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Background & Aims: Although fat loss is observed in patients with cholestasis, how chronically elevated bile acids (BAs)
impact white and brown fat depots remains obscure.
Methods: To determine the direct effect of pathological levels of BAs on lipid accumulation and mitochondrial function,
primary white and brown adipocyte cultures along with fat depots from two separate mouse models of cholestatic liver
diseases, namely (i) genetic deletion of farnesoid X receptor (Fxr); small heterodimer (Shp) double knockout (DKO) and (ii)
injury by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), were used.
Results: As expected, cholestatic mice accumulate high systemic BA levels and exhibit fat loss. Here, we demonstrate that
chronic exposure to pathological BA levels results in mitochondrial dysfunction and defective thermogenesis. Consistently,
both DKO and DDC-fed mice exhibit lower body temperature. Importantly, thermoneutral (30 �C) housing of the cholestatic
DKO mice rescues the decrease in brown fat mass, and the expression of genes responsible for lipogenesis and regulation of
mitochondrial function. To overcome systemic effects, primary adipocyte cultures were treated with pathological BA con-
centrations. Mitochondrial permeability and respiration analysis revealed that BA overload is sufficient to reduce mito-
chondrial function in primary adipocytes, which is not as a result of cytotoxicity. Instead, we found robust reductions in
uncoupling protein 1 (Ucp1), PR domain containing 16 (Prdm16), and deiodinase, iodothyronine, type II (Dio2) transcripts in
brown adipocytes upon treatment with chenodeoxycholic acid, whereas taurocholic acid led to the suppression of Dio2
transcript. This BA-mediated decrease in transcripts was alleviated by pharmacological activation of UCP1.
Conclusions: High concentrations of BAs cause defective thermogenesis by reducing the expression of crucial regulators of
mitochondrial function, including UCP1, which may explain the clinical features of hypothermia and fat loss observed in
patients with cholestatic liver diseases.
Impact and Implications: We uncover a detrimental effect of chronic bile acid overload on adipose mitochondrial function.
Pathological concentration of different BAs reduces the expression of distinct genes involved in energy expenditure, which
can be mitigated with pharmacological UCP1 activation.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Patients with liver diseases display increased systemic bile acid
(BA) levels up to several hundred micromolar (�300 lM)
compared to healthy individuals.1 Further, a wide range of
cholestatic liver diseases, including progressive familial intra-
hepatic cholestasis,2 primary biliary cholangitis,3 primary scle-
rosing cholangitis,4 and intrahepatic cholestasis of pregnancy,5

display loss of body weight and fat mass. These findings indi-
cate that serum BAs are linked with energy metabolism. Previous
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studies reveal that treating with low BA concentrations can
promote heat production in the brown adipose tissue (BAT) and
increase energy expenditure by activating membrane G protein-
coupled receptor TGR5.6,7 However, the consequence of pro-
longed and persistent exposure to pathological BA levels on the
adipose tissue is yet to be delineated.

Because excessive BAs during cholestasis are known to cause
mitochondrial defect in the liver8,9 and suppress fatty acid
oxidation and peroxisome proliferative activated receptor,
gamma, coactivator 1 alpha (Pgc1a) expression in the heart10,11 in
a dose-dependent manner, we investigated whether chronically
elevated levels of BAs impact mitochondrial function in the ad-
ipose tissue. We examined both BAT, which is linked to fat
burning and is rich in mitochondria, and white adipose tissue
(WAT), which is primarily responsible for fat storage.12

https://doi.org/10.1016/j.jhepr.2023.100714
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:anakk@illinois.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhepr.2023.100714&domain=pdf


Research article
We first measured thermogenic gene expression in the BAT
frommice after short-term exposure to cholic acid (CA)-enriched
diet.13 Next, we examined the adipose histology and mitochon-
drial structure with electron microscopy in the genetic mouse
model for juvenile onset cholestasis (farnesoid X receptor [Fxr];
small heterodimer [Shp] double knockout [DKO]).11,14–16 Then,
we determined whether we could overcome the brown fat defect
by housing the mice in thermoneutral conditions. To validate this
finding, we investigated whether another model of cholestasis,
which is caused by chronic exposure of wild-type (WT) mice to
3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet,17 also led
to compromised adipose mitochondrial function. Adipose depots
from both models of cholestasis were analysed for mitochondrial
respiration, enzyme activity, mitochondrial DNA (mtDNA) copy
number, and gene expression. We also challenged the WT and
DKOmice with a high-fat diet (HFD) to test whether elevated BAs
contribute to fat loss as well as thermogenic defect during
obesity. We then investigated a cell autonomous role for BAs in
the adipose milieu using differentiated primary adipocyte cul-
tures from both fat depots in vitro and analysed mitochondrial
membrane potential, respiration, and gene expression in the
presence and absence of BA overload. Finally, we tested whether
a pharmacological activator of uncoupling protein 1 (UCP1) can
restore thermogenic gene expression pattern in the adipocytes.
Materials and methods
Human adipose tissue
Human perigastric WAT samples were obtained from tissue
normally discarded from obese patients undergoing Roux-en-Y
D
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Fig. 1. Cholestatic DKO mice display decreased fat accumulation. DKO and WT
(n = 8 mice) (A), representative images of H&E-stained WAT and BAT sections
lipogenesis in the WAT (C) and BAT (D) from DKO and WT mice (n = 5–7 mice). (E
(n = 5–6 mice) (E), and mRNA levels of lipolytic genes in the WAT (F) and BAT (G
Differences between two groups were analysed using Student’s t test, and multip
LSD post hoc test. *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. Acc1, acetyl-CoA ca
CCAAT/enhancer binding protein alpha; Dgat1, diacylglycerol O-acyltransferase 1
Fasn, fatty acid synthase; FFA, free fatty acid; Fxr, farnesoid X receptor; Hsl, hor
ference; Pparg, peroxisome proliferator activated receptor gamma; RT, room te
Srebp1c, sterol regulatory element binding protein 1c; WAT, white adipose tissue
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gastric bypass surgery.18 All procedures were approved by the
institutional review board (IRB) at Carle Foundation Hospital and
the University of Illinois Urban-Champaign (IRB protocol #
14092). Informed consent was obtained from the participants,
and the privacy rights of the participants were observed.

Animals
To induce short-term BA overload, 8- to 10-week-old male
C57BL/6 WT mice were fed with 1% CA-supplemented (Envigo,
Indianapolis, IN, USA) or normal chow (Envigo) diet for 5 days.13

The generation of DKO mice has been described.14 Male DKO and
WT mice (8 to 10 weeks old) were used. These mice were bred
and maintained on a 12:12 h light/dark cycle with ad libitum
access to tap water and a normal chow diet in a climate-
controlled (23 �C) animal facility at the University of Illinois
Urbana-Champaign. At 8–10 weeks, mice were fed a normal
chow or 45% HFD (Envigo) for 8 weeks to mimic obesogenic
conditions and housed either at room temperature (RT; 23 �C) or
at thermoneutrality (TN; 30 �C) to blunt brown fat thermogenic
activity.19 To induce chronic cholestatic liver disease, 8- to 10-
week-old male WT mice were fed with 0.1% DDC-
supplemented (Envigo) or normal chow diet for 6 weeks.17

DKO and WT mice were weighed weekly. After 8-week chow
or 45% HFD feeding, a subset of the mice was used for monitoring
core body temperature fluctuation using a Comprehensive Lab-
oratory Animal Monitoring System (CLAMS) (Oxymax, Columbus
Instruments, Columbus, OH, USA). Briefly, animals were surgi-
cally implanted with a transmitter in the abdominal cavity and
acclimated to the CLAMS cages. Fluctuations in the body tem-
perature were recorded over the subsequent 24-h period. Mice
G
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were sacrificed at the end of the experimental regimen. Inter-
scapular BAT, inguinal WAT, and gonadal WAT were collected for
primary preadipocyte culture and for the analysis of histology,
gene expression, protein levels, the degree of lipid unsaturation,
mitochondrial respiratory enzyme activity, and isolated mito-
chondrial respiration.

DDC- and chow-fed WT mice were weighed weekly. After 6
weeks, a subset of mice was used for indirect calorimetry using
the CLAMS as previously described.16 Body surface temperature
in the perianal region was measured using a non-contact
infrared thermometer.20 Mice were sacrificed at the end of the
experimental regimen. Serum, liver, interscapular BAT, and
gonadal WAT were collected for analysis of total BA levels, his-
tology, gene expression, and to isolate mitochondria and perform
respiration assays. All experiments were performed following
the National Institutes of Health guidelines for the care and use
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upon HFD at RT
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of laboratory animals, and all procedures were approved by the
Institutional Animal Care and Use Committee at the University of
Illinois Urbana-Champaign.
Statistical analysis
Data were expressed as means ± SEM. Statistical analyses were
performed using GraphPad Prism 9 software (GraphPad Software
Inc., San Diego, CA, USA). Differences between two groups were
analysed using Student’s t test, and multiple-group comparisons
were analysed using a one-way or two-way ANOVA with a
Fisher’s least significant difference (LSD) post hoc test. A value of
p <0.05 was considered statistically significant.

For further details regarding the materials and methods used,
please refer to the Supplementary CTAT Table and Supplemen-
tary information.
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Results
Chronic BA excess in DKOmice results in compromised brown
adipose function
Previously, a 0.5% CA diet had been shown to promote the
expression of thermogenic genes Pgc1a and deiodinase iodo-
thyronine type II (Dio2), indicating the beneficial effect of low
dose of BAs.6 We performed a short-term exposure to 1% CA
diet13 and found that we were able to recapitulate this increase
in Dio2 and Pgc1a in BAT (Fig. S1). We then examined the DKO
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mouse model of juvenile onset cholestasis11,14–16 to study the
effect of chronic BA overload on the adipose tissue. As previously
shown, DKO mice display excessive BA concentrations in the
serum (Fig. S2A)14,15 and exhibit lower body weight and resis-
tance to fatty liver disease.16 Even under chow diet, these mice
displayed reduced white and brown fat mass (Fig. 1A) with
smaller adipocyte size (Fig. 1B and Fig. S2B) compared with WT
mice. These findings correlated well with reduced expression of
lipogenic genes in the WAT (CCAAT/enhancer binding protein
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alpha [C/Ebpa] and diacylglycerol O-acyltransferase 2 [Dgat2])
(Fig. 1C) and BAT (C/Ebpa, sterol regulatory element binding
protein 1c [Srebp1c], diacylglycerol O-acyltransferase 1 [Dgat1],
and Dgat2) (Fig. 1D). These data suggest a possibility of reduced
lipogenesis in the DKO adipose tissues. Although we did find
increased mRNA levels of stearoyl-coenzyme A desaturase 1
(SCD1) (Fig. 1C), a rate-limiting enzyme for the synthesis of un-
saturated fatty acids,21 in the DKO WAT, no alteration was
observed in the degrees of unsaturation as measured with
Raman spectroscopy compared with WT mice (Fig. S2C). Further,
we investigated and found that the response to b-adrenergic
stimulation with isoproterenol was dampened in DKO mice
compared with that in WT mice (Fig. 1E). We also found lower
transcript levels of hormone-sensitive lipase (Hsl) and adipose
triglyceride lipase (Atgl) in the WAT and BAT, respectively
(Fig. 1F,G), which corroborates with lower stimulated lipolysis in
DKO mice.

As mitochondrially rich BAT promotes heat production and is
implicated in BA-mediated fat burning,12 we examined gene
expression and mitochondrial activity and continually monitored
the body temperature of DKO and WT mice. Intriguingly, DKO
mice exhibited decreased expression of thermogenic genes PR
domain containing 16 (Prdm16) and Ucp1 (Fig. 2A). We validated
the reduction in UCP1 protein levels (Fig. 2B) and activities of
citrate synthase as well as oxidative phosphorylation (OXPHOS)
enzyme complexes III and IV albeit an increase in complex I
(Fig. 2C). Consistently, DKO BAT displayed dramatically lower
mitochondrial respiration including state III, coupled, and
uncoupled/leak respiration (Fig. 2D,E). However, the mtDNA
copy number, a surrogate indicator of mitochondrial numbers,
was comparable between DKO and WT mice (Fig. 2F), suggesting
that DKO mice do not have less mitochondria. We also tested
whether BA overload in DKO caused cell death in the brown fat
depots by terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) staining and found no positive cells (Fig. S2D),
indicating the absence of apoptosis. Instead, coherent with poor
mitochondrial function, DKO mice exhibited lower body tem-
perature than WT mice during the daytime; however, the
activity-induced increase in body temperature at night was un-
affected (Fig. 2G).

Next, we examined these adipose depots after challenging
DKO and WT mice for 8 weeks with a 45% HFD. DKO mice
maintained lower fat mass (Fig. S2E) and smaller adipocyte size
(Fig. S2F,G) in both the fat depots compared with WT mice upon
HFD challenge. This result is in line with significant reductions in
the expression of key lipogenic genes including peroxisome
proliferator activated receptor gamma (Pparg), C/Ebpa, Srebp1c,
acetyl-CoA carboxylase 1 (Acc1), fatty acid synthase (Fasn), Scd1,
Dgat1, and Dgat2 in the DKO BAT (Fig. S2I). However, lipogenic
gene expression profile was not different between the two ge-
notypes in the WAT except for lower levels of Dgat2 (Fig. S2H).
DKO WAT displayed an increase but DKO BAT showed a decrease
in transcript levels of Atgl compared with WT mice (Fig. S2J).
Although we did not find overt difference in mitochondrial ul-
trastructure using electron microscopy (Fig. 2H), we discovered
lower expression of thermogenic genes Prdm16, Pgc1a, Dio2, and
Ucp1 (Fig. 2I) and a reduction in UCP1 protein levels (Fig. 2J) in
DKO vs. WT mice under HFD. In addition, mtDNA copy number
was lower in the DKO BAT than in the WT BAT (Fig. 2K). We also
confirmed that these effects in HFD are not caused by cell death,
as we observed negligible TUNEL staining of BAT (Fig. S2K). These
results suggest that BA excess can impair expression of lipogenic
JHEP Reports 2023
genes and decrease thermogenic function in the adipocytes
irrespective of the diet.

Thermoneutral housing is sufficient to increase brown fat
mass during cholestasis
To confirm the brown adipose mitochondrial dysfunction in
cholestatic DKO mice, we housed both WT and DKO mice at TN
(30 �C), which excludes the thermogenic effect of the BAT.19 The
decreases in mRNA levels of Prdm16 and Ucp1 noted in the DKO
BAT compared with that in the WT BAT at RT (Fig. 2A) were
abolished at TN (Fig. 3A). In addition, UCP1 protein levels at TN
were similar between the WT and DKO BAT (Fig. 3B). Despite a
slightly smaller adipocyte size (Fig. 3D and Fig. S3A), the brown
fat mass at TN was comparable between WT and DKO mice (Fig.
3C), which correlated well with the similar transcription profile
of key lipogenic and lipase genes (Fig. 3F,G). These results indi-
cate that the ineffective brown fat function may, in part, protect
DKO mice against obesity, which is in line with previous studies
that adipose-specific mitochondrial dysregulation causes fat
loss.22,23 Although thermoneutral housing enhanced C/Ebpa
transcript expression in the DKOWAT compared with that in WT
and altered other genes in the lipogenic pathways (Figs. 1C and
3E), DKO mice still exhibited reduced white fat mass (Fig. 3C)
and smaller adipocyte size (Fig. 3D and Fig. S3A).

Next, we challenged DKO and WT mice housed at 30 �C with
an HFD for 8 weeks. This double hit led to a dramatic decrease in
the ratio of normal mitochondria in the DKO BAT, with the ma-
jority of them revealing abnormal ultrastructure with irregular
shape, loss of cristae, or presence of myelin figures (Fig. 3H,I), all
of which indicate mitochondrial damage or degeneration.24,25

Under thermoneutral conditions, HFD-fed DKO mice displayed
similar levels of Prdm16 and Pgc1a but lower expression of Dio2
and Ucp1 in the BAT compared with HFD-fed WT mice when
housed at TN (Fig. 3J). Nonetheless, at TN, DKO mice gained a
similar percentage of body weight as WT mice in response to
HFD (Fig. S3B), unlike poor weight gain seen in DKO mice under
normal housing conditions. Notably, DKO and WT mice exhibited
comparable BAT mass at TN, but WAT mass was still lower in
DKO mice than in WT mice (Fig. S3C). The decrease in WAT
adipocyte size was prominent and maintained in HFD-fed DKO
mice housed at TN (Fig. S3D,E), despite induced expression of
lipogenic genes in DKO mice compared with that in WT mice
(Fig. S3F). By contrast, thermoneutral housing was sufficient to
increase brown adipocyte size (Fig. 3D,E) and led to comparable
expression of lipogenic genes Pparg, C/Ebpa, Srebp1c, and Dgat1
in the BAT of HFD-fed DKO vs. HFD-fed WT mice (Fig. S3G). DKO
WAT at TN showed expression of lipases similar to that seen at
RT (Figs. S2J and S3H), whereas the reductions in Atgl and Hsl
mRNA levels in DKO BAT were abrogated at TN (Figs. S2J and
S3H). These findings indicate that WT and DKO BAT are compa-
rable with each other under TN conditions.

DDC-fed mice mimic the brown adipose dysfunction
phenotypes in DKO mice
FXR and SHP are implicated in lipid metabolism, and particularly,
FXR has been shown to regulate adipose tissue lipid accumula-
tion.26–28 Therefore, to overcome the caveatof Fxrand Shpdeletion
in DKO mice, we examined a chronic DDC-induced model of
cholestasis in WT mice with intact FXR and SHP expression. As
expected, DDC diet led to elevated levels of circulating BAs
(Fig. S4A), liver injury indicated by histological alterations
(Fig. S4B), and raised serum concentrations of liver enzymes
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aspartate transaminase and alanine transaminase (Fig. S4C) inWT
mice. We also observed that DDC challenge led to a lower body
weight (Fig. 4A) as anticipated,whichwas accompaniedby the loss
of WAT mass (Fig. 4B), and a decrease in brown fat mass (Fig. 4B)
and adipocyte size (Fig. 4C and Fig. S4D). Theweight losswith DDC
wasdrastic at 2weeks and then stabilizes; therefore,weexamined
daily food intake using a CLAMS. Food intake was comparable
between DDC- and chow-fed mice (Fig. S4E). Energy expenditure
during the day remained unaltered, but the active nighttime en-
ergy expenditure was increased despite reduced physical activity
in DDC-fed cholestatic mice (Fig. S4F,G).

Upon further analysis, we found that brown fat from DDC-fed
mice phenocopied many aspects of the BAT from DKO mice,
including the reduction in lipogenic genes C/Ebpa and Dgat2
JHEP Reports 2023
along with Pparg, Fasn, and Scd1, which was unique to the DDC
diet (Figs. 1D and 4D). Remarkably, brown fat from DDC-fed WT
mice also recapitulated the reductions in thermogenic genes
Prdm16 and Ucp1 (Figs. 2A and 4F). We also found reduced
mitochondrial respiration, including state III and uncoupled/leak
respiration (Fig. 4G,H), and lower mtDNA copy number (Fig. 4I)
in DDC-fed WT BAT. In line with these changes, DDC-fed mice
exhibited lower body temperature during the light phase simi-
larly to cholestatic DKO mice (Figs. 2G and 4J). In addition, we
confirmed that the reductions in thermogenic genes and mito-
chondrial defect were not secondary to cell death as measured
by TUNEL staining (Fig. S4H). These results demonstrate that
chronic cholestasis causes defects in brown adipose function,
leading to poor thermogenesis and fat loss.
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Pathological BA concentrations are sufficient to cause
mitochondrial dysfunction in adipocytes
To determine the cell autonomous effect of BAs, we treated
differentiated primary adipocytes derived from either WAT or
JHEP Reports 2023
BAT with pathological concentrations of primary BAs cheno-
deoxycholic acid (CDCA), taurochenodeoxycholic acid (TCDCA),
or taurocholic acid (TCA).29 Excess CDCA, TCDCA, and TCA
resulted in a general decline in mitochondrial membrane
7vol. 5 j 100714
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potential (Fig. 5A,B) and respiration (Fig. 5C,D and Fig. S5A,B)
without affecting adipocyte viability (Fig. S5C). This result in-
dicates that BAs regulate adipocyte mitochondrial function in a
concentration-dependent manner. Elevated BAs lowered
carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP)-
induced maximal respiration compared to vehicle-treated adi-
pocytes (Fig. 5C,D and Fig. S5A,B). Thus, BAs can reduce the spare
respiratory capacity of the mitochondria, which is important to
keep up with ATP demands of a cell. Further, TCDCA or TCA
treatment resulted in lower basal and uncoupled/leak respiration
(Fig. 5D and Fig. S5A,B), indicative of defective uncoupling in
brown adipocytes.

To probe how BAs were altering mitochondria in adipocytes,
we examined the literature to identify if there are putative genes
that could transport BAs into adipocytes. We identified a subset
of four possible transporters, namely solute carrier organic anion
transporter family, member 1A6 (Slco1a6), solute carrier organic
anion transporter family, member 1B2 (Slco1b2), solute carrier
family 51, alpha subunit (Slc51a), and solute carrier family 51,
beta subunit (Slc51b), that may transport BAs from the systemic
circulation into the adipocytes. We validated their transcript
expression in differentiated and undifferentiated primary adi-
pocytes derived from either brown or white adipose depots. In
white adipocytes, the expression profile of these transporters
was maintained irrespective of the differentiation status except
for a decrease in Slc51a post differentiation (Fig. S6A). We also
confirmed the expression of human orthologues of SLC51A and
SLC51B in human white fat depot (Fig. S6C). Intriguingly,
JHEP Reports 2023
however, the expression of Slco1a6, Slco1b2, and Slc51b were all
induced upon differentiation specifically in brown adipocyte
cultures (Fig. S6B), denoting the possibility of BA transport into
mature brown adipocytes.

BA-induced suppression of thermogenic genes in brown
adipocytes can be rescued by the activation of UCP1
In addition to mitochondrial activity, we also examined the
expression of genes regulating thermogenesis and found that
CDCA overload drastically reduced the expression of Ucp1,
Prdm16, and Dio2 transcripts in brown adipocytes (Fig. 6B),
whereas in white adipocytes, we saw reductions in Pgc1a, Dio2,
and carnitine palmitoyltransferase 1A, liver (Cpt1a) transcript
levels (Fig. S7). As BAs are endogenous ligands for FXR and TGR5,
we examined whether pharmacological activation of FXR30 and/
or TGR531 mimic the BA-mediated reductions of thermogenic
genes. We found FXR agonist GW4064 suppressed Prdm16 but
induced Dio2 (Fig. S8). In contrast, TGR5 activation induced the
expression of Ucp1, Prdm16, Pgc1a, and Dio2 as expected (Fig. S8).
Finally, GW4064 in combination with INT-777 was able to
dampen the induction of many of the thermogenic genes
(Fig. S8). Overall, neither GW4064 nor INT-777 was able to fully
recapitulate the CDCA-mediated reduction of all the analysed
thermogenic genes.

Nonetheless, reduction of these genes was also noted in the
cholestatic animal models, DKO and DDC-fed mice, highlighting
the relevance of CDCA in mediating these defects. However, TCA
overload reduced Dio2 gene expression only in brown adipocytes
8vol. 5 j 100714



Table 1. Comparison summary between primary adipocyte cultures upon BA treatment, DKO, DDC-fed, and Ucp1 KO mice housed at room temperature.

Parameter BA-treated adipocytes DKO mice DDC-fed mice Ucp1 KO mice

Body weight ND Y Y Y,41 NS39

WAT mass ND Y Y Y38,39,41

BAT mass ND Y Y NS38,39

BAT mitochondrial function Y Y Y Y40

Ucp1 levels Y Y Y Y38–41

Thermoregulation ND Y Y Y38,39

Skeletal muscle mitochondrial function ND [16 ND [41–43

Energy expenditure ND [16 [ [41,42

BA, bile acid; BAT, brown adipose tissue; DDC, 3,5-diethoxycarbonyl-1,4-dihydrocollidine; DKO, Fxr and Shp double knockout; Fxr, farnesoid X receptor; KO, knockout; ND, not
determined; NS, not significant; Shp, small heterodimer; Ucp1, uncoupling protein 1; WAT, white adipose tissue.
(Fig. 6C and Fig. S7). The varied responses to different BA species
in adipocytes from both fat depots suggest that the composition
of the BA pool can also influence the outcome of mitochondrial
function distinctly. Finally, we investigated whether the phar-
macological activator of UCP1, TTNPB,32,33 can alleviate some of
these defects in the brown adipocytes. As previously shown,
TTNPB dramatically upregulated Ucp1 mRNA levels (Fig. 6A). Of
note, the TTNPB treatment was sufficient to alleviate CDCA-
mediated decreases in the transcript levels of Prdm16 and Dio2,
and TCA-induced reductions in the expression of Dio2 (Fig. 6B,C).
This result suggests that maintaining Ucp1 mRNA during chole-
stasis is beneficial to maintain the thermogenic gene profile of
brown adipocyte function.
Discussion
Several liver diseases result in weight and fat loss,2–5 but the
mechanisms underlying this fat loss remain unclear. Elevated
circulating BA levels are observed in liver diseases1 and are
associated with fat burning.2–5 In this study, we investigated the
impact of chronic cholestatic disease on the adipose tissue
function using two mouse models. We demonstrate that path-
ological BA concentrations are sufficient to cause mitochondrial
dysfunction, poor thermoregulation, and fat loss.

Although a caveat of the DKO model of cholestasis is that it is
a global knockout of Fxr and Shp, it captures an increase in BA
mixture rather than an increase in a single type of BAs and
mimics pediatric cholestasis.14 Importantly, the individual Fxr
and Shp knockouts do not accumulate pathological BAs to the
extent of what is observed in the clinical setting.11,14 To overcome
this caveat and to tease apart the BA effect, we also performed
in vivo studies using a DDC-induced cholestasis mouse model
and in vitro studies using primary adipocyte cultures from white
and brown adipose with intact FXR and SHP signalling.

Consistent with previous findings that BAs can promote
brown adipose activity by activating TGR5-cAMP-DIO2 signalling
pathway,6,7 we observed that short-term administration of BAs
induced Dio2 and Pgc1a transcript expression (Fig. S1). However,
during chronic cholestasis, BA concentrations can elevate to
hundreds of micromolar, which in turn impairs BAT mitochon-
drial function, leading to poor thermoregulation as observed in
both DKO and DDC-fed cholestatic mice. This is surprising
because we had previously found enhanced mitochondrial
function in DKO skeletal muscle.16 These results demonstrate
tissue-specific effects of BA overload such that skeletal muscle
activity is increased but the brown fat mitochondrial function is
JHEP Reports 2023
compromised. Neither Fxr nor Shp deletion alters the basal BAT
thermogenic gene expression,34,35 indicating that this effect is
secondary to BA overload. We also examined for cell death in the
BAT and did not find the evidence for it (Fig. S2D,K and S4H).
Importantly, heat generated by brown fat36 was hampered in
both cholestatic mouse models, and they displayed lower body
temperature (Figs. 2G and 4J).

To evaluate the direct consequence of BAs on adipocytes, we
examined primary adipocyte cultures obtained from white or
brown fat depot. Adipocytes treated with pathological BA con-
centrations as observed in clinical cholestasis29 were viable
(Fig. S5C) but revealed poor mitochondrial function (Fig. 5A–D,
6B,C, Fig. S5A,B, and S7). Such impairments in mitochondrial
respiration, increased mitochondrial permeability, and cellular
injury have also been noted in hepatocytes9,37 and car-
diomyocytes10,11 upon high BA levels.

Agonistic activation of FXR or TGR5 did not recapitulate the
suppression of thermogenic genes subsequent to high concen-
trations of CDCA (Fig. S8). TGR5 activation induced them,
whereas FXR agonist reduced only Prdm16 transcript in brown
adipocytes. However, cotreatment led to inhibition of TGR5 ef-
fects when FXR was activated, indicating a complex interplay of
these two signalling maybe involved in brown adipocytes upon
pathological BA exposure.

Of note, UCP1 suppression in cholestasis was conserved in
mice and adipocyte cultures. Intriguingly, Ucp1 deficiency or
mitochondrial dysfunction has been linked to fat loss and
resistance to diet-induced obesity.38–41 It is postulated that
skeletal muscle-based thermogenesis may compensate for
defective heat production in the BAT of Ucp1 knockout mice.41–43

Thermogenesis is negated under TN (30 �C), and Ucp1-deficient
mice gain weight and lose their resistance to diet-induced
obesity38,44 when housed at 30 �C. Our findings reveal that
DKO and DDC-fed cholestatic mice exhibit overlapping pheno-
types with Ucp1 knockout mice, including reduced Ucp1 levels,
fat loss, impaired BAT mitochondrial function, and dysregulated
thermogenesis (Table 1). Notably, thermoneutral housing
reversed the reductions in body weight gain and brown fat mass
of DKO mice (Fig. 3C and Fig. S3B,C), highlighting the reduction
of UCP1-mediated brown fat thermogenesis in cholestasis. More
importantly, activating UCP1 is sufficient to recover the expres-
sion of thermogenic genes Prdm16 and/or Dio2 (Fig. 6B,C). Our
findings uncover that BA excess can lead to mitochondrial defect
in the BAT and may explain these clinical presentations of fat
loss2–5 and hypothermia45–47 that have been associated in pa-
tients with cholestasis.1
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