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Abstract
Non-ergodicity of neuronal dynamics from rapid ion channel gating through themembrane induces
membrane displacement statistics that deviate fromBrownianmotion. Themembrane dynamics
from ion channel gatingwere imaged by phase-sensitive optical coherencemicroscopy. The
distribution of optical displacements of the neuronalmembrane showed a Lévy-like distribution and
thememory effect of themembrane dynamics by the ionic gatingwas estimated. The alternation of the
correlation timewas observedwhen neuronswere exposed to channel-blockingmolecules. Non-
invasive optophysiology by detecting the anomalous diffusion characteristics of dynamic images is
demonstrated.

1. Introduction

Neurons have rapidly alternating cellular dynamics that are induced by intermittent gating of ion channels
embedded in the cellularmembrane, and these cellular dynamics are far frombeing characterized by thermal
diffusion (Sikora et al 2017). The origin of the electric activity of neurons is from transmembrane ion transport
and gating, which has been investigated extensively by electrophysiology (Sakmann andNeher 1984, Chow and
White 1996,White et al 2000).While thismethod can demonstrate the precise dynamic characteristics of ion
transport and gating, themeasurement only characterizes the localized channels with an invasive tip from a
micropipette. Deployingmultiplemicropipette electrodes could enable one to observe the activities ofmultiple
neurons (Shein et al 2009), however, themicropipette electrodes can generate artifacts (Anikeeva et al 2012), the
number of electrodes per unit area can be limited, and culturing and controlling the growth of neurons at the
desired location and interconnectivity remain an issue. Optical detection and imaging of neuronal dynamics is
one class of approaches to realize a non-invasive and non-localmeasurement fromneurons in culture.

In previous studies, optical detection of neuronal activity was performed by intensity or phase fluctuation of
neurons (Lazebnik et al 2003, Graf et al 2009, Akkin et al 2010, Ling et al 2018, Ling et al 2020, Renteria et al 2020,
Iyer et al 2022). In particular, a phase-sensitivemodality could directly observe the geometric or refractive index
changes within the neurons by the deformation of thewavefront that can be analyzed by randomwalkmodels.
The use of optical coherencemicroscopy (OCM) for phase-sensitive detection provides quantitative
information on the optical thickness and/or refractive index changes of neurons, and ultrafast sampling enables
the detection of neuronal activities from and betweenmultiple neurons simultaneously. Faster sampling,
however, results in a lower signal-to-noise ratio by the reduced photon flux, thereby limiting the accurate
estimation of phase (Hosseini et al 2016). A commonway to estimate the dynamic contrast of dynamic phase
measurements and any associated noise is by acquiring the variance of the phase (Mahmud et al 2013). The
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variance represents a diffusion coefficient by assuming aMarkovian process with nomemory, which is not a
rigorous approach for non-equilibrium and non-ergodic systems. The non-ergodicity, the disagreement of the
ensemble, and the temporal averagesmake the physical interpretations of the statistics challenging, as these
violate the fluctuation-dissipation theorem (Lapas et al 2007). To interpret the randomdynamics of a non-
ergodic system, amemory effect has been introducedwhich is defined as a correlation time of the driving force
by the secondfluctuation-dissipation theorem that represents how long a randommotion lasts (Kubo 1966).

Anomalous diffusion of biological systemswith thememory effect has beenwidely observed inmicroscopic
tomacroscopic scales such as proteinmolecular dynamics, intracellular dynamics, ionic gating dynamics,
immune responses, and cortical networks (Mercik et al 1999,Mercik andWeron 2001,Min et al 2005, Cook et al
2014, Lisowski et al 2015,Han et al 2020, Choi et al 2021b,Dieterich et al 2022). The advantage of studying
anomalous diffusion is that such dynamics in various systemswith dramatically different scales are often scale
invariant that can be expressed as scale-free power-law correlations by thememory effect (Marinari et al 1998,
Cavagna et al 2010,Munoz-Gil et al 2021). Thememory effect of the colored noise without aDC component of
the system can induce anomalous diffusion (Morgado et al 2002). The ionic exchanges that occur in the cellular
membrane are known to be colored noise, which can be the source of thememory effect and inducemembrane
fluctuationswith anomalous diffusion characteristics (Mercik et al 1999,Mercik andWeron 2001, Schmid et al
2006). Colored noise plays an important role known as stochastic resonance in non-Markovian systems
(Goychuk andHanggi 2003a), for instance, a network formed bymultiple neurons having non-ergodic
interactions could have enhanced communications by the noise (Ushakov et al 2010, Surazhevsky et al 2021).
The investigation of thememory effect of such noise driving neuronal dynamics requires a simultaneous spatial
and temporalmeasurementmethodwithout contacting or labeling neurons tominimize artifacts
(Drapaca 2021), which remains challenging. Ultrafast phase-sensitive optical imaging systems have
demonstrated the correlation between the electric activities of cells and the correspondingmembrane
fluctuations (Ling et al 2020, Iyer et al 2022), where the relationship between the electric activity and the non-
Markovian characteristics can be further investigated. The driving force of the system can be classified as internal
and external noises.When the fluctuation and dissipation are from the same source, then the system is driven by
internal noise andwhen they are not from the same source, then the driving force is external noise (Wang and
Tokuyama 1999).

In the case of neuronal communications, the interactionwith neighboring neurons can occur spontaneously
or by stimulations externally (Chow andWhite 1996, Paul et al 2017), and the estimation of such internal and
external noise contributions would provide a better understanding of the neuronal communications. Here, the
neuronalmembrane dynamics were observed by phase-sensitiveOCM, and the characteristics of anomalous
diffusion in themembranewere analyzed. The driving force that causes conformation changes in a neuronal
membranewas assumed to originate from ionic exchanges (Schmid et al 2006). The ionic gating dynamics have
been reported to have amemory effect (Mercik et al 1999,Mercik andWeron 2001, Pfeiffer et al 2020), and the
driving force is also expected to have amemory effect as the force is proportional to the ion flux.Note that the
DC component of the noise power spectrum that drives the systemdetermines whether the process is
anomalous diffusion or not (Morgado et al 2002), and theDC component was assumed to be zero in our
experiment as the net sizes and positions of cells did not change during the time frame ofmeasurements (∼2.5 s).

From the anomalous diffusion characteristics, thememory effect of the noise induced by the ionic exchange
was estimated. Thefluctuations of neuronmembrane had Lévy-like distributionswhich can be correlated to
systemswith non-ergodic and non-equilibriumdynamics whose randomwalks showed Lévywalks, and the
correspondingmemory effect can be further estimated (Lutz 2004,Margolin andBarkai 2006, Rebenshtok and
Barkai 2008). The suppression of the driving force on themembrane by blocking ion channels changed the
anomalous diffusion characteristics of thefluctuations. The distribution of the fluctuations showed Lévy-like
distributionwith a power-law tail while the ionic exchange enabled, and it became aGaussian-like (no power-
law tail) distribution after the suppressionwhich represented the ion exchanges contributed to the non-
Markovian characteristics of themembranefluctuations (Baeumer andMeerschaert 2010, Cherstvy et al 2013,
Liemert et al 2017, dos Santos 2019). The temporal asymptotic formof thememory effect of neuronswas further
estimated from the fractional exponent of the Lévy-distribution (Deering andWest 1992, Kantelhardt et al 2002)
and the corresponding correlation time of the electric activity was estimated.

2.Materials andmethods

2.1. Neuron preparation and themeasurements of the neuronal dynamics
The neuronal stem cells, theNE-4C cell-line thatwas driven from the anterior brain vesicles of E9mouse
embryos, were selected as a neuronmodel as this linewas close to the early stage of neuroectodermal progenitors
and known to have a−70mVmembrane potential (Schlett andMadarasz 1997, Jelitai et al 2007). The
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differentiatedNE-4Cneuron cells (CRL-2925, American TypeCultureCollection,Manassas, VA,USA |RRID:
CVCL_B063)were cultured in Eagle’smodified essential growthmediumwith 4μMof L-glutamine (10009CV,
Corning, Corning, NY,USA), 10% fetal bovine serum (16140071, Thermo Fisher Scientific,Waltham,MA,
USA), and 1%penicillin-streptomycin (10378016, Thermo Fisher Scientific) for 30 h. After 30 h, 1μMall-trans
retinoic acid carried by 0.01%DMSOwas added. Themediumwas refreshed every day. The grown cells were
transferred to a poly-d-lysine coated plate on day 7.When a cultured dishwas prepared, the dishwasmounted
on a stage and the spontaneous neuronal activities were recorded byOCM.The configuration of theOCM
imaging system is an off-axisMach–Zehnder-type interferometer that collects light reflected from cultured
neurons tomeasure the optical thickness and/or change in the refractive index of neurons (Iyer et al 2022). The
optical configurations and the set-up to acquire the phase-sensitive images were identical to the previous report
from Iyer et al (2022), but only used a horizontal polarization component. The illumination source is a
superluminescent diode atλ= 865± 65 nm (Broadlighter S860-HP, Superlum Inc., Cork, Ireland) and an
ultrafast camera (4000Hz,Mini AX100, Photron, Tokyo Japan)was used. The coherence gate was located at the
dish surface tomeasure the optical thickness of neurons as the neuron cells were transparent. The optical
thickness of the neuron cluster (both cell bodies and axons)with a proximate electrophysiologymicropipette
electrode tip is shown infigure 1(a) acquired from the phase angle of coherently reconstructed complex-valued
images. The coherent reconstruction of the complex-valued imagewas performed by the angular de-
modulation of a hologram. A single pixel represents 0.5μm.Thefluctuation of the optical thickness was
measured by acquiring the displacement of the phase angle between consecutive frames. The images were
recorded for 2.5 s (104 frames) and the spontaneous electrical activity of the neuron cluster wasmeasured by the
micropipette electrode, simultaneously. The optical displacements between frameswere estimated by dividing
consecutive complex-valued frames and acquiring the displacement of phase angle (Δf) closest to zero to reject

Figure 1.Phase-sensitive optical coherencemicroscopy images and the dynamics related to electrical activity in neurons. (a)The real
component of the reconstructed digital holographic image ( E x yRe ,[ ( )]) of thefield of view (arb. units). The image of a cluster of
neurons (the cellular boundarymarked by a red dashed curvewithin red rectangular), and (b) the corresponding fractional exponent
(α)mapof 25ms. Two regions of interest include the background (ROI1) and the neuron (ROI2), whichwere selected for the analyses.
Scale bars in (a) and (b) represent 3μm. (c)The estimation ofα values from the probability density functions (PDF) of optical
displacements (Δf) of ROI1 andROI2 in 25ms. The power-law features of the neuron and background are compared to Lévy
distributions (Solid lines). The PDF acquired from the background (ROI1,α= 1.99) and the neuron (ROI2,α= 1.44) showdistinct
power-law distributions. (d)The electrophysiology signal acquired by themicropipette electrode tip in (a). The inactive time (t1) and
the active time (t2) segments were selected and the correspondingα valueswere collected fromROI1 andROI2, respectively. (e)The
distributions ofα values during the time segments t1 and t2. The systematic increase or decrease ofα values can be related to the
electrophysiology signal generation from the neurons.
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phase-wrapping artifacts (Choi et al 2021a). The valueΔf represents the optical displacement for 0.25ms and
the probability density function (PDF) ofΔfwas acquired for 25ms (102 frames).

2.2. Estimation of thememory effect of the neuronalmembranefluctuations by electric activity
The general estimation of the anomalous diffusion ismade by acquiring themean squared displacement (MSD).
The ensemble average ofMSDhas the asymptotic form x t t H2 2á ñ ~( ) for a free particle, whereH is aHurst
exponentwith H0 1 2< < and H1 2 1,< < which represents the range ofHurst exponents for
subdiffusion and superdiffusion processes, respectively (Mandelbrot andVanness 1968). The estimation of the
MSD for the cellularmembrane is not an appropriate approach as the system is bounded andwhose asymptotic
formofMSD is not∼t2H (Vinales andDesposito 2006,Di Terlizzi et al 2020). Also, ultrafast biological processes
such as neuronal activity occurwithin the order of amillisecond, therefore, the number of data points is
insufficient to estimate the asymptotic power-law feature of theMSD evenwith an ultrafast camera. However,
using the relationship between theHurst exponent and the fractional exponent of the Lévy distribution, known
as H 1 ,a= enables estimating the fractional exponent of thememory effect (Kantelhardt et al 2002). The
asymptotic formof thememory effect γ(t) originated from the force induced by ionic exchanges can be
estimated from theHurst exponent as a correlation timeC(t) of the internal noise: C t k T t t H

B
2g= ~ -( ) ( ) at

temperatureTwith the Boltzmann constant kB, by the second fluctuation-dissipation theorem (Wang and
Tokuyama 1999, Vinales andDesposito 2006,Maes 2014). From the shape of experimentally acquired PDFs that
had Lévy distributions, we estimated the corresponding fractional exponent by comparing the power-law tails.
Thememory effect of themembrane fluctuationwas estimatedwhere the values of theHurst exponent (H) or
the fractional exponent (α)was 0.5 or 2, respectively; then the fluctuation had nomemorywhose PDFwas
Gaussian-like, while forH= 1 orα= 1, the PDFwasCauchy-like andwe estimated the fluctuationwas ballistic.

The physical displacementΔz of the neuronalmembrane estimated from the optical displacement is
z n4 ,fl pD = D where n is the refractive index of themedium (n∼ 1.33) andλ is the center wavelength of

OCM.Themembrane displacements were assumed to obey the Lévy process that states that equal displacements
have equal probability and the displacements of each temporal step are independent. A single neuronwas
expected to have the same Lévy process and the same Lévy distribution of themembrane displacement. The PDF
acquired from the optical displacements of a cellularmembrane has a stable and symmetric Lévy-like
distributionwith the fractional exponentα, and the scaling factor γ (Mantegna 1994):

L e q dq
1

cos . 1q
,

0
òf

p
fD = Da g
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¥

- a( ) ( ) ( )

The distribution becomesCauchy (ballistic process) orGaussian (diffusion process)when 1, 2,a =
respectively, which is consistent with theHurst exponent estimation of H 1= for a Cauchy ballistic process and
H 0.5= for aGaussian diffusion process. The fractional exponent of the PDF (p fD( ))was estimated by the
maximum-likelihood estimator lα,γ (MLE) of Lévy distribution Lα,γ in equation (1) (Clauset et al 2009, Choi et al
2022)

l p Llog . 2, ,å f f= D Da g
f p

p

a g
D =-

( ) ( ) ( )

Theα and γ values of a PDFwere determinedwhen theMLE (lα,γ) valuewas atmaximum. The goodness of the
estimationwas compared to the shape of power-law tails and the value of the fractional exponent and the
estimated uncertainty of the fractional exponent valuewas±0.01. The neuron cluster, background, and the
correspondingα valuemap are shown in figure 1(b), and as an example, the PDFs acquired from the two regions
of interest (background and neurons) and theMLEof the Lévy distributions are compared infigure 1(c). For
accurate estimations of theα value of a PDF, themembrane displacements were collected from an area close to a
single cellular dimension, assuming the dynamics of amembrane had the same Lévy process. As the spontaneous
neuronal dynamics varied rapidly over time, the size of the timewindowwas kept as small as possible, at 25ms
(102 images), by sacrificing the image resolution (from0.5 to 3μm) tomaintain the sample size at 3.6× 103. The
ensemble of displacements was collected froma tile close in dimension to that of an axon of a neuron (3μmby
3μm, 6 pixels by 6 pixels). A total of 36 pixels (a 6-pixel-by-6-pixel square tile) in each of 100 frameswere used to
acquire a PDF and estimate the fractional exponent of a single pixel index. The fractional exponentmap shown
infigure 1(b)was acquired from the fractional exponents of the corresponding PDFs, taken fromoversampled
ensembles by shifting the tile location by 0.5μmhorizontally or vertically.

3. Results and discussion

To investigate the correlation between the spontaneous neuronal activity infigure 1(d) and the power-law tails
of the PDFs, the collection ofα values from the regions of interest 1 and 2 (ROI1 andROI2, black rectangular in
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figure 1(b)) during electrically inactive (t1) and active (t2) time segments are compared infigure 1(e). The
systematic shift of the distributions ofα values was observed, which represents the fluctuation of theα values,
and the decrease ofα over time represents spontaneous neuronal activity.

Neurons at their resting potential still undergo spontaneous low-level ion exchanges due to current leakage
and active transport for their homeostasis (Spruston and Johnston 1992, Chow andWhite 1996, Vergara et al
2019), and subsequently, no dramatic shift ofα-value distributionwas observed infigure 1(e). ROI2 showed a
Gaussian distributions (α–2) as themeasurement was perturbed bywhite noises from the optical intensity
fluctuations andmechanical vibrations (Choi et al 2021a, Choi et al 2022).

For further validation of the relationship between theα values and ion gating, tetrodotoxin (TTX, 100 nM)
was applied to the cultured neurons and incubated for 20 minWhenneurons are exposed to TTXmolecules,
sodium channels are blocked, while preserving other cellular dynamics, such as those related to glucose
metabolism (Shibata andMoore 1993, Bane et al 2014). The reconstructed images of representative cases are
shown infigure 2. The dynamics of neuronswere recorded and analyzed (Supplemental video file).

From the fractional exponentmaps shown infigure 2, thememory effect of the driving force by the ion
channel gating can be estimated. The systematic increases in the fractional exponent thatwere induced by TTX
were also observed. For a quantitative comparison, the fractional exponent distributions of 6 independent
neuron cultures were acquired, fromboth control cultures (sample size:N= 3) andTTX-exposed cultures
(N= 3). The time-averaged fractional exponent values over 2.5 s ( taá ñ ) and the corresponding standard
deviation ofα values (σα)were acquired from the entirefield-of-view of the 6 cultures and are shown in
figure 3(a). Theσα value can be related to the consistency of thememory effect. Thememory effect was
preserved in the control group, on the other hand, thememory effect was suppressed and/or inconsistent (α
and/orσα values became larger)when the neuronswere exposed to TTX. The distribution infigure 3(a)was
normalized between 1 1.8a  infigure 3(b) as the fractional exponent values shown infigure 1(e) suggest
that the values higher than 1.8 are close to the signal from the background. Theσα values of the control and
TTX-exposed cultures are compared infigure 3(c), whichwere normalizedwith the values 0.07 sa to
emphasize the difference. The probability of neurons having lower thanα= 1.4was 26% for the control group,
while that for the TTX-exposed groupwas only 3%. The increase in taá ñ represents the decrease in the the
memory effect which can be ultimately related to the decrease in the correlation time of ion gating, which is
consistent with themechanismof TTX. The humpofσα between 0.1 and 0.4 infigure 3(c) is likely the result of
intermittent ion exchanges other thanNa+ channels in the presence of TTX,which are known to have slow

Figure 2.Reconstructed holographic images of neuron cultures, including both control cultures and those exposed to tetrodotoxin
(TTX, 100 nM) (top row), alongwith the corresponding time-averaged (2.5 s) fractional exponent ( taá ñ )maps (bottom row). The taá ñ
values of the neuronal cluster and the background show contrast for the control culture, while the culture of neurons exposed to TTX
showsweak contrast. Scale bars represent 5μm.
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responses (Kostyuk et al 1981). For instance, Ca2+ channels have a slow repolarization time (∼100ms) (Randall
andTsien 1997). However, TTX exposure inhibits the generation of action potentials, as the sodium channels
are the primary driving channels for these.

Based on these demonstrated results, we further estimated thememory effect from the fractional exponent.
Thememory effect is described in an asymptotic formof t t ,H2g ~ -( ) which is a temporal correlation of the
driving force. Acquiring the fractional exponent could be the related to the correlation time of the force induced
by the ionic gating (Kubo 1966, Kantelhardt et al 2002). The conformational diffusionmodel of ion channel
gating predicts a closing time that has a power-law feature and the corresponding neuronal conductance has
been estimated (Goychuk andHanggi 2003b, 2004). The induced driving force by ion gating is proportional to
the temporal population of open channels. The induced ionic current can be estimated by the correlation times
of the closing time and opening time. Thememory effect of the ionic current was estimated by the power-law
dwelling times that showed a fractional-exponentmemory kernel (Mercik et al 1999). Assuming that the
stochastic process of the neuronal dynamics is self-similar (Mandelbrot andVanness 1968), and the ionic
current by gating is I(t), then the autocorrelation functionκ(t) of I(t) by ion gating can be representedwith the
fractional exponent value as (Mercik et al 1999)

I t I t
. 3

2

2
2 1 1k t

t m
s

t=
á + ñ -

µ a- -( ) ( ) ( ) ( )( )

Here,μ andσ are themean and standard deviation of the ionic current, respectively. From the autocorrelation
function, we can further estimate the PDF of the closed-time distributionwhose asymptotic power-law feature
is t 3 2 a- -( ) (Mercik andWeron 2001). Also, theHurst exponent can predict the fractional geometry (d) of the
dynamics as d H2= - for the topological 1D space, and the long-termdependence of the power spectrum
s H1 2w w~ - -( ) (Reed et al 1995). The fractional geometry represents the smoothness of a dynamic signal that
might be further understood as the detection feasibility ofmembrane dynamics by neuronal activity (Deering
andWest 1992).

The conservedmemory effect for the control group and the reducedmemory effect for TTX-exposed group
can be quantitatively related to the ionic correlation time by equation (3). The fractional exponents of a control
group showed a strongmemory effect which can be interpreted as a longer correlation time of a ionic current. In
contrast, themajority of neurons exposed toTTXhad a fractional exponent larger than 1.5, which corresponds
to H 0.67, and subsequently, the rapidly decaying feature of the ionic current was expected. Note that for the
fractional exponentα= 2 andHurst exponent atH= 0.5, the process loses thememory effect, and becomes
Brownianmotion. The effect of TTXon blocking the generation of action potentials from the neurons can be
interpreted as a reducedmemory effect, demonstrated by the label-free, non-invasive, optophysiological
method presented here. The fractional exponent interpretation based on the dynamicOCM images can be
further considered as spatial correlations that describe neuronal connectivity, and the interactions of ion
transport and gating that serve to induce neuronal activity and action potential firing between adjacent cells. The
current estimation cannot distinguish the difference between internal or external noise contributions, however,
thememory effect altered by localized external perturbations and the propagation of the effect could be used to
determine the contributions from each of the internal and external noise sources (Vazquez-Guerrero et al 2019).

Figure 3.Quantitative comparison of the fractional exponent distribution between control andTTX-exposed neuron cultures. (a)
Scatter plot of taá ñ and the corresponding standard deviation (sa) of fractional exponents collected from6 independent neuron
cultures. (b)PDFof taá ñ acquired from control (sample size:N= 3) andTTX-exposed (N= 3) cultures. Two exponentially decaying
distributions with different decaying coefficients were observed. The probabilities of observing taá ñ below 1.4were 26% and 3% for
the control andTTX-exposed cultures, respectively. The probabilities were normalized by the sumof distributions between
1 1.8.a  The guidelines are exponentially decaying curves. (c)The distribution of .sa The humpbetween 0.1 and 0.4 is from the
distinct distribution in (a). The guidelines represent two-Gaussian estimations.
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4. Conclusion

In summary, we demonstrated a statistical approach to characterize the non-ergodic neuronal dynamics by a
non-invasive, label-free, phase-sensitive optophysiological detectionmethod.Neuronswere assumed to be
driven by a force induced by ion transport and gatingwith amemory effect.Within the timewindow of 0.25ms,
the displacements of neuronswere assumed to have small displacement and obey the Lévy process. The
estimation of thememory effect was conducted byMLEof experimentallymeasured PDF and Lévy distribution
in equation (2). Cultured neurons have spontaneous electrical activity, and the correspondingmembrane
dynamics were observed by phase-sensitiveOCM.The optical displacements of the neuronalmembranes were
acquired and the distribution of the displacements had a power-law distribution. The electrophysiological
activities of the neuronsweremeasured by a standardmicropipette electrode and the corresponding power-law
features of the PDFswere shown. Sodium-ion gating across the neuronalmembranes was inhibited by a
sodium-channel blocker (TTX) and a suppression of the power-law features in the PDFswas observed. The
interpretations of the fractional exponent estimated from the Lévy distribution in equation (3)were performed
by introducing theHurst exponent. TheHurst exponent describes the asymptotic features of the correlation
time of ionic current and the sojourn time distribution of the close state. Neurons exposed to TTX showed
reduced self-similarity, ionic current correlations, andmemory effect. From theHurst exponent, the fractional
geometry of the neuronal dynamics and the degree of self-similarity of neuronal connectivity can be further
estimated. Non-Markovian interpretation of the neuronal dynamics could broaden the scope of detection
feasibility that can be extended to a higher-dimensional analysis beyond the one-dimensional data
demonstrated in this report.
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