

Effect of HMA Surfaces on Rolling Resistance Emission

Imad. L Al-Qadi, PhD,PE, Dist.M.ASCE University of Illinois, Urbana-Champaign alqadi@illinois.edu

64th Illinois Bituminous Paving Conference December 6, 2023

The support of many students, collaborators, and sponsors are acknowledged

Illinois Center for Transportation University of Illinois at Urbana-Champaign

Global Climate Changes

Transportation Impact in the US

Transportation Contribution to GDP

Transportation Emissions from Roadways

Impact of Climate Changes on Illinc¹⁻

Over the Past Century

degrees Fahrenheit

increase in precipitation percent

percent

weeks

2011 Mississippi River flood caused \$360 million of damage to infrastructure, and agriculture

Number of federal flood disaster declarations from 1981-2013 (EPA, 2016)

2012 Illinois drought caused tremendous crop losses reaching \$1.2 billion

Rates of hospitalization for heat-stress illness from 1987-2014

National Weather Service (2012)

Illinois State Climatologist (2022)

Transportation in Illinois

Illinois is the first Midwest state to mandate carbonfree power

Illinois Climate Change Action Targets

Illinois Department of Natural Resources Climate Action Plan (2022)

Resilient Pavements

Achieves its engineering goals

Is part of a larger system

Preserves surrounding ecosystems

Uses resources efficiently

Reduces energy losses

Impact of New Technologies

Truck Electrification

Platooning

Advanced Analysis

LCA Stages

LCA: Materials

Contribution of Binder of HMA

Energy Consumption with Increasing Binder

Balanced Mix Design

LCA: Construction

LCA: Maintenance/ Rehabilitation

Truck Fuel Consumption!

Aerodynamic Drag At 60 mph (100 km/h), aerodynamic drag consumes approximately 40% of the fuel

Mechanical losses consume approximately 25% of the fuel

Rolling resistance accounts for approximately 35% of the fuel consumed

Deflection

- a) Deformation of a tire when it flattens out in the contact patch (80-95%)
- b) Aerodynamic drag of the rotating tire (0-15%)
- c) Micro-slippage between the tread and the road surface or between the tire and the wheel rim (<5%)

Texture

Roughness/ Unevenness

Induces lower-frequency vibrations compared to roughness

Impacts the contact area between the tire and pavement

Impacts grip at the tire-pavement interface

Low-RR Pavements: Case Study

Denmark

Going from IRI = 80 in/mi, and MPD=1.0 mm to IRI = 57 in/mi, and MPD=0.6 mm

Design Requirements

- Fine gradation
- High Polymer-Modified Binder Content to ensure long-lasting texture level.

Expected Reduction in Fuel Consumption of 1%

Illinois Center for Transportation University of Illinois at Urbana-Champaign

Low-RR Pavements

Oynamic Modulus

- Lower than reference mixes at low T°
- D Higher than reference mixes at high T°
- High Flexibility Index (I-FIT)
- Low Permanent Deformation (HWT)
- **BMD Category: Stiff & Flexible**

Espinoza-Luque et al. (2017)

Roughness

a) Affects vertical dynamics of the vehicle (energy losses).

Texture

>

- b) Induces higher tire deformation due to increased static load.
- c) Increases tire and wear of tires.
- d) Its effect is compounded at higher speeds or higher loads.

Roughness-Induced EFC and DWL

Impact of Roughness

Roughness

Roughness impact cumulative deformation of suspension systems.

Dynamic Loading

Load amplification, increased w/ speed

Excessive Energy Consumption

Using Computer Vision Techniques to Quantify Pavement Rolling Resistance

Acquire Overlapping Images

Reconstruct Pavement Surface in 3D

Summary

- Transportation is responsible for 26% of the GHG emissions in IL.
 - Significant part comes from roadways.
- Pavement sustainability should be assessed from cradle to grave.
 - Innovation across LCA stages is needed.
- Roughness and pavement texture influence rolling resistance.
 - Higher roughness levels and higher texture depths lead to higher energy loss.
- Reducing rolling resistance leads to considerable energy savings.
 - Can be achieved through proper mix design and construction.

THANK YOU Any Questions?

Presenter: Imad L Al-Qadi Email: alqadi@illinois.edu

Illinois Center for Transportation