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▪ Military Operations Around the World Require High Quality Paving Materials to Support 

Unique Military Vehicles and Aircraft in Challenging Environments

 

▪ High Tire Pressure (350 psi) and Heavy Wheel Loads (45-kips) 

▪ Sustained Exposure to Petroleum, Oils, and Lubricants (POL) and High Heat

▪ Rapid Maintenance and Repair of Deteriorated Flexible Pavements

▪ Unique Challenges Driving Move to Exotic Materials

INTRODUCTION
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IMPROVED LONGITUDINAL JOINTS
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• Objective:  Improve Specifications Currently Used for Paving Longitudinal Joints of HMA

− Document Best Practices for Construction of Longitudinal Joints

− Evaluate Lab and Field Testing Protocols to Assess Quality of Longitudinal Joints

− Monitor Performance of Constructed Longitudinal Joints

− Provide Recommendations to Improve Specifications

• Tasks:

− Review Alternative Longitudinal Joint Construction Techniques

− Establish Laboratory Approach for Testing Longitudinal Joints

− Evaluate Methods in a Field Test

− Compare Performance

IMPROVED LONGITUDINAL JOINTS
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• Construction techniques

• Cut-back joints

• Adhesive products

• Joint compaction

• Paving overlap and thickness

• Alternative construction tools

LONGITUDINAL JOINT CONSTRUCTION PRACTICES
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TEST SECTION CONSTRUCTION – CANNON AFB
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ID Type Temp Cutting Product
Screed 

Overlap*

Raking the 

Joint

L1 Butt IR --- Tack 1.5”-2” Rake

L2 Cutback IR Cutting Wheel Tack 1.5”-2” Rake

L3 Cutback IR Cutting Wheel Tack 1.5”-2” Rake

L4 Cutback Cold Cutting Wheel Tack 1.5”-2” Rake

L5 Cutback Cold Cutting Wheel Crafco 1.5”-2” Rake

L6 Cutback Cold Cutting Wheel VRAM 1.5”-2” Rake

L7 Butt Cold --- VRAM 1.5”-2” Rake

L8 Butt
Warm      

(Below 150 F)
--- Tack 1.5”-2” Rake

R1 Notched 

Wedge
Cold --- Tack 1.5”-2” Rake

R2 Butt Cold --- Tack Less than 1" Do not Rake

R3 Butt Cold --- Tack 1.5”-2” Rake

R4 Cutback Cold Cutting Wheel Tack Less than 1" Do not Rake

R5 Cutback Cold Cutting Wheel Tack 1.5”-2” Do not Rake

R6 Cutback Cold
Standard 

Milling
Tack 1.5”-2” Rake

R7 Cutback Cold Micro Milling Tack 1.5”-2” Rake

R8 Butt
Hot          

(Above 200 F)
--- Tack 1.5”-2” Rake

TEST SECTION CONSTRUCTION – CANNON AFB

Good Moderate Poor

L8 L2 R1

R6 L3 R2

R7 L4 R3

L5 L1

R4 L6

R5 L7

R8

High Level Assessment 

Based on In-Place Density
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• Measured Density Gradient Across Joint Sections

− Best Densities Achieved:
• Warm Butt joint (L8) and 

• Milled joints (R6 and R7)

− Current Practices (L4) Yielded Poor Densities

LABORATORY EVALUATION 
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• Objective: Evaluate the Design and Performance of Fuel Resistant Asphalt (FRA)

− Quantify Value as Purpose-specific Material

− Create More Confidence in Specification and Use

• Tasks:

− Evaluate FRA Projects During Construction

− Perform Critical Review of Past Projects

− Conduct Lab Testing on FRA Materials

o Plant Mixed Asphalt – Perform Thorough Performance Characterization 

o Lab Mixed Asphalt – Allow for Adjustments to Mixture Formulations

− Prepare Modifications to DOD Criteria for FRA

FUEL RESISTANT ASPHALT
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• Fuel Resistance Currently Assessed Based on Mass Loss Due to Fuel Immersion

− No Comprehensive Assessment of Fuel Resistance Test Methods in Literature

− Needed to Understand Sensitivity/Effectiveness of Fuel Resistance Characterization

• UFGS 32 12 17.19 Fuel Resistant Asphalt Paving for Airfields – Fuel Mass Loss (FML) 

− Test (3) specimens compacted at optimum binder content, 2.5% ± 0.7% Va 

− 24-hour kerosene immersion

− 24-hour drying under fan

− Calculate % Mass loss using weight before kerosene soak and weight after soak and 

drying

− Mass loss must be less than 1.5%

EVALUATING CURRENT SPECIFICATIONS
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• Evaluate test parameters (i.e. fuel used, length of soak, inclusion of drying time) and 

benchmark FRA mixtures against other airfield mixtures

IMPROVING CURRENT SPECIFICATIONS

Fuel Type

• Kerosene 
(Jet A)

• AVGas

• ROYCO 899

Soak Time

• 24 hours

• 120 hours

Dry Time

• 0 hours

• 24 hours

Asphalt Mix

• 4 FRA

• 3 conventional 
polymer modified 
(CM-#P)

• 1 unmodified 
(CM-#)
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• Following current FRA test methods outlined in UFGS 32 12 17.19

− At 2.5% Va, all FRA and (1) CM-#P Mix (PG 76-22) Meet Criteria

o Can Mix using PG 76-22 be considered fuel resistant if meeting FML criteria?

− FRA Mixes Meet Criteria at All Va Levels

o Can design Va level be changed to more traditional 4.0%?

IMPROVING CURRENT SPECIFICATIONS
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• Fuel exposure causes long-term damage to asphalt binder after drying or fuel evaporating

− FML yields visible and quantifiable damage to mix

− FML does not address effects of fuel damage to mechanical properties of mix

− Include mechanical testing to understand extent of mixture’s ability to resist damage due to fuel exposure

• Mechanical tests considered:

− I-FIT and DCT – mixture cracking resistance

− APA – mixture rutting resistance

− Cantabro – mixture durability

− IDT – mixture moisture/fuel resistance

IDT emerged as most promising and simplest to integrate (benefits from familiarity)

IMPROVING CURRENT SPECIFICATIONS
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• Establish Minimum Fuel-soaked Strength and Tensile Strength Ratio (TSRf):

− IDT Results Follow Rational Trends, Supporting Validity

− TSRf Indicates Mixtures Accumulate More Damage at Higher Va Levels

IMPROVING CURRENT SPECIFICATIONS

− TSRf Distinguished 

FRA Mixes and CM 

Mixes after 120-hr 

Immersion

− Mechanical Testing 

Refutes Assumption 

No Mass Loss = No 

Damage
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HIGHLY MODIFIED ASPHALT



18

CUI

CUIU.S. ARMY ENGINEER RESEARCH AND DEVELOPMENT CENTER

UNCLASSIFIED

UNCLASSIFIED

Objective: Develop Guidance for the Use of Highly Modified Asphalt Mixtures

• Review existing DOT Specifications and Literature

• Lab Evaluation of Binders and Plant Mix Samples from DOT Projects

• Lab Evaluation of Lab-prepared Mixes following UFGS Requirements

• Quantify Structural Benefits and Environmental Service Life Advantages

➢ Dynamic Modulus, PCASE/FAARFIELD analysis

➢ Resistance to Aging

• Specification Development

HIGHLY MODIFIED ASPHALT
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• Emphasizing Rutting Properties for Their Obvious Benefit but Also Heavily Emphasizing 

Environmental Durability/Aging Characteristics

• Data to Date Illustrates Benefits of HP

Binder with the PG 76E-28 (HP)

LABORATORY BINDER EVALUATION
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• Groove Collapse/Scuffing Occurred where C-17 was Towed on Apron

• Pavement Grooved at 7 days, not 28

• Utilized PG 64E-40 

JBER ASSESSMENT
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INDUCTIVE HOT MIX ASPHALT
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Objective: Develop and Refine Inductively Heated Hot Mix Asphalt for Pavement Repair

• Optimize Heating Performance

– Conventional steel aggregate-based mixes

– Alternative heating elements (e.g. steel rods, graphite rods, carbon fiber flakes, magnetite)

– Modeling and physical experiments

• Optimize Mix Design and Performance Characteristics 

‒ Lab mix design and testing

‒ Plant production of iHMA in partnership with NecoTech

• Optimize Full-scale Field Processes

– Portable tack coat sprayer and heater

– Hoist for loading mix into iHMA heater

– Evaluate limits with respect to logistics

• Assess Long-term Durability Performance

INDUCTIVE HOT MIX ASPHALT
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• Evaluated numerous low-cost 

alternatives such as rebar

• Difficult to regulate localized 

temperature at safe levels near areas 

where steel is concentrated

HEATING OPTIMIZATION
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• Control Mix with 15% Steel Aggregate Peaks at 

379oF at 5 minutes Post-heating

• Alternative Heating Approaches:

o Exceeded safe temperature limits

o Required excessive time to heat mix uniformly

o Reduced voltage (2/3 of full capacity) reduced Tpeak values 

to roughly 65%

• Most Promising Alternative Approach was to 

Utilize a Pulsed Heating Cycle that Limited Steel 

Temperature to 650oF

o Still presents safety concerns

o Complex programming and feedback loop that would be 

challenging to implement in practice

HEATING OPTIMIZATION
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• Volumetric Mix Design and Performance Characterization Performed at ERDC, 

Provided to NecoTech for Full-scale Plant Production

• Received 200+ iHMA Containers from NecoTech to Date

• Conducted QC Characterization of Production Lots

MIX DESIGN AND CHARACTERIZATION
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• Portable Constant-pressure Tack Coat Sprayer 

Developed for Uniform Application

• Includes Heated Storage Pot

FIELD PATCHING OPTIMIZATION
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• Installed Hoist System for Loading Tubes 

FIELD PATCHING OPTIMIZATION
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• 128 iHMA Tubes Placed to Date

• Demonstrated Placement of 10 Tubes in Alaska

• Demonstrated “Centralized” Heating at “Shop” Coupled 

with Patching at Satellite Locations

FIELD PATCHING OPTIMIZATION

Ft Wainwright, AK

6 mo

Ft Drum, NY

5 mo
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• Original iHMA Patches at ERDC Jan 2018 (~6 yr)

LONG-TERM MONITORING 1 year

6 year
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PERFORMANCE BASED SELECTION 

OF SURFACE TREATMENTS
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• True pavement preservation occurs before visible distresses emerge

− What indicates need for preservation if not visible distresses?

− How quickly after construction does meaningful oxidation occur?

− To what degree do rejuvenators reverse the effects of oxidation?

− To what degree do seal treatments prevent further progression of oxidation?

• How are surface treatments currently evaluated/approved for use on military airfields?

− Empirical evidence of quality performance

− Field friction testing

− Laboratory testing of extracted and recovered (ER) asphalt binder (Rejuvenators only)

• Need quantitative method to approve/classify products 

− Measures impacts of product application to underlying pavement

− Predicts life extension expected due to surface treatment application

SURFACE TREATMENT SELECTION
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• Depths Greater than 6.3 mm: 

Aging Most Similar to RTFO 

(represents aging after 

production & construction)

• Within 18 months, degree of 

aging in Top 6.3 mm 

corresponds to 1 to 2 PG 

grade increases

− PG 70-XX to PG 76-XX

− Limited to top 6.3 mm of pavement 

structure

INFORMING TIMING OF SURFACE TREATMENTS
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• Similar Trends Observed Comparing BBR Beam Results to ER Binder Test Results

SELECTING SPECIFICATION TEST METHODS

• BBR Beams Eliminate 

Concerns Associated with 

ER process and Blending 

Product with Asphalt Binder

• Changes in m-value 

Compared to Control Can 

be Used to Approve/Classify 

Products



34

CUI

CUIU.S. ARMY ENGINEER RESEARCH AND DEVELOPMENT CENTER

UNCLASSIFIED

UNCLASSIFIED

• Provide Insight on Immediate Benefits and Duration of Benefits to Underlying Pavement

DEVELOPING SPECIFICATION CRITERIA

• Expect Rejuvenator to 

Increase m-value:
− Accept by initial change

− > 25% increase across all pre-

treatment ages

− Classify by % initial increase or 

duration of benefit

• Expect Fog Seal to Slow 

Changes in m-value:
− Accept by reduced change over 

time

− > 20% increase compared to 

control after (3) R30

− Classify by % increase from 

control after aging
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SUMMARY
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▪ Unique Challenges Forcing Routine Use of Premium Asphalt Materials

 

▪ Construction of Longitudinal Joints Key to Extended Service Life and Traditional Joint 

Construction Techniques are Inferior to Milled and Hot Butt Joints

▪ Mechanical Testing such as IDT Provides Improved Ability to Differentiate Performance of 

Fuel Resistant Asphalts Compared to Mass Loss Methods

▪ Highly Modified Binders Promise Improved Performance But Require Further Study to 

Refine Mix Design and Construction Specifications

▪ Inductive Hot Mix Asphalt Demonstrated Excellent Performance in Terms of Rutting 

Resistance and Environmental Degradation

▪ The m-value from BBR Tests Demonstrates an Ability to Distinguish Effect of Different 

Types of Surface Treatments and an Ability to Delay Near-Surface Oxidation

SUMMARY
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THANK YOU FOR YOUR TIME

QUESTIONS?
Jeb S. Tingle, PE

Jeb.S.Tingle@usace.army.mil

Ben Cox, PhD, PE

Benjamin.C.Cox@usace.army.mil

Sadie Casillas, PhD

Sadie.E.Casillas@usace.army.mil

Amal Abdelaziz, Phd

Amal.Abdelaziz@usace.army.mil

mailto:Jeb.S.Tingle@usace.army.mil
mailto:Benjamin.C.Cox@usace.army.mil
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