction,
IRDM can consistently make predictions nearly identical to the
ground truth at all missing wedge angles (Figure 46b). The
trained IRDM was applied to the HAADF-STEM atom
tomography of a Au nanocrystal with a tilting angle range of
±70°, showing the reduced missing wedge artifacts and noise
in the reconstruction compared to WBP results. As a result, the

Figure 46. Application of ML in tomography reconstruction. (a) The training pipeline of the IRDM model to predict information recovered and
deartifacted tomogram from WBP reconstructions. (b) IRDM in comparison with conventional methods by “phantom face” reconstruction with
40° missing wedges. The lower panels show enlarged images of the boxed regions in upper panels. (c) The unsupervised tomography
reconstruction method. A low-resolution 3D reconstruction is generated first using MBIR. Then a sinogram generation CNN produces EDX
projection images across all angles, which are later used by FBP to give the final high-resolution 3D reconstruction. (d) A schematic showing using
U-Net for elemental map denoising to decrease the acquisition time and electron dose in EDX tomography of NPs. (e) Comparison of sinogram
denoising performance of different methods on simulated 2D EDX elemental maps with noise. The references are noiseless ground truth maps used
in the simulation. (f) Comparison of 3D tomography from experimental data denoised using different methods. The references are experimental
data taken with long acquisition times and high electron doses. The left column are 3D models of the used core−shell Au/Ag NPs, with the
orientation of the depicted orthoslices. Scale bars: 30 nm. (a, b) Adapted with permission from ref 574. Copyright 2020 John Wiley & Sons. (c)
Adapted with permission from ref 647. Copyright 2021 Springer Nature. (d−f) Adapted with permission from ref 595. Copyright 2021 The Royal
Society of Chemistry.
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higher order Bragg spots in the power spectrum of the
reconstruction were resolved by the IRDM algorithm,
achieving a 3D atomic resolution as high as 0.71 Å. This
work highlighted the power of ML in solving the missing-
wedge challenge in 3D atomic tomography of nanomaterials.
However, because the ML model used in the work was
implemented in 2D, each 2D slice along the tilting axis in the
3D reconstruction has to be processed separately, and the
information in the third dimension was not fully exploited.
Meanwhile, due to the nature of supervised learning, the model
performance also depends on the selection of features in the
training data set.
Other than refining the simple reconstructions with

generative learning, GAN models can also directly recover
the missed angles in the sinogram, which avoids the additional
artifacts introduced through the reconstruction of tilting series
with missed angles. Ding et al.149 developed a two-step ML
algorithm to solve the missing-wedge problem in electron
tomography. In this work, an image inpainting GAN model
first filled the sinogram at missed angles, followed by another
deartifact GAN model to further remove the residual artifacts
in the tomogram reconstructed from the filled sinogram. With
being trained on hybrid datasets comprised of simulated
images of random polygons and images acquired from open
databases, their model showed a superior peak SNR, structural
similarity index, and perceptual index compared to existing
reconstruction algorithms including WBP, SART, and TVM.
The method was also tested on the experimental EM data of
Au NRs and layered cathode materials that are not presented
in the training dataset,149 both showing greater performance
comparing with conventional methods. Such a sinogram
inpainting method offers a new angle to solve the tilting
angle limitations in electron tomography.
More recently, Han et al.647 used an unsupervised ML

workflow to analyze the tomography tilt series of NPs with a
limited tilting angle range and sparse tilting interval. In this
workflow, MBIR was first used to build a low-resolution
reconstruction from the noisy and sparse sinograms exper-
imentally obtained (Figure 46c). This noisy reconstruction was
then reprojected to generate sinograms, which were later
processed by a CNN with the U-Net type architecture to fill
the missed and under-sampled tilting angles (Figure 46c). The
optimization of CNNs was done by imposing the consistency
between the original and enhanced sinograms, thus only the
experimental sinogram but no matching ground truth was
needed. In the final step, the sinograms recovered by the CNN
were reconstructed by a simple algorithm (WBP) to give the
tomogram with a significantly higher resolution than the
original one. The workflow was successfully applied to
reconstruct the STEM-HAADF and EDX elemental map
tilting series of Au NPs and InP/ZnSe/ZnS quantum dots at a
tilt range of ±60° and an angular interval of 10°. High-quality
3D reconstructions of the geometry and elemental distribution
of quantum dots were obtained, which revealed the absence of
S in specific areas in quantum dots that was not identified from
the conventional 2D image analysis. The absence of S indicates
the nongrowth of ZnS shell on the quantum dots, which was
later identified as the cause of lower photoluminescent
quantum yield and is correlated with different synthesis
conditions. This unsupervised ML, combined with STEM-
EDX tomography, shows its great potential as a comprehensive
tool for physicochemical analysis of soft nanomaterials.

6.4.3. Machine Learning in Solving the SNR
Challenge. The low SNR in sinograms of soft materials can
be preprocessed to ensure a clean reconstruction process and
reduce noise presented in the tomography reconstruction. To
this end, a recent work from Skorikov et al.595 reported a U-
Net model for elemental map denoising before the
tomography reconstruction of STEM-EDX tilt series of NPs.
The U-Net model was trained by a series of simulated STEM-
EDX tilting projections of various-shaped NPs with random-
izable geometric parameters and artificial noises (Figure 46d).
Compared with conventional, non-ML-based denoising
algorithms, the trained model behaved better in recovery of
sharp NP boundaries and low intensity variations within the
particle from the noisy sinograms (Figure 46e). Inputting the
U-Net denoised sinograms of core−shell Au/Ag NPs with
different shapes for reconstruction gave clear particle shape
and elemental distribution, in contrast to the tomograms with
fracturing and blurring reconstructed from the sinograms
denoised by non-ML-based methods (Figure 46f). The
utilization of U-Net to increase the sinogram SNR not only
produces more pronounced 3D elemental map of NPs but also
potentially allows a reduction in EDX acquisition time and
electron dose, which can benefit the studies of beam-sensitive
nanomaterials.

6.4.4. Machine Learning for Tilting Series Alignment
Challenge. As mentioned in Section 3.1.2, the fiducial marker
is one of the most frequently used methods for tilting image
alignment in electron tomography. During the detection of
fiducial markers, the common strategies rely on the template
matching between an averaged or synthetic fiducial marker
image and the patches in the image to be detected. However,
the dark regions, size variation of the marker particle, and low
SNR at high tilting angles could all contribute to the challenge
in fiducial marker detection under various imaging conditions.
To solve these problems, Hao et al.648 introduced a CNN-
based image classification model to help the marker detection
process in electron tomography. In the workflow, the candidate
marker regions were first generated by a conventional method,
followed by a CNN performing the binary classification to
keep the successful detections of the markers and discard the
failed ones. Trained on the experimental tilting images
consisting of positive fiducial marker image patches and
negative background patches, the model can overcome the
marker overlaying, blurriness, and low contrast issues
commonly occurred at high tilting angles, identifying more
fiducial markers with longer trajectories comparing with the
conventional method. Such advantages were demonstrated
with the EM tilting series of protein samples. This work shows
the contribution of ML to the image alignment, which is a
critical step before the reconstruction in electron tomography.

6.4.5. Machine Learning for Post-Reconstruction
Tomogram Segmentation. While the previous sections
focus on the application of ML to facilitate reconstruction of
tomographs, in this section, we discuss postreconstruction
tomogram segmentation. Like 2D EM images (Section 6.2),
quantitative analysis of electron tomograms for nanomorphol-
ogy characterization (e.g., the measurement of volume, surface
curvature, roughness) requires image segmentation to binarize
the materials out of the background based on grayscale
tomography reconstructions. Such segmentation is often
conducted by thresholding the reconstructed voxels, which
suffers from the unavoidable reconstruction artifacts including
the noises, imperfect alignment, and missing-wedge effect.
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Alternatively, segmentation can be done manually to better
accommodate those artifacts. However, the manual segmenta-
tion of 3D images is extremely time-consuming and
inconsistent for different operators. For robustness against
the artifacts while keeping the high efficiency, the Trainable
Weka Segmentation plugin in ImageJ was utilized to optimize
the conventional segmentation parameters in a ML approach
to achieve the multiclass segmentation of electron tomogram
slice-by-slice.655 The approach was applied to the recon-
structed electron tomography of a composite of silica NPs
embedded in a rubber matrix. Compared to the thresholding-
based segmentation with or without additional filtering, the
silica NPs were distinguished more clearly with their positions
inside the rubber matrix better resolved. This work highlighted
the capability of ML segmentation in the presence of
reconstruction artifacts through ImageJ in a coding-free
manner. More recently, the development of image-to-image
CNNs with 3D architectures paves the way to ML-based
segmentation of 3D images,656 which resembles the 2D image-
to-image CNNs (such as U-Net) but with input, output, and
convolution kernels shaped in 3D. Such methods have been
applied to electron tomography data, showing their excellent

performance in segmenting the cryo-electron tomograms with
high noise and a missing-wedge effect.653,654 For example, a 3D
CNN-based platform, named DeepFinder, was reported for
multiclass macromolecule identification from cryo-electron
tomograms.654 DeepFinder predicted the macromolecule
categories voxel-wisely and then utilized them to determine
the location of macromolecular particles in the tomogram,
which outperformed the conventional template matching and
other deep learning methods on synthetic datasets. When
applied to the experimental datasets, DeepFinder successfully
distinguished and located ribosomes with two different states
including the membrane-bound 80S ribosome and the
cytosolic ribosome, at a 3D structural resolution of 24 Å,
which is comparable to that of expert annotations at 23 Å.
DeepFinder also showed similar performance on macro-
molecules with smaller sizes such as Rubisco and photosystem
II at resolutions of 15 Å. Moreover, in this work, the voxel-wise
annotation labels used for training were converted from the
expert labeled 3D coordinates of the macromolecules, in order
to avoid the time-consuming step of directly generating the
voxel-wise ground truth by manual selection. This makes it a

Figure 47. Application of unsupervised ML in nanomaterials shape classification. (a) AutoDetect-mNP unsupervised classification result of a Au
NR mixture with different aspect ratios. The optimal class number is first determined by the maximum entropy. The exampled particle shapes from
each class produced by AutoDetect-mNP are shown together with the original TEM images. The histogram of four features used for classification
are shown and denoted by colors corresponding to their shape classes. (b) Eight shape descriptors describing the 3D morphology of crumples on
the PA membrane are dimension reduced and projected onto the space of the first two principal components. (c) Distribution of the crumples in
the PC space and the GMM clustering results. Color represents the grouping given by the GMM. The colored regions are confidence ellipsoids of
the GMM with sigma = 1, 2, and 3. (d) 3D visualization of representatives of three classified crumple groups and their corresponding radar plots of
the fractions of the surface element descriptors. (e) Measurement of the fingerprint function d(θ) to describe the shape of Au tetrahedral NPs. (f)
Full set of d(θ) collected from all Au tetrahedral NPs from TEM images. Different colors indicate classes given by the GMM (cf. panel (g)). The
yellow, orange, and red colored d(θ) are identified to be tetrahedral particles of different sizes, and the gray d(θ) stands for impurities. (g) Full set
of d(θ) projected onto their first two principal components. Insets show the average NP shape of the classes identified by the GMM. (h) Average
edge length (triangular symbols) and truncation (circular symbols) as functions of seed amount. (a) Adapted with permission from ref 583.
Copyright 2021 American Chemical Society. (b−d) Adapted with permission from ref 6. Copyright 2022 AAAS. (e−h) Adapted with permission
from ref 5. Copyright 2022 The Royal Society of Chemistry.
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promising algorithm for the efficient semiautomated analysis of
the cryo-ET data.
6.5. Unsupervised Learning for Grouping of Features (e.g.,
Morphology, Size, Composition) in Analyzing EM Images
and Electron Diffractions

While classification, segmentation, and object detection are
mostly used for extracting information from TEM, SEM, and
STEM images, unsupervised learning has been applied to
analyzing the features extracted from the real space images and
electron diffraction patterns. For real-space images, such
analysis focuses on the clustering (or grouping) of morphology
(e.g., size, shape, structure). For electron diffraction, such
analysis is about clustering the electron diffraction data into
different phases (crystallinity, phase orientations, etc.).
6.5.1. Morphology Grouping of NPs and Polymers in

Real Space. To gain a comprehensive understanding of
nanomaterial morphology and build the linkage between
synthesis conditions and macroscopic material properties (e.g.,
optical, electronic, and catalytic properties) by EM character-
ization, morphology grouping and quantitative analysis are
needed. Such quantitative analysis usually requires a big dataset
of samples to be statistically significant. For example, a recent
study on Au NR shows that at least 1,500 individual particle
contours collected from TEM images are necessary to predict
the UV−vis extinction spectra that match with the
experimental measurement.581 Although supervised learning
algorithms introduced in Section 6.2 are capable of
accelerating and automating the morphology extraction from
EM images, postcharacterization of these morphological
parameters often relies on direct averaging, which smears out
heterogeneity, if any, in the samples.
To address this issue, morphology classification by

unsupervised clustering algorithms prior to any averaging has
been recently employed for heterogeneous nanomaterials.
Such a clustering algorithm usually starts from converting the
nanoscopic features (e.g., shape contours) to appropriate
descriptors, based on the distribution of those nanoscopic
features in the descriptor space, the features can be divided
into relatively homogeneous groups by the clustering
algorithm. One example is the AutoDetect-mNP algorithm
developed by Wang et al. to group Au NP mixtures (including
Au NR with different aspect ratio and Au triangular prism) into
different shapes from TEM images.583 In this work, four shape
descriptors including area, eccentricity, aspect ratio, and
circularity of segmented NP projections were first calculated,
followed by a k-means algorithm for clustering (Figure 47a).
The results showed that AutoDetect-mNP reliably distin-
guished Au NRs or triangular prisms from impurities and
further identified subgroups of Au NRs with different aspect
ratios or triangular prisms of corner truncations without
human intervention. In another work by Lee et al.,581 a two-
step method was used to group a Au NP shape mixture. A
center-to-perimeter distance first distinguished the particles
with obvious geometries such as square, sphere, and rod. Then
in the second step, three descriptors (major axis length, minor
axis length, and solidity) served as the input of a GMM
classifier to further divide the spheres and rods into subgroups
with varying shape details, which was later used for estimating
their optical properties as stated in Section 6.2.3. A similar
report by Slater et al.582 utilized several different clustering
algorithms including the k-means, DBSCAN, and ordering
points to identify the clustering structure (OPTICS) to group

the TEM projections of Au, Pd, and PtNi NPs for
reconstruction to reveal their 3D geometries. In this work,
the solidity, maximum pixel intensity, and the area of individual
particles were extracted from the TEM images as the clustering
input. Finally, the projections identified as the same groups
showed sufficient homogeneity in size and shape, providing the
high-fidelity single-particle reconstruction.
Unsupervised morphology clustering also applies to 3D

morphologies of polymeric materials. For example, An et al.
reported the utilization of GMM to classify the 3D crumple
structures on the PA filtration membrane,6 which are formed
following Turing’s pattern during interfacial polymerization.
The individual volumetric crumple images were first binarized
and cropped from the reconstructed electron tomogram. Eight
surface curvature-related descriptors were measured and
collected from the 3D geometries for each crumple instance.
The descriptors were then dimension reduced via PCA and
classified into three groups by GMM (Figure 47b,c), including
shapes resembling a dome, a dimple, and a pancake (Figure
47d). The pervasiveness of the grouping as well as the high
similarity within each group can be consistently confirmed
across the PA synthesized in different conditions. On the other
hand, the fractions of each group in different synthesis
conditions are found to be changing with the monomer
concentrations. For example, the dome-like crumples with
smaller size occur more frequently with increasing monomer
ratio, highlighting the synthetic control over morphology.
Moreover, the distinctive mechanical response of different
morphological groups was confirmed by liquid-phase AFM,
showing the one-to-one relationship between the material
propriety and morphology for each group.
In general, unsupervised nanomorphology grouping de-

mands no training dataset but might require the input of the
number of clusters (groups), especially in k-means and GMM.
Different numbers of clusters can lead to different clustering
results. Research has shown that the optimal number of
clusters, which gives the best data point separation, can be
evaluated and determined by metrics such as maximum
entropy583 and Bayesian information criterion581 to further
decrease the level of human intervention. Moreover, the input
morphological parameters tend to be a system-specific choice.
For example, the descriptors that researchers have chosen to
representing NP shapes in TEM images include solidity,
convexity, area, eccentricity, aspect ratio, circularity, major/
minor axis length, and even the maximum pixel intensity in the
projection area. While those descriptors, each emphasizing a
certain aspect of the nanomorphology, lead to different
classification results, they can sometimes be correlated, which
causes problems in clustering. Some studies utilize more
universal descriptors such as the NP contour data with
dimension reduction as input to group algorithms,657 which
avoids the manual descriptor selection and can be widely
applied to different shapes. For example, the center-to-
perimeter distance as a function of angle can be used as a
fingerprint describing the nanomorphology and serve as inputs
of dimension reduction and clustering algorithms (Figure
47e,f).5 With the ability to prevent clustering discrepancies
introduced by the choice of descriptors, this method has been
proven to be compatible with nanomaterials with various
shapes, in both 2D and 3D. Demonstrated on Au tetrahedral
NPs, Au nanoprisms decorated with polymer patches, and
crumples on the PA filtration membrane, it is shown that the
dimension-reduced fingerprint functions can directly visualize
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the morphology diversity in the principal component space
(Figure 47g). When combined with GMM, this method could
further distinguish the major components from the heteroge-
neous nanomaterial sample with different sizes and shapes
(Figure 47g). Via clustering, shape details of interest such as
the edge length and the corner truncation of Au tetrahedral
NPs were measured, where the decreasing edge length was
correlated with the increasing seed concentration used in the
synthesis (Figure 47h). Aside from metal NPs, the method was
also extended to characterize the polymer patches on Au
nanoprisms and 3D PA membrane crumples. Asymmetric
polymer patch expansion was observed with increasing ligand
concentration in the Au nanoprism system.
6.5.2. Diffraction Pattern Classification for 4D-STEM.

As elaborated on in Section 4, electron diffraction is a powerful
tool to resolve the local orientation, crystallography, and strain
in heterogeneous nanomaterials. In such techniques, diffraction
patterns in the 2D reciprocal space can be recorded at different
locations in the 2D real space, thus producing data in four
dimensions named as 4D-STEM (Section 4.1).658 4D-STEM
data are large in volume and thus demand high throughput
algorithms to analyze, visualize, and extract useful information
from them.659 On the other hand, in heterogeneous materials,
the number of grains with distinct crystalline structures or
orientations in the scanned area are much smaller than the
number of diffraction patterns scanned by the 4D-STEM,
resulting in data redundancy.660 Such data redundancy can be
exploited by unsupervised learning such as matrix decom-
position and clustering algorithms to automate and accelerate
the crystal structure mapping in 4D-STEM data analysis.
The Matrix Decomposition and Dimension Reduction of

Diffraction Patterns. In 4D-STEM analysis, matrix decom-
position methods can be used to group diffraction patterns
corresponding to different spatial structural domains and to
unmix the signals in the same diffraction pattern coming from
multiple grains along the beam path.660 Taking PCA
decomposition as an example, the 4D dataset containing the
2D diffraction patterns at different locations in the real space
are first reshaped to a M × N matrix, where M corresponds to
each observation in the real space and N corresponds to each

location in the diffraction pattern. Then through PCA, each
point in the diffraction pattern will be transformed to N
linearly uncorrelated principal components to maximize the
data variance. Usually, the first few principal components
contain the most variance among all diffraction patterns and
thus capture the most information from the original data.659

While PCA allows the identification of structures/phases/
orientations with different diffraction patterns in the material,
the physical interpretation of each principal component with
respect to the original diffraction pattern is still challenging due
to the positive and negative values resulting from the
orthogonal factorization constraint.658−661 To this end, other
alternative decomposition/dimension reduction algorithms
such as ICA and nonnegative matrix factorization (NMF)
can be used. Compared to PCA, which maximizes the data
variance in the reduced dimension, ICA maximizes the
independence of resulting components. Similarly, in the
NMF decomposition, both the components and the resulting
decomposed coefficients are restricted to be positive, which
can allow easier physical interpretation.661 A comparison
between singular value decomposition (SVD, similar to PCA),
ICA, and NMF decomposition can be found in a recent study
by Martineau et al.,660 where the 4D-scanning PED data of
GaAs nanowires were analyzed by those unsupervised learning
algorithms. The top components (i.e., the more important
components) identified by three methods as well as their
distribution in the real space are plotted in Figure 48a. Both
the SVD and ICA were able to tell the difference between the
diffraction patterns from the two twined crystal orientations in
the nanowire as well as the vacuum background. However, due
to the existence of negative values in the components of SVD
and ICA, none of their component patterns could be directly
associated with the crystal structures. In contrast, benefited
from the nonnegative constrains, the top three components
obtained from NMF well corresponded to the two twinned
crystal orientations and the background (Figure 48a). Similar
phenomenon was also observed in the grain classification of
Au−Pd NPs658 and crystalline structure studies of TiO2,

662

where the classifications of 4D-STEM diffraction patterns
produced by PCA and NMF were compared. Unlike the PCA,

Figure 48. Application of unsupervised ML in SPED diffraction pattern classification of a GaAs nanowire with a twin boundary at an oblique angle
to the beam. (a) Visualization of the first three SVD component, first three ICA component, and two NMF component patterns corresponding to
the crystal orientations. The slim images on the right parts visualize the loading of the corresponding components in the real space. In SVD and
ICA, intensities in red and blue indicate positive and negative values, respectively. Pattern and loading scale bars are common to all subfigures and
measure 1 Å−1 and 150 nm, respectively. (b) 2D projection of three component SVD loadings onto the plane of the second and third loading with
cluster membership predicted by the fuzzy c-means as contours. (c) The quantitative diffraction pattern unmixing in the real space by VDF images
formed from manually selected diffraction spots, NMF, and fuzzy c-means clustering. The real space images and the line scan profiles show the
spatial distribution and fraction of structures corresponding to diffraction patterns highlighted by the same colors. The blue color represents the
background component in NMF and fuzzy c-means. Pattern and loading scale bars are common to all subfigures and measure 1 Å−1 and 70 nm,
respectively. Adapted with permission from ref 660. Copyright 2019 Springer Nature.
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the NMF results represented real diffraction patterns
containing positive peaks only, highlighting its capability of
identifying discrete components with less tendency to capture
mixed phases. It should be noted that NMF also requires the
more expensive computation and higher sensitivity to
variations in the input data.658
Structure Classification with Unsupervised Clustering

Algorithms. Although the diffraction decomposition methods
could potentially produce patterns regraded to be associated
with the physical crystalline structures/orientations, they still
simply decompose the patterns into statistically significant
functions and associated weightings.661 Other than directly
yielding the structure classification results, matrix decom-
position methods such as PCA and NMF can be used as a
reliable dimension reduction tool to provide inputs to
unsupervised clustering algorithms. To cluster the diffraction
patterns with unsupervised classification, the patterns can be
regarded as a high-dimensional feature vector with each
element corresponding to a point in the reciprocal space.
However, due to the curse of dimensionality, the direct
clustering of such high-dimensional (usually larger than 10)
data is unreliable.660 To address this issue, the patterns can first
be transformed into the top components produced by the
matrix decomposition methods to greatly decrease the
dimensionality while maintaining the most information.659 In
one example,660 the diffraction data dimension reduced by the
SVD were used as the input to a fuzzy c-means algorithm to
differentiate different crystalline orientations in GaAs nano-
wires. Scattering plots representing diffraction patterns in the
reduced 2D space of SVD showed three naturally formed
clusters, corresponding to the three different types of
diffraction patterns coming from the two crystalline domains
and the background (Figure 48b). The membership of each
diffraction pattern can then be assigned by the fuzzy c-means
and mapped in the real space to reveal the spatial distribution
of each crystalline domain. In this work, the quantitative
unmixing of the diffraction patterns corresponding to two
crystalline orientations was also studied. In the region of mixed
diffraction patterns, the loading of the NMF and the
membership predicted by fuzzy c-means were found to be
quantitatively correlated with the VDF image reconstructed
from the diffraction spots uniquely coming from two crystalline
domains, where the loading, membership, or the VDF intensity
of one domain decreased as a line profile was scanned from the
domain to another (Figure 48c). This indicated both
unsupervised learning algorithms were reliable and more
automated for the diffraction pattern unmixing. The similar
classification approach has also been applied to the
ptychography data analysis.659 In one example, PCA followed
by k-means was leveraged to classify CBED patterns of strained
polymorph bismuth ferrite thin film. More than 30,000
diffraction patterns with size of 96 × 96 taken at different
locations were dimension-reduced by PCA to keep the top 300
principal components suggested by the inflection point in the
scree plot. The k-means was then used to classify the
dimension-reduced patterns into 36 clusters, which visualized
the variability of the ptychographic dataset on the atomic level,
and effectively sorts the scattering information at an atomic
resolution.

7. OUTLOOK

We see great opportunities at the intersection of the rapidly
growing fields of EM and soft materials and below we outline

the directions we see as particularly promising from two
aspects: what are the systems of soft materials that EM
techniques have not yet been extensively used, and how to
integrate various EM modes to generate comprehensive
structure, morphology, and chemical information.
7.1. Opportunities in Real-Space 2D and 3D Imaging by
EM

7.1.1. Extending EELS and EDX to Chemical Imaging
of the Compositional and Chemical Heterogeneity of
Polymeric, Carbonaceous, and Biological Samples. As
nanoscale analytical probes, EDX and EELS have been
extensively used to characterize the composition of hybrid
NPs (Section 2.3.1) as well as the chemical valency
transformation and vibrational spectroscopy (Section 2.3.2)
of colloidal NPs. Instruments of high energy resolutions can
now be used to map the spatial distributions of adsorbates
(such as metal ions filtered by PA membranes),95 and to track
(electro)chemical reaction pathways on the surface and within
a NP, which is associated with not only composition but also
valency change.663 If this capability is extended to polymeric,
carbonaceous, and biological samples, more molecular insights
will be obtained at a spatial resolution not accessible to the
traditional analytical methods (NMR, ICP, etc.). For example,
in understanding complicated assembly structures of block
copolymers, EDX and EELS can circumvent the use of
selective staining to distinguish blocks and instead directly
detect the chemical identity of the dominant species in a
spatially heterogeneous sample. Similarly, for conjugated
polymers and composite carbonaceous materials widely used
for optoelectronics, solar cells, transistors, and flexible
electronics, mapping valency changes during electrochemical
reactions or locations of “dopants” or “fillers” (often added to
enhance electrical and mechanical properties) using EDX and
EELS can revolutionize the modeling and understanding of
such processes.
To realize these experiments, several aspects of EELS and

EDX need improvements. The foremost is the dosage, which is
harder to control than in the conventional direct imaging mode
of (S)TEM. Dosage is coupled with the sensitivity of the
detector, i.e., how many molecules need to be present to
generate enough signal in EELS and EDX. Highly sensitive
detectors are being used, enabling detection of small molecules
and other beam-sensitive materials. In a recent work, through
averaging and using an aberration-corrected STEM, the subtle
difference of CTAB packing density on Au NR tips and sides
was revealed.664 It should be noted that under beam
illumination, some elements may easily be kicked out of the
sample, such as N and S, the sensitivity of which can be
characterized by a dose threshold.665 Collecting enough signals
of these elements without damage is still challenging. Further
developments in EDX and EELS are expected to push the
limits of signal collection at low dose levels and enhanced
speed, as well as higher energy resolution and lower detection
limit (enabling trace element detection at a concentration even
<0.02 wt %).

7.1.2. Fast Tomography for Lowering Beam Damage
and In Situ Imaging. Fast data acquisition of tomography is
another highly sought-after frontier of research, both for the
purpose of lowering total accumulated dose for beam sensitive
samples (e.g., polymeric, carbonaceous, biological samples)
and for incorporation with in situ imaging to record dynamic
processes. For polymeric materials, empirically, highly cross-
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linked materials (e.g., PA membranes) have been shown to be
decently beam-stable to obtain tomography tilt series. We
expect conjugated polymers which are good to conduct charges
to have similar robustness. Cryogenic temperatures have also
been shown to keep biological samples stable for cryo
tomography. As noted in Section 3.2.3, for low contrast
samples, staining could be used for tomography, but might
cause structural changes to the sample and fixate the structure
to hinder dynamics,186,187 except for special instances such as
beam-induced staining on liposomes in liquid-phase TEM.188
In comparison, STEM-based tomography methods, where the
contrast depends on the chemical differences of the phases, can
potentially eliminate the need for staining and are sometimes
more suited for tomography of dynamic systems.187
For in situ imaging, besides the Brownian one particle

method, tomography studies are very limited since most
dynamic processes of nanoscale systems occur on the time
scale of seconds and minutes, much shorter than the typical
time needed to acquire tilt series. Moreover, for liquid-phase
TEM studies using customized holders, the SiNx membrane
design currently allows only for a maximum of ±30° tilt angle
range.8 Thus, even for liquid samples that are largely stationary
and hydrated such as the virus imaging by Kelly and co-
workers, only a coarse sinogram set was obtained to
qualitatively identify some structural features but not the full
3D reconstruction. For these issues, liquid cells with large-sized
windows such as graphene liquid wraps can be superior to
allowing for large tilt angle ranges.
Fast tomography is being pushed both with advanced

hardware for automated data acquisition and ML-aided
reconstruction algorithms. For example, as discussed in Section
3.1.2, a continuous rotation and recording method was
introduced with the ability to capture a typical tilt range
(∼±70°) in less than 10 s.135 Therefore, mechanical
precalibration and image analysis methods are required, such
as U-Net-based sinogram denoising that can lower the
acquisition time595 and GAN-based missing sinogram
generation that can tolerate a narrow tilting range and sparse
tilting intervals.149,647
7.1.3. Tomography Integrated with EDX, EELS, and

4D-STEM. Coupling electron tomography with the advanced
and fast-developing modules of EDX, EELS, and 4D-STEM
will be an exciting direction to pursue. We envision that EDX
tomography progresses to realize quantitative 3D element
mapping, while EELS tomography can provide 3D maps of
properties from optical to valence states of NPs and organic
materials, with nanometer resolution. For EDX and EELS

tomography which requires high beam intensity, reducing the
time for tomography data acquisition will be beneficial in
minimizing the radiation damage. It requires not only the fast
imaging during tilting but also fast signal collection from EDX
and EELS, which largely relies on the development of more
sensitive detectors. Besides, ML is expected to play a significant
role in EDX and EELS tomography, which may realize
accelerated processing of large datasets, denoising of elemental
maps, and analysis of 3D plasmon maps.215

4D-STEM tomography, on the other hand, can potentially
map the morphology and orientations of internal structures in
3D. 4D-STEM tomography has been demonstrated for
mapping 3D grain boundaries and orientations of precipitates
in the superalloy (Figure 49a)661 and the nanostructures in the
TiN sample (Figure 49b−d).666 The results provide the
detailed knowledge of the microstructures in the polycrystal-
line materials. We envision that the extension of 4D-STEM
tomography to soft materials (where lowered beam damage
and shorter acquistion time are desired) offers a potential
means to study strains, defects, molecular packing, and various
types of short- and long-range structural order (and disorders)
during the processing and functioning of the materials.
7.2. Opportunities in In Situ (S)TEM

7.2.1. Toward Higher Temporal and Spatial Reso-

lution Imaging. Achieving a high spatial resolution by usage
of aberration correction and a high temporal resolution in in
situ EM imaging is always the goal. A high temporal resolution
is important to match with the time scale of the dynamic
process of interest and to minimize motion blurring (thus also
improve the spatial resolution). Current state-of-the-art direct
electron detector pushes the capturing speed to 1,500 full
frames per second (fps)3.75 times the speed of the K2IS
camera.158 Yet it should be noted that even with this detector,
it does not match with the time scales of most of molecular
reactions (e.g., stretching and breakage of bonds), biomolec-
ular transformations, and even the Brownian motions of NPs
of a few nanometers in size (about 108 nm2/s diffusion
coefficient per the Stokes−Einstein relation). To resolve those
ultrafast reaction dynamics, one possibility is to integrate
ultrafast electron microscopy, a technique that uses pulse laser
to bring subpicosecond time scale into reach, with in situ EM
imaging.667 Meanwhile, MD simulation is complementary with
the experimental in situ movies in terms of time scales. The
former resolves nanosecond dynamics and is limited to an
observation window up to μs, while the in situ movies resolve

Figure 49. (a) 4D-STEM tomography of Ni-based superalloy ( fcc matrix γ-phase, orange) containing the faceted metal carbide (blue) and the
hexagonal η-phase precipitate (green). (b−d) 4D-STEM tomography of the TiN sample containing grains of different crystallographic orientations.
The reconstructed grains are shown for the (b) side view, (c) front view, and (d) top view. (e) illustration of the orientations of the seven grains
shown in panels b−d. Each cube is labeled with the color corresponding to the grain in panels b−d. (a) Reprinted with permission from ref 661.
Copyright 2015 Springer Nature. (b−d) Reprinted with permission from ref 666. Copyright 2016 International Union of Crystallography.
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the millisecond dynamics and are only limited in the
observation window by accumulated dose.
7.2.2. Understanding and Manipulating the Electron

Beam Effects in Liquid-Phase EM. Regarding liquid-phase
TEM, the influence and elimination of the beam effect is an
unavoidable topic, where pursuit of observing samples and
dynamics in a “native” environment and avoiding misinter-
pretation of artifactual data always exists. In most liquid-phase
TEM experiments on organic and biological samples, a low
electron dose rate (generally, 0.1−5 e− Å−2 s−1) or single
snapshot imaging with the beam turned off between

acquisitions was used to minimize the influence of electron
beam. Radiolysis-resistant solvents may also be applied to
reduce the damage on biomaterials, such as D2O and
alcohols.504
The bottleneck, however, is that the understanding of beam

effects in liquid-phase TEM remains largely empirical. The
theoretical calculations based on radiation reaction networks in
water published in 2014 are still the only quantitative model of
the radiolysis process.668 It does not necessarily apply to
systems that, for example, have more redox species than water
or contain organic solvents which have become increasingly

Figure 50. (a−f) Time-lapse SEM images showing (a−c) lithium plating and (d−f) stripping on the Li/Cu electrode. The artificial colors from
purple to green, yellow, and red represent the contrasts from bright to dark in grayscale. The purple (bright contrasts) indicates Li/Cu electrode
and the charged area, and the red and yellow (dark contrasts) indicate lithium dendrites. Scale bar: 20 μm. (g) Schematic diagram presenting the
high-voltage STEM connected to a quadrupole mass spectrometer. OL PP, TMP, and Scroll P represent the objective lens pole piece, turbo-
molecular pump, and scroll pump, respectively. (a−f) Reprinted with permission from ref 676. Copyright 2017 Wiley-VCH. (g) Reprinted with
permission from ref 450. Copyright 2019 Oxford University Press.
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relevant as electrolytes for electrochemical systems (e.g.,
batteries, fuel cells, catalysis) and as dispersant for polymer
systems in painting and self-assembly. It is also not clear how
to account for the limited volume of the liquid cells (especially
in graphene wraps) which might lead to exhaustion of reaction
species and pose mass transport limits, or how to consider the
effects of a scanning and dwelling beam (used in various modes
of STEM, such as HAADF, EELS, EDX, and 4D-STEM).
Thus, we foresee a fundamental leap in understanding
radiation effects in liquid-phase EM will occur if one could
measure experimentally the concentrations of the molecular,
radical, and ionic species under beam illumination. Such
measurements are currently challenging due to the ultrasmall
volume of liquid cells (<μL) and the fact that the products are
only present under an electron beam. One potential experi-
ment would be to do the beam illumination for bulk liquid
samples that are compatible with analytical methods such as
NMR or mass spectrometry outside EM and perform the
measurement in situ. These steady-state radiolysis product
concentrations can be inputted into theories to establish a
comprehensive understanding of radiolysis.
We see such experiment−theory understanding of beam

effects to be crucial in pushing the next-level of liquid-phase
EM. For example, reconciling ex situ electrochemical perform-
ance (e.g., cyclability, CV curves, capacity) with in situ TEM
characterizations has been the focus of research attention.
Low-dose conditions and control experiments (e.g., compar-
ison between areas exposed or away from the beam) are
usually required to minimize or clarify potential beam damage.
More discussions and perspectives on the application of liquid-
phase TEM in electrocatalysis can be found in a recent review
by Yang et al.669
7.2.3. Incorporation with Analytical Methods. We

expect more efforts devoted to the integration of in situ EM
with EDX,670 EFTEM,671 EELS, 4D-STEM, and electron
tomography,672 which are still in their infancy. The integration
with tomography has been discussed in Section 7.1.2, and here
we focus on the analytic methods. High electron energy and a
slow scanning speed are usually required for these analytical
methods which can lead to conformational, structural, and
chemical alteration in nanomaterials. Controlled beam damage
and fast scanning will be the key issue to tackle.48,188
Moreover, the existence of liquid can contribute greatly to
background noises in EDX, EELS, and 4D-STEM measure-
ments. Tricks to thin the liquid thickness, such as generating a
bubble,499,673,674 inducing partial solvent evaporation,675 or
utilizing new liquid cells that are ultrathin,419 can all be
possible to lower the background noise from the liquid and
allow measurement of the sample. These tricks are still limited
though in the sense that a thin liquid (thus a confined space or
limited solvent supply) is needed to make the measurement
possible. Alternative strategies are called for.
Obtaining chemical information can also be achieved at a

decently high resolution using SEM and ETEM. For example,
given SEM's compatibility with surface characterization and
large/thick samples, wider application of liquid-phase SEM is
expected, such as tracking the 3D assembly process of NPs,
characterizing reactions at the electrode−electrolyte interface
(Figure 50a−f),676 and resolving the dynamic structures of
proteins and living cells,540 among others. In particular,
considering the large size of protein assemblies and eukaryotic
cells, liquid-phase SEM equipped with analytical capability
might serve as a complementary approach with TEM. By

labeling with Au NPs or fluorescent quantum dots and binding
them to features of interest, the spatial position, density, and
arrangement of these electron-dense labels can provide
significant insights into the corresponding positions and
functions of the targeted intracellular structures676,677 and
resolving the dynamic structures of proteins and living cells.540

Similarly, a recent study reported the connection of mass
spectrometry to ETEM (Figure 50g), realizing the real-time
detection of gas species from oxidation of CNTs.450 Such
design may open more opportunities to the deeper
investigation into reactions such as alcohol oxidation and the
Fischer−Tropsch process, and the combination of mass
spectrometry (and even NMR, high-performance liquid
chromatography) with liquid-phase EM can be expected.
7.3. Opportunities in Electron Diffraction and Soft
Materials

There have been amazing breakthroughs of electron diffraction
techniques on how the beam is generated, how patterns are
collected, and how data are analyzed over the past decade, as
we discussed in the long list of MicroED, 4D-STEM,
ptychography, and so on. Here we discuss two particularly
inspirational directions for future research of utilizing electron
diffraction for soft materials.

7.3.1. ML-Guided Dose Efficient Acquisition and
Ptychography for Soft Macromolecular Systems. The
use of high-resolution STEM imaging, ptychography, and
tomography is limited for beam-sensitive soft materials due to
radiation damage. Recently, compressive sensing provides a
promising method to tackle the radiation challenge with
reduced number of scan pixels in STEM. Compressive sensing
has been successfully demonstrated on a variety of beam-
sensitive samples, including zeolites and organic/inorganic
core−shell nanowires.678,679 It was shown that by reducing the
sample pixels down to 5% of the original image, the original
image could still be recovered from the reduced data set via
computational algorithms.678,680 With the assistance of ML,
the electron beam coverage could be further reduced by 87
times.681 When integrating compressive sensing with ptychog-
raphy, the acquisition time was reduced by 100 times,682

increasing the competency of STEM-ptychography for imaging
dose-fragile materials. In tomography, compressive sensing and
reconstruction codes were shown to retrieve reconstruction
based on reduced datasets that were limited on image pixels
and angular tilts.679 Dose-efficient image acquisition methods
are actively developed and will play a significant role in imaging
soft macromolecular materials.

7.3.2. Beyond Elucidating Structural Ordering: Dif-
fuse Scattering. Traditional electron diffraction analysis
focuses on Bragg diffraction spots which measures long-range
structural order. We see enormous opportunities in mapping
local structural disorder, and to understand their effects on a
material’s property via different forms of fundamental
interactions such as defect−strain coupling, charge−lattice
coupling, and intermolecular stacking. For example, intrinsi-
cally disordered regions in proteins were recently discov-
ered,683 which are polypeptide segments that do not contain
sufficient hydrophobic amino acids to mediate co-operative
folding. However, these local disorders can escape Bragg
diffraction-based analysis and get buried within a material.
Diffuse scattering promises to be the solution, which is often
manifested as a mixture of streaks, diffuse plane, satellite
reflections, or cloudy patterns. Its relevance in electron
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diffraction has been discussed as early as 1968,684 but the
practical use of it only becomes possible until recently. There
are two hurdles. First, sensitive detectors are needed to enable
collection of high-quality electron diffraction patterns with
lower noise, higher dynamic range, and not suffering from
blooming overloads that obscures diffuse signals.685 Second,
interpretation of the diffuse scattering data has been difficult.
Right now there are two directions to interpret a diffuse
scattering dataset. One is to derive the atomic PDF from the
total scattering (including Bragg peaks and diffuse scattering),
which has a spectrum shape and depicts complete
structures.297 PDF needs to be coupled with computational
modeling and simulation to understand the atomic structures
of nanoscale materials and disorders in ordered systems. The
other is to directly compare the diffraction pattern with Monte
Carlo simulations of model crystals.686 In both models, it is
critical to make educated guesses on the cause of the 3D
diffuse data from either 3D concerted motions of atoms or
local disorders. This is a burgeoning direction of interdiscipli-
nary research that we see potentials in.
7.4. Opportunities in Integrating ML with EM

Beyond the postcollection data analysis (Section 6 and
outlooks we already discussed) and dose efficient acquisition
(Section 7.3.1), the development of ML for EM can be
inspired by the ML methods used in other microscopy
platforms (e.g., the Faster R-CNN used for enhanced materials
discovery in STM687) and in live image capturing, such as the
advanced ML algorithms used in tracking multiple object
motion trajectories in videos of pedestrian and automo-
biles,688−691 which could be used to facilitate a fully automated
NP diffusion and self-assembly study workflow in EM movies.
In addition, we also would like to note two directions we see as
particularly relevant.
7.4.1. ML for End-to-End Tomography Reconstruc-

tion. Different from the ML applications in individual steps in
tomography reconstruction mentioned in Section 6, studies in
medical computed tomography (CT)692−694 and PET695

imaging systems have shown that ML can achieve direct
volumetric reconstruction from the sensor domain. If applied
to electron tomography, such end-to-end reconstruction
models can replace conventional reconstruction algorithms
such as WBP, SIRT, and MBIR, potentially providing more

accurate and faster reconstruction with fewer artifacts and
noises (Figure 51a). One relevent example is an end-to-end
reconstruction model study versatile to various imaging
systems. Zhu et al.652 developed automated transform by
manifold approximation (AUTOMAP), which is a supervised
learning framework that allows the mapping between the
sensor data and the image domain (Figure 51b). In this work,
the model was trained and tested on several datasets from
experimental MRI and PET sensor data and simulated Radon
transform sensor data (similar to the tilting series in electron
tomography) and showed improved artifact reduction and
reconstruction accuracy on noisy and under-sampled data. It
was suggested that AUTOMAP could learn reconstruction
functions for arbitrary acquisition strategies with a broad range
of applications including X-ray CT, large-baseline radio
astronomy, and rapid volumetric optical coherence tomog-
raphy.

7.4.2. ML Algorithms for Automated Imaging. ML
image classification also contributes to the automation of EM
operations. For example, Rashidi et al.696 utilized a CNN to
help the sharp tip restoration in scanning probe microscopy
(SPM)-based nanofabrication, which would otherwise need to
be repeatedly done by human operators at low efficiency. The
CNN was trained on a manually labeled library of SPM images
of isolated silicon dangling bonds to make binary classification
on whether the SPM tip was sharp or doubled. When
integrated into the in situ double tip restoration routine, the
CNN model can assess the probe quality by evaluating images
of known atomic defects and automatically repeat the
restoration until a sharp tip was detected. This method can
serve as a module and automate the atomic-scale nano-
fabrication as well as be applied to other material systems and
nanoscale imaging techniques. Various other ML techniques
such as Gaussian processes, Bayesian optimization, reinforce-
ment learning, and active learning have been applied to achieve
the automated experiments in SPM and STEM, allowing
applications in microscope tuning, spectroscopic material
fabrication, and controlling the external stimuli for observation
of dynamic phenomena. For more detailed examples of ML-
based automated EM experiments, we refer the readers to a
recent review paper by Kalinin et al.697 on this topic.

Figure 51. (a) Schematic showing AUTOMAP replaces the conventional image reconstruction stages with a unified image reconstruction
framework that learns the reconstruction relationship between sensor and image domain without expert knowledge. (b) A schematic showing
AUTOMAP model for sensor data to reconstruction image domain transformation. The model is implemented with a deep neural network
architecture composed of fully connected layers, followed by convolutional layers. Adapted with permission from ref 652. Copyright 2018 Springer
Nature.
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ABBREVIATIONS

1/2/3/4D one/two/three/four-dimensional
3DED three-dimensional electron diffraction
4D-STEM four-dimensional scanning transmission electron

microscopy
ABF annular bright-field
ADF annular dark-field
ADT automated diffraction tomography
AET atom electron tomography
AFM atomic force microscopy
APT atom probe tomography
AUTOMAP automated transform by manifold approximation
AUROC area under the receiver operating characteristic

curve
bcc body-centered cubic
BF bright-field
CAT computer-aided tomography
CBED convergent beam electron diffraction
CNF carbon nanofiber
CNN convolutional neural network
CNT carbon nanotube
CO2RR CO2 reduction reaction
COF covalent organic framework
cryo-EM cryo-electron microscopy
cryo-ET cryo-electron tomography
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CT computed tomography
CTAC cetyltrimethylammonium chloride
CTAB cetyltrimethylammonium bromide
CTRW continuous-time random walk
DBSCAN density-based spatial clustering of applications

with noise
DFT density functional theory
DIO 1,8-diiodooctane
DMF dimethylformamide
DNA deoxyribonucleic acid
DPC differential phase contrast
dsDNA double-stranded DNA
EBSD electron backscattered scanning diffraction
EDX energy dispersive X-ray spectroscopy
EELS electron energy loss spectroscopy
EFTEM energy-filtered transmission electron microscopy
EGFR epidermal growth factor receptor
EM electron microscopy
ePDF electron pair distribution function
ETEM environmental TEM
FBP filtered back-projection
fcc face-centered cubic
FCN fully convolution network
FF diphenylalanine
FFT fast Fourier transform
FIB focused ion beam
FTIR Fourier transform infrared spectroscopy
GAN generative adversarial network
GMM Gaussian mixture model
GPC Gaussian process classifiers
HAADF high-angle annular dark field
hBN hexagonal boron nitride
HEA high-entropy alloy
HER hydrogen evolution reaction
HIM helium ion microscopy
HRTEM high-resolution transmission electron microsco-

py
ICA independent component analysis
iDPC integrated differential phase contrast
IL-TEM identical location transmission electron micros-

copy
IoU intersection-overunion
IRDM information recovery and deartifact model
LDH layered double hydroxide
LFGC liquid-flowing graphene chip
LSPR localized surface plasmon resonance
macroCTA macrochain transfer agent
MAE mean absolute error
MEMS microelectromechanical system
MBIR model-based iterative reconstruction
MBED multibeam electron diffraction
MD molecular dynamics
MicroED microcrystal electron diffraction
ML machine learning
MOF metal−organic framework
MOF-CGC metal−organic framework crystal-glass compo-

site
MONT metal−organic nanotube
MRI magnetic resonance imaging
MSE mean squared error
NBD nanobeam electron diffraction
NMF nonnegative matrix factorization
NMR nuclear magnetic resonance

NMS nonmaximum suppression
NP nanoparticle
NR nanorod
OER oxygen evolution reaction
OPTICS ordering points to identify the clustering

structure
ORR oxygen reduction reaction
P3HT poly(3-hexyl-thiophene-2,5-diyl)
PA polyamide
PBED parallel-beam electron diffraction
PCA principal component analysis
PDF pair distribution function
PDMS poly(dimethylsiloxane)
PE polyethylenes
PED precession electron diffraction
PET positron emission tomography
PI polyisoprene
PIE ptychographical iterative engine
PISA polymerization-induced self-assembly
PS polystyrene
PVP poly(vinylpyrrolidone)
RAFT reversible addition-fragmentation chain transfer
RED rotation electron diffraction
RDD rhombic dodecahedral
RMSE root mean squared error
RNA ribonucleic acid
ROI region-of-interest
RPN region proposal network
SAED selected-area electron diffraction
SART simultaneous algebraic reconstruction technique
SAXS small-angle X-ray scattering
SCEM scanning confocal electron microscopy
SED scanning electron diffraction
SEM scanning electron microscopy
SEND scanning electron nanodiffraction
SerialED serial electron diffraction
SERS surface enhanced Raman spectroscopy
SHE standard hydrogen electrode
SIRT simultaneous iterative reconstruction technique
SNR signal-to-noise ratio
SPM scanning probe microscopy
STEM scanning transmission electron microscopy
STM scanning tunneling microscope
SWD sliced Wasserstein distance
SVD singular value decomposition
TEM transmission electron microscopy
TGA thermogravimetric analysis
THH tetrahexahedral
TOH trisoctahedral
t-SNE t-distributed stochastic neighbor embedding
TVM total variation minimization
TXM transmission X-ray microscopy
UMAP uniform manifold approximation and projection
VAE variational autoencoder
VDF virtual dark field
VT-LPTEM variable-temperature liquid-phase transmission

electron microscopy
WBP weighted back-projection
XAS X-ray absorption spectroscopy
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction
Z atomic number
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