Bituminous Materials in Military Applications

Jeb S. Tingle, PE

Senior Scientific Technical Manager (SSTM) Geotechnical and Structures Lab U.S. Army ERDC

64th Illinois Bituminous Paving Conference 5-6 December 2023

UNCLASSIFIED

INTRODUCTION **IMPROVED LONGITUDINAL JOINTS FUEL RESISTANT ASPHALT HIGHLY MODIFIED ASPHALT INDUCTIVE HOT MIX ASPHALT (IHMA) PERFORMANCE BASED SELECTION OF SURFACE TREATMENTS SUMMARY US Army Corps** INDI

of Engineers®

U.S. ARMY

INTRODUCTION

- Military Operations Around the World Require High Quality Paving Materials to Support Unique Military Vehicles and Aircraft in Challenging Environments
- High Tire Pressure (350 psi) and Heavy Wheel Loads (45-kips)
- Sustained Exposure to Petroleum, Oils, and Lubricants (POL) and High Heat
- Rapid Maintenance and Repair of Deteriorated Flexible Pavements
- Unique Challenges Driving Move to Exotic Materials

IMPROVED LONGITUDINAL JOINTS

- Objective: Improve Specifications Currently Used for Paving Longitudinal Joints of HMA
 - Document Best Practices for Construction of Longitudinal Joints
 - Evaluate Lab and Field Testing Protocols to Assess Quality of Longitudinal Joints
 - Monitor Performance of Constructed Longitudinal Joints
 - Provide Recommendations to Improve Specifications
- Tasks:
 - Review Alternative Longitudinal Joint Construction Techniques
 - Establish Laboratory Approach for Testing Longitudinal Joints
 - Evaluate Methods in a Field Test
 - Compare Performance

LONGITUDINAL JOINT CONSTRUCTION PRACTICES

- Cut-back joints
- Adhesive products
- Joint compaction
- Paving overlap and thickness
- Alternative construction tools

TEST SECTION CONSTRUCTION – CANNON AFB

TEST SECTION CONSTRUCTION – CANNON AFB

ID	Туре	Temp	Cutting	Product	Screed Overlap*	Raking the Joint
L1	Butt	IR		Tack	1.5"-2"	Rake
L2	Cutback	IR	Cutting Wheel	Tack	1.5"-2"	Rake
L3	Cutback	IR	Cutting Wheel	Tack	1.5"-2"	Rake
L4	Cutback	Cold	Cutting Wheel	Tack	1.5"-2"	Rake
L5	Cutback	Cold	Cutting Wheel	Crafco	1.5"-2"	Rake
L6	Cutback	Cold	Cutting Wheel	VRAM	1.5"-2"	Rake
L7	Butt	Cold		VRAM	1.5"-2"	Rake
L8	Butt	Warm (Below 150 F)		Tack	1.5"-2"	Rake
R1	Notched Wedge	Cold		Tack	1.5"-2"	Rake
R2	Butt	Cold		Tack	Less than 1"	Do not Rake
R3	Butt	Cold		Tack	1.5"-2"	Rake
R4	Cutback	Cold	Cutting Wheel	Tack	Less than 1"	Do not Rake
R5	Cutback	Cold	Cutting Wheel	Tack	1.5"-2"	Do not Rake
R6	Cutback	Cold	Standard Milling	Tack	1.5"-2"	Rake
R7	Cutback	Cold	Micro Milling	Tack	1.5"-2"	Rake
R8	Butt	Hot		Tack	1.5"-2"	Rake

High Level Assessment Based on In-Place Density

Good	Moderate	Poor
L8	L2	R1
R6	L3	R2
R7	L4	R3
	L5	L1
	R4	L6
	R5	L7
	R8	

IN

UNCLASSIFIED

LABORATORY EVALUATION

- Measured Density Gradient Across Joint Sections
 - Best Densities Achieved:
 - Warm Butt joint (L8) and
 - Milled joints (R6 and R7)
 - Current Practices (L4) Yielded Poor Densities

FUEL RESISTANT ASPHALT

- Objective: Evaluate the Design and Performance of Fuel Resistant Asphalt (FRA)
 - Quantify Value as Purpose-specific Material
 - Create More Confidence in Specification and Use
- Tasks:
 - Evaluate FRA Projects During Construction
 - Perform Critical Review of Past Projects
 - Conduct Lab Testing on FRA Materials
 - Plant Mixed Asphalt Perform Thorough Performance Characterization
 - Lab Mixed Asphalt Allow for Adjustments to Mixture Formulations
 - Prepare Modifications to DOD Criteria for FRA

EVALUATING CURRENT SPECIFICATIONS

- Fuel Resistance Currently Assessed Based on Mass Loss Due to Fuel Immersion
 - No Comprehensive Assessment of Fuel Resistance Test Methods in Literature
 - Needed to Understand Sensitivity/Effectiveness of Fuel Resistance Characterization
- UFGS 32 12 17.19 Fuel Resistant Asphalt Paving for Airfields Fuel Mass Loss (FML)
 - Test (3) specimens compacted at optimum binder content, 2.5% \pm 0.7% V_a
 - 24-hour kerosene immersion
 - 24-hour drying under fan
 - Calculate % Mass loss using weight before kerosene soak and weight after soak and drying
 - Mass loss must be less than 1.5%

IMPROVING CURRENT SPECIFICATIONS

• Evaluate test parameters (i.e. fuel used, length of soak, inclusion of drying time) and benchmark FRA mixtures against other airfield mixtures

Fuel Type	Soak Time	Dry Time	Asphalt Mix
 Kerosene (Jet A) AVGas ROYCO 899 	 24 hours 120 hours 	 0 hours 24 hours 	 4 FRA 3 conventional polymer modified (CM-#P) 1 unmodified (CM-#)

IMPROVING CURRENT SPECIFICATIONS

- Following current FRA test methods outlined in UFGS 32 12 17.19
 - At 2.5% V_a , all FRA and (1) CM-#P Mix (PG 76-22) Meet Criteria
 - \circ Can Mix using PG 76-22 be considered fuel resistant if meeting FML criteria?
 - FRA Mixes Meet Criteria at All V_a Levels
 - $_{\odot}$ Can design V_a level be changed to more traditional 4.0%?
- Longer Immersion, Greater Differentiation Between FRA Mixes and Conventional Mixes
 - More Appropriate and Effective?

IMPROVING CURRENT SPECIFICATIONS

- Fuel exposure causes long-term damage to asphalt binder after drying or fuel evaporating
 - FML yields visible and quantifiable damage to mix
 - FML does not address effects of fuel damage to mechanical properties of mix
 - Include mechanical testing to understand extent of mixture's ability to resist damage due to fuel exposure
- Mechanical tests considered:
 - I-FIT and DCT mixture cracking resistance
 - APA mixture rutting resistance
 - Cantabro mixture durability
 - IDT mixture moisture/fuel resistance

IDT emerged as most promising and simplest to integrate (benefits from familiarity)

IMPROVING CURRENT SPECIFICATIONS

- Establish Minimum Fuel-soaked Strength and Tensile Strength Ratio (TSR_f):
 - IDT Results Follow Rational Trends, Supporting Validity
 - TSR_f Indicates Mixtures Accumulate More Damage at Higher Va Levels
 - TSR_f Distinguished _ 350 1.0 FRA Mixes and CM 300 0.8 Mixes after 120-hr 250 IDT S_t (psi) TSR^f 9.0 Immersion 200 150 0.4 100 Mechanical Testing 0.2 50 **Refutes Assumption** 0 0.0 No Mass Loss = No FRA3 CM-1P CM-2P CM-1P CM-2P FRA2 CM-3 FRA2 FRA3 CM-3 24 hr Immersion 120 hr Immersion Damage ■ 2.5% - IDT St ■ 5.0% - IDT St ■ 8.0% - IDT St ♦ 2.5% - TSRf ♦ 5.0% - TSRf ♦ 8.0% - TSRf

HIGHLY MODIFIED ASPHALT

Objective: Develop Guidance for the Use of Highly Modified Asphalt Mixtures

- Review existing DOT Specifications and Literature
- Lab Evaluation of Binders and Plant Mix Samples from DOT Projects
- Lab Evaluation of Lab-prepared Mixes following UFGS Requirements
- Quantify Structural Benefits and Environmental Service Life Advantages
 - Dynamic Modulus, PCASE/FAARFIELD analysis
 - Resistance to Aging
- Specification Development

LABORATORY BINDER EVALUATION

- Emphasizing Rutting Properties for Their Obvious Benefit but Also Heavily Emphasizing Environmental Durability/Aging Characteristics
- Data to Date Illustrates Benefits of HP Binder with the PG 76E-28 (HP)

JBER ASSESSMENT

- Groove Collapse/Scuffing Occurred where C-17 was Towed on Apron
- Pavement Grooved at 7 days, not 28
- Utilized PG 64E-40

INDUCTIVE HOT MIX ASPHALT

Objective: Develop and Refine Inductively Heated Hot Mix Asphalt for Pavement Repair

- Optimize Heating Performance
 - Conventional steel aggregate-based mixes
 - Alternative heating elements (e.g. steel rods, graphite rods, carbon fiber flakes, magnetite)
 - Modeling and physical experiments
- Optimize Mix Design and Performance Characteristics
 - Lab mix design and testing
 - Plant production of iHMA in partnership with NecoTech
- Optimize Full-scale Field Processes
 - Portable tack coat sprayer and heater
 - Hoist for loading mix into iHMA heater
 - Evaluate limits with respect to logistics
- Assess Long-term Durability Performance

HEATING OPTIMIZATION

- Evaluated numerous low-cost alternatives such as rebar
- Difficult to regulate localized temperature at safe levels near areas where steel is concentrated

Mana Contraction

HEATING OPTIMIZATION

- Control Mix with 15% Steel Aggregate Peaks at 379°F at 5 minutes Post-heating
- Alternative Heating Approaches:
 - Exceeded safe temperature limits
 - \circ $\,$ Required excessive time to heat mix uniformly
 - $\circ~$ Reduced voltage (2/3 of full capacity) reduced $\rm T_{peak}$ values to roughly 65%
- Most Promising Alternative Approach was to Utilize a Pulsed Heating Cycle that Limited Steel Temperature to 650°F
 - o Still presents safety concerns
 - Complex programming and feedback loop that would be challenging to implement in practice

MIX DESIGN AND CHARACTERIZATION

- Volumetric Mix Design and Performance Characterization Performed at ERDC, Provided to NecoTech for Full-scale Plant Production
- Received 200+ iHMA Containers from NecoTech to Date
- Conducted QC Characterization of Production Lots

FIELD PATCHING OPTIMIZATION

- Portable Constant-pressure Tack Coat Sprayer
 Developed for Uniform Application
- Includes Heated Storage Pot

FIELD PATCHING OPTIMIZATION

Installed Hoist System for Loading Tubes

FIELD PATCHING OPTIMIZATION

- 128 iHMA Tubes Placed to Date
- Demonstrated Placement of 10 Tubes in Alaska
- Demonstrated "Centralized" Heating at "Shop" Coupled with Patching at Satellite Locations

LONG-TERM MONITORING

• Original iHMA Patches at ERDC Jan 2018 (~6 yr)

UNCLASSIFIED

year

PERFORMANCE BASED SELECTION OF SURFACE TREATMENTS

STARWAY SHART	Alternation	the state of annual to be and the
U.S. ARMY of Engineers® ERDC		

SURFACE TREATMENT SELECTION

- True pavement preservation occurs before visible distresses emerge
 - What indicates need for preservation if not visible distresses?
 - How quickly after construction does meaningful oxidation occur?
 - To what degree do rejuvenators reverse the effects of oxidation?
 - To what degree do seal treatments prevent further progression of oxidation?
- How are surface treatments currently evaluated/approved for use on military airfields?
 - Empirical evidence of quality performance
 - Field friction testing
 - Laboratory testing of extracted and recovered (ER) asphalt binder (Rejuvenators only)
- Need quantitative method to approve/classify products
 - Measures impacts of product application to underlying pavement
 - Predicts life extension expected due to surface treatment application

INFORMING TIMING OF SURFACE TREATMENTS

- Oxidation in Top 6.3 mm Yielded Results Similar to 20-hour PAV (simulates 7-10 years) at Final Aging Assessment (12 to 18 months)
- Depths Greater than 6.3 mm: Aging Most Similar to RTFO (represents aging after production & construction)
- Within 18 months, degree of aging in Top 6.3 mm corresponds to 1 to 2 PG grade increases
 - PG 70-XX to PG 76-XX
 - Limited to top 6.3 mm of pavement structure

SELECTING SPECIFICATION TEST METHODS

- Similar Trends Observed Comparing BBR Beam Results to ER Binder Test Results
- BBR Beams Eliminate Concerns Associated with ER process and Blending Product with Asphalt Binder
- Changes in m-value Compared to Control Can be Used to Approve/Classify Products

DEVELOPING SPECIFICATION CRITERIA

- Provide Insight on Immediate Benefits and Duration of Benefits to Underlying Pavement
- Expect Rejuvenator to Increase m-value:
 - Accept by initial change
 - > 25% increase across all pretreatment ages
 - Classify by % initial increase or duration of benefit
- Expect Fog Seal to Slow Changes in m-value:
 - Accept by reduced change over time
 - > 20% increase compared to control after (3) R30
 - Classify by % increase from control after aging

SUMMARY

- Unique Challenges Forcing Routine Use of Premium Asphalt Materials
- Construction of Longitudinal Joints Key to Extended Service Life and Traditional Joint Construction Techniques are Inferior to Milled and Hot Butt Joints
- Mechanical Testing such as IDT Provides Improved Ability to Differentiate Performance of Fuel Resistant Asphalts Compared to Mass Loss Methods
- Highly Modified Binders Promise Improved Performance But Require Further Study to Refine Mix Design and Construction Specifications
- Inductive Hot Mix Asphalt Demonstrated Excellent Performance in Terms of Rutting Resistance and Environmental Degradation
- The m-value from BBR Tests Demonstrates an Ability to Distinguish Effect of Different Types of Surface Treatments and an Ability to Delay Near-Surface Oxidation

THANK YOU FOR YOUR TIME

QUESTIONS?

Jeb S. Tingle, PE Jeb.S.Tingle@usace.army.mil Ben Cox, PhD, PE Benjamin.C.Cox@usace.army.mil Sadie Casillas, PhD Sadie.E.Casillas@usace.army.mil Amal Abdelaziz, Phd Amal.Abdelaziz@usace.army.mil

110/02/GEAR BO 146 BANK BRANHEADS CAN BE 168 D FOR LOOKS & DAN

> PRESTRESSED-OCNORET MUNIWON OKDER

NOTE LANSTER GATE WOR EHOURS

IGINEER RESEARCH & DEVELOPMENT CENTER

ĨŦĬ

UNCLASSIFIED