R27-204

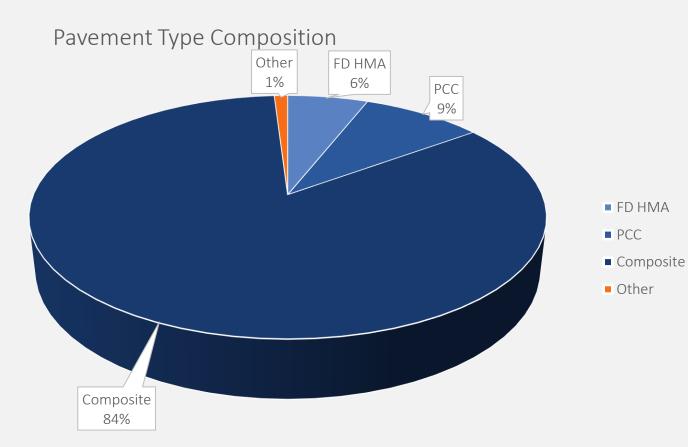
Overlay Design for Controlling Reflective Cracking

December 6, 2023

Illinois Bituminous Paving Conference

John Senger, P.E. Bureau Chief of Research Illinois Department of Transportation

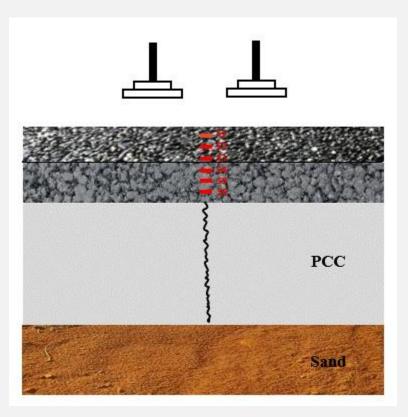
Research Team

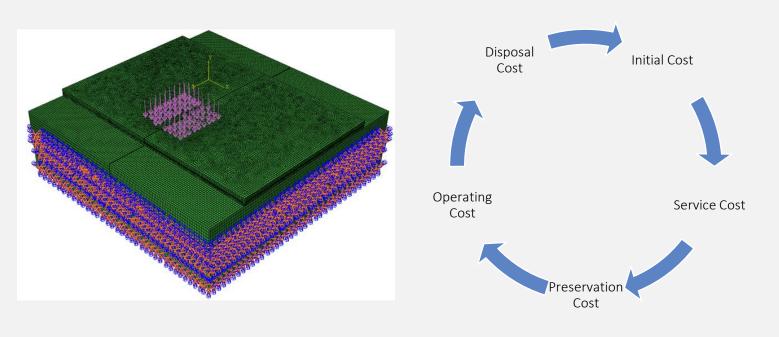

ASU

UIUC

- Imad L. Al-Qadi Hasan Ozer
- Greg Renshaw
 Ramadan Salim
- Uthman Mohamed Ali
- Aravind
 Ramakrishnan
- Zehui Zhu

Illinois Roadway Network

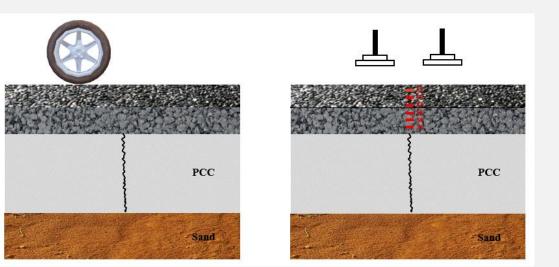

- 15,900 Centerline State
 Maintained Highway Miles
- 90% HMA Surfaced
- Composite pavements
- contain anywhere from
- 2.5" 14" of HMA



Lab Testing

Mechanistic Analysis

Life Cycle Cost Analysis



Lab Testing Overview Small-Scale

- I-FIT
- HWTT
- E*

Large-Scale

Subgrade Preparation

Compaction

3.75in Neoprene Sheet

• Amplify Deflection

3 feet

• Accelerate Testing

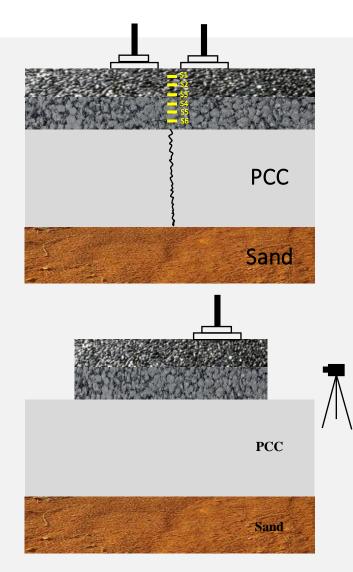
The stand and a state of the st

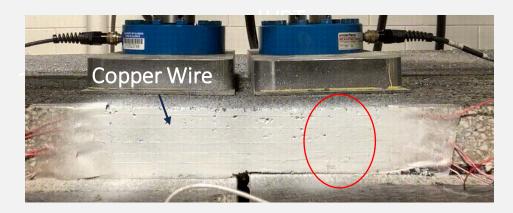
Concrete Slab Preparation and Placement

Saw Cut 6-in-deep

Slab Construction – Mix Preparation

Slab Construction – Compaction

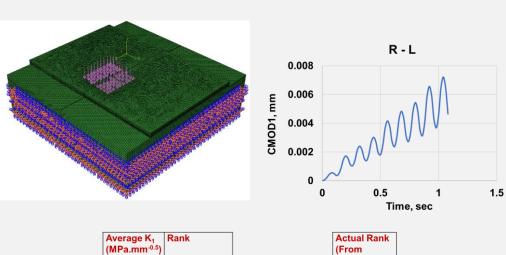



12/6/2023 64th Illinois Bituminous Paving Conference

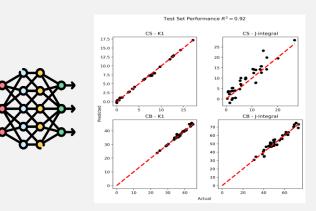
Instrumentation

Goal 1: Measure Crack Propagation Speed Camera & Copper Wires

Goal 2: Measure PCC Deflection



HMA Mixtures Included


ID	N-Design	AC (%)	Binder Grade	ABR (%)	
IL-4.75	50	8.2	SBS PG 70-22	10.0	
IL-9.5	70	6.1	PG 58-28	29.3	
IL-9.5FG	90	5.9	SBS PG 70-22	0.0	
IL-19	70	70 5.3		20.0	
SMA-9.5	5 80 6.6 SBS PG 76-		SBS PG 76-22	9.8	
SMA-12.5	80	6.3	SBS PG 76-28	14.7	

Summary of Mechanistic Analysis

- Test slab was modeled
 - Computed fracture parameters using assigned crack
 - Mode I was dominant
- Model validation
 - Ranking based on fracture parameter
 - K_I was a good measure
- Surrogate model
 - Simulation matrix of 128 cases
 - Neural network Generalized and accurate

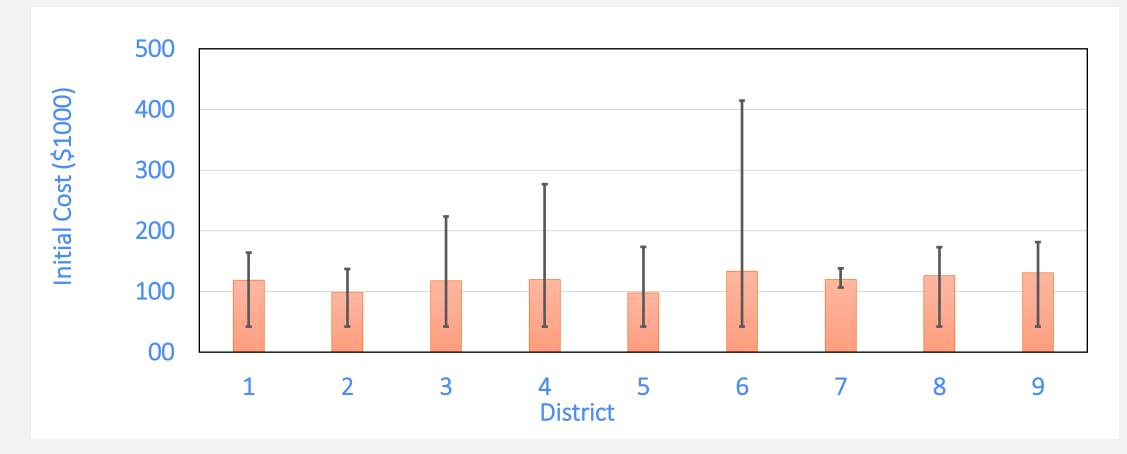
LCAA Overview

AC usage and cost data analysis

Statistics of overlay scenarios (thickness, mixes)

Cost breakdown of projects per district

Unit price analysis


LCCA analysis of overlay scenarios

Based on large-scale test performance ranking

Sensitivity analysis

Average Initial Cost for Projects 2018-2019

Calculated for one lane-mile based on total AC quantity and unit price

Unit Prices for Different Scenarios

DISTRICT		Non-interstate			Interstate				
		С	1	2	3	С	1	2	3
1	Surface	\$91.2	\$91.2	\$100.8			\$100.8	\$108.8	\$100.8
<u> </u>	Binder	\$89.8		\$89.8	\$89.8	\$63.5	\$108.8	\$63.5	
2	Surface	\$72.8	\$72.8		\$71.4				
2	Binder	\$110.0	\$71.4	\$110.0	\$110.0				
3	Surface	\$85.1	\$85.1		\$85.4	\$79.4		\$123.0	
	Binder		\$85.4			\$80.7	\$123.0	\$80.7	\$79.4
4	Surface			\$116.8			\$116.8	\$111.0	\$116.8
	Binder	\$117.8		\$117.8	\$117.8	\$113.3	\$111.0	\$113.3	
5	Surface				\$73.0			\$129.2	
5	Binder	\$118.5	\$73.0	\$118.5	\$118.5		\$129.2		
7	Surface				\$80.5	\$99.6		\$119.5	
	Binder		\$80.5			\$87.1	\$119.5	\$87.1	\$99.6
8	Surface	\$90.6	\$90.6		\$93.2	\$93.6			
	Binder		\$93.2			\$89.5		\$89.5	\$93.6
9	Surface	\$88.2	\$88.2		\$91.5	\$110.4			
	Binder		\$91.5			\$71.7		\$71.7	\$110.4
Avg.	Surface	\$85.6	\$85.6	\$108.8	\$82.5	\$95.8	\$108.8	\$118.3	\$108.8
	Binder	\$109.0	\$82.5	\$109.0	\$109.0	\$84.3	\$118.3	\$84.3	\$95.8

Life Cycle Cost and Large Scale Testing

Classi	fication	Surface Course	Binder Course	Number of Cycles to Failure	Assumed Service Life (Years)	Annual Cost Per Mile (\$/Yr)
Non- Interstate	Control	1.5" IL-9.5	0.75" IL-4.75	14,600	10	14,902
	Alt 1	1.5" IL-9.5	1.25" IL-9.5FG	14,600	10	15,754
	Alt 2	1.5" SMA-9.5	0.75" IL-4.75	69 <i>,</i> 850	14	11,474
	Alt 3	1.25" IL-9.5FG	0.75" IL-4.75	111,500	14	9,772
Interstate	Control	1.5" IL-9.5	2.25" IL-19	9,700	10	19,751
	Alt 1	1.5" SMA-9.5	2.0" SMA-12.5	16,200	12	18,550
	Alt 2	2.0" SMA-2.5	2.25" IL-19	23,700	14	16,579
	Alt 3	1.5" SMA-9.5	1.5" IL-9.5	10,200	10	18,711

Interesting Findings

Significant joint opening, caused by loading and low bonding at binder-PCC interface, induced rapid failures of AC overlays

- Debonding at binder-PCC interface substantially affected crack initiation
- Least debonding would delay crack initiation, and, hence, failure

Debonding at surfacebinder interface impacted crack propagation

• Specially if one AC layer is polymer-modified while the other is not

Conclusions

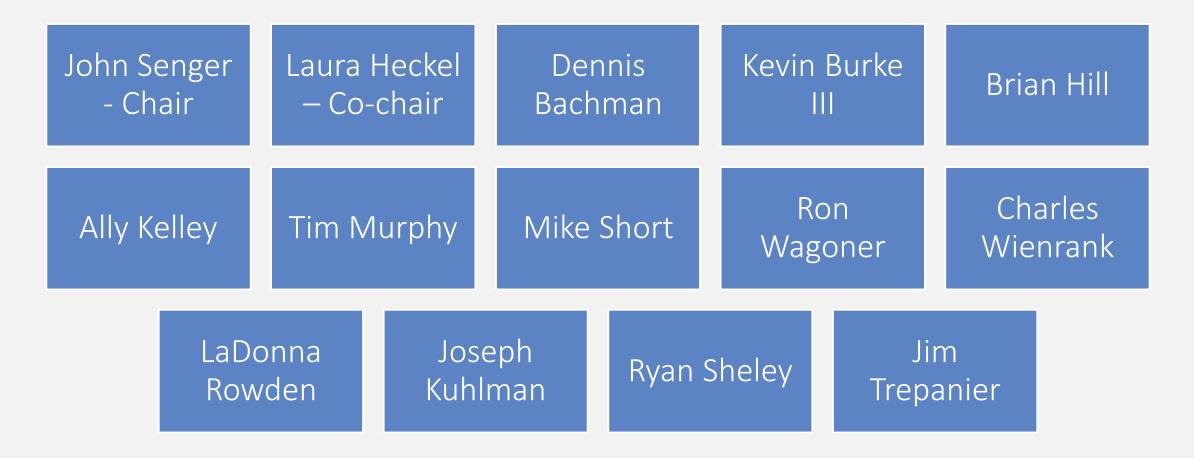
- An optimum overlay to control reflective cracking comprises of a high modulus and flexible surface, and a flexible binder course
- The thicker the AC overlay is, the enhanced resistance to reflective cracking
- Mode I SIF could be used to rank overlay's reflective cracking potential
- A developed robust surrogate model could be used to design overlay
- An overlays with premium mixes or extra thickness could be cost-effective if service life could be improved (e.g., two years).

Recommendations

Non-Interstate

SMA-9.5 @ 1.5 in. IL-9.5FG @ 1.25 in. IL-4.75 @ 0.75 in. IL-4.75 @ 0.75 in.

Other Things to Consider


- Pretreat joints and cracks
- Ensure the mixes meet the FI specifications
- Polymer-modified lifts
- Sufficient bonding between HMA and PCC

Interstate

SMA-9.5 @ 1.5 in. SMA-12.5 @ 2.0 in.

Technical Review Panel Members – Thank you!

Questions

John Senger, P.E. Bureau Chief of Research

Planning and Programming / Research 126 East Ash St. Springfield, IL 62704-5250 Tel: 217-782-8582 Cell: 217-494-5893 John.Senger@illinois.gov

